
DeFi composability as MEV non-interference

Massimo Bartoletti1, Riccardo Marchesin2, Roberto Zunino2

1 Università degli Studi di Cagliari, Cagliari, Italy
2 Università di Trento, Trento, Italy

Abstract. Complex DeFi services are usually constructed by compos-
ing a variety of simpler smart contracts. The permissionless nature of
the blockchains where these smart contracts are executed makes DeFi
services exposed to security risks, since adversaries can target any of
the underlying contracts to economically damage the compound service.
We introduce a new notion of secure composability of smart contracts,
which ensures that adversaries cannot economically harm the compound
contract by interfering with its dependencies.

1 Introduction

Decentralized Finance (DeFi) is often touted as the “money Lego” for its ability
to build complex financial services from a variety of simpler components [3,25].
Recent empirical analyses of the DeFi ecosystem show that DeFi protocols are
heavily intertwined in practice, giving rise to complex interactions [19,20]. This
complexity has a drawback, in that adversaries can exploit unintended forms of
interaction among protocols to obtain an economic profit to the detriment of the
users [14,18]. These security risks are further exacerbated by novel financial ser-
vices allowing users to easily create arbitrary compositions of DeFi protocols [4].
The key unanswered question is: when is a DeFi composition secure?

Despite the clear practical relevance of this question, the research on DeFi
composability is surprisingly limited. To the best of our knowledge, the only
notion of secure DeFi composition in the scientific literature is the one introduced
by Babel, Daian, Kelkar and Juels in their recent “Clockwork finance” paper [7].
There, the focus is on attacks where adversaries can exploit newly deployed
contracts to increase their profit opportunities. Accordingly, their criterion is
that contracts ∆ are composable in a blockchain state S if adding ∆ to S
does not give the adversary a “significantly higher” Maximal Extractable Value
(MEV). In formulae, denoting by MEV(S) the maximal value that adversaries
can extract from S , and with S | ∆ the blockchain state S extended with the
contracts ∆, the composability criterion of Babel et al. is expressed as:

∆ is ε-composable in S iff MEV(S | ∆) ≤ (1 + ε) MEV(S) (1)

where ε parameterises the “not significantly higher” condition above. For exam-
ple, let ∆ be a contract allowing users to bet on the price of a token, relying on
an Automated Market Maker (AMM) in S as a price oracle. If the adversary

has sufficient capital in S , (1) would correctly classify ∆ as not 0-composable
in S , because the adversary can produce enough price volatility in the AMM to
always win the bet, and so to extract more MEV in S | ∆ than in S .

Limitations of ε-composability We argue that the ε-composability of Babel
et al. has some drawbacks. First, using the MEV of the whole state S as a
baseline for the comparison makes it difficult to interpret the concrete security
guarantee of ε-composability. For instance, one may be induced to believe that
deploying a contract ∆ in S is secure after finding that 0-composability holds.
However, (1) only ensures that the MEV of S | ∆ is bounded by that of S , while
it does not say from which contracts this MEV is extracted. For instance, assume
that the Total Locked Value (TLV) of ∆ and the MEV of S are equal, and that
extracting MEV from ∆ blocks the MEV opportunities in S (as in Example 5).
Even though ∆ is 0-composable with S , attacking S | ∆ can make ∆ lose its
whole TLV — not what the designer of ∆ would reasonably consider secure.

Another drawback of using the global MEV as a baseline is that (1) classifies
as not composable contracts that have intended MEV, even when they have no
interference at all with the rest of the system. For instance, let ∆ be an airdrop
contract allowing anyone to withdraw its whole balance. Although ∆ has no
dependencies of any kind with the rest of the system, it is not 0-composable
with any S , since MEV(S | ∆) is greater than MEV(S). Trying to find values of
ε for which ε-composability holds is impractical, and at the extreme, if MEV(S)
is zero, then ∆ is not ε-composable with S for any ε ≥ 0.

Relying on global MEV also poses usability and algorithmic issues. First,
a definition of composability that requires to compute a function of the whole
blockchain state S (which is usually quite large) is hardly efficiently computable.
Second, when ε-composability is violated because of additional MEV extracted
from S , it is unclear which countermeasures could be taken against the attack,
since the attacked contracts in S cannot be amended or removed.

A new security notion: MEV non-interference These arguments suggest
to explore composability notions not relying on the global MEV. Our insight
comes from non-interference, a notion studied by the information security com-
munity since the 1980s [17,23,22,8,16]. In the classic setting, non-interference
requires that adversaries interacting with a software system cannot observe pri-
vate data. More precisely, the property holds when public outputs (that can be
observed by adversaries) are not affected by private (confidential) inputs. We
adapt this notion to the DeFi setting, by requiring that the MEV extractable
from ∆ (the public output) is not affected by the dependencies of ∆ (the private
inputs). This means that adversaries cannot extract more value from ∆ using
any contract in S | ∆ than they could extract by using ∆ only: therefore, inter-
acting with other contracts in the blockchain (including the dependencies of ∆)
gives no advantage to the adversary. To the best of our knowledge, this is the
first time non-interference principles are applied to the DeFi setting.

Our new security notion, that we dub MEV non-interference, relies on novel
contributions to the theory of MEV. In particular, we introduce local MEV, a

2

Table 1: Summary of notation.
A, B User accounts A,B Sets of [user|contract] accounts
C, D Contract accounts †Γ Contract accounts in Γ
C,D Sets of contract accounts deps(C) Dependencies of C
T, T′ Token types $1T Price of T

X,X′ Transactions X⃗ Sequence of transactions
S, S ′ Blockchain states $A(S) Wealth of A in S

W,W ′ Wallet states γA(S, X⃗) A’s gain upon firing X⃗ in S
Γ ,∆ Contract states M Set of adversaries

new metric of economic attacks to smart contracts that measures the maximal
economic loss that adversaries can cause to a given set of contracts (whereas
global MEV only applies to the whole blockchain state). We study two versions of
local MEV, which assume different adversary models: MEV(S,C) is the maximal
loss of contracts C in S under adversaries whose wealth is fixed by S ; instead,
MEV∞(S,C) assumes adversaries with an unbounded capital to carry the attack
(in practice, flash loans make this kind of adversary quite realistic). One of our
main theoretical contributions is that computing MEV∞(S,C) just requires to
know C and their dependencies (Theorem 1). This gives MEV∞ an algorithmic
advantage over global MEV, which depends on the whole blockchain state.

We define MEV non-interference in two versions: S ̸⇝ ∆ means that interact-
ing with S does not give bounded-wealth adversaries more opportunities to cause
a loss to the contracts ∆; furthermore, Γ ̸⇝∞ ∆ does the same for unbounded-
wealth adversaries, where Γ is the state S after the wallets have been removed.

We argue that MEV non-interference naturally captures the security property
a developer would like to verify before deploying new contracts. By relying on
the local MEV that can be extracted from ∆ (instead of the global MEV),
our notion overcomes the drawbacks of ε-composability. First, while contracts
with intended MEV always break ε-composability, they possibly enjoy MEV
non-interference: e.g., this is the case of the above-mentioned airdrop contract,
which is MEV non-interfering w.r.t. any S . Second, for the unbounded-wealth
version we prove that deciding Γ ̸⇝∞ ∆ only requires to consider ∆ and their
dependencies in Γ (Theorem 4). We exploit this result to show that Γ ̸⇝∞ ∆ is
resistant to adversarial contracts: i.e., MEV non-interference still holds when an
adversary deploys some contracts∆′ before∆ (by contrast, both ε-composability
and ̸⇝ are not resistant). We give sufficient conditions for both versions of
MEV non-interference (Theorems 2 and 3), and we apply them to study typical
compositions of DeFi protocols (Table 3).

Because of space constraints, we provide the proofs of all our results and the
pseudo-code for our DeFi examples in a separated Appendix.

3

2 Blockchain model

We fix a model of account-based blockchains and smart contracts à la Ethereum.
To keep our theory simple, we abstract from consensus features (e.g., the gas
mechanism), and we rule out some problematic behaviours (e.g., reentrancy).

Blockchain states We assume a set T of token types (T, T′ , . . .) and a count-
ably infinite set A of accounts. Accounts are partitioned into user accounts
A, B, . . . ∈ Au (representing the so-called externally owned accounts in Ethereum)
and contract accounts C, D, . . . ∈ Ac. We designate a subset M of user accounts
as adversaries3, including e.g. block proposers and MEV searchers. The state of
a user account is a map w ∈ T → N from tokens to non-negative integers, i.e.
a wallet that quantifies the tokens in the account. The state of a contract ac-
count is a pair (w, σ), where w is a wallet and σ is a key-value store. Blockchain
states S, S ′, . . . are finite maps from accounts to their states, where user wallets
include at least M’s. We use the operator | to deconstruct a blockchain state into
its components, writing e.g.:

S = A[1: T, 2: T2] | M[0: T] | C[1: T, owner = A]

for a blockchain state where the user account A stores 1 unit of token T and two
units of token T2, the user account M has zero tokens, and the contract C stores
1 unit of T and has a key-value store mapping owner to A.

Contracts We do not rely on a specific contract language: we just assume that
contracts have an associated set of methods (like e.g., in Solidity).4 A method
can: (i) receive parameters and tokens from the caller, (ii) update the contract
wallet and state, (iii) transfer tokens to user accounts, (iv) call other contracts
(possibly transferring tokens along with the call), (v) return values and transfer
tokens to the caller, (vi) abort. As usual, a method cannot drain tokens from
other accounts: the only ways for a contract to receive tokens are (i) from a caller
invoking one of its methods, or (ii) by calling a method of another contract that
sends tokens to its caller. For simplicity, we assume that a contract C can only
call methods of contracts deployed before it. Formally, defining “C is called by D”
when some method of D calls some method of C, we are requiring that the tran-
sitive and reflexive closure ⊑ of this relation is a partial order. We also assume
that blockchain states contain all the dependencies of their contracts: formally,
if C are the contracts in S , we require that deps(C) = {C′ | ∃C ∈ C. C′ ⊑ C} are
in S . States satisfying these assumptions are said well-formed : all states men-
tioned in our results (either in hypothesis or thesis) are always well-formed.

3 In practice, given a blockchain state it would be safe to say that M are the accounts
never mentioned in the contract states and code. Modelling M as a system parameter
is a simplification, which avoids to make our definitions depend on a specific contract
language. It would be possible to remove the parameterM, at the cost of an increased
complexity of the definitions and statements (see e.g. the adversarial MEV in [12]).

4 For simplicity, we forbid direct transfer of assets between users: this is not a limita-
tion, since these transfers can always be routed by suitable contracts.

4

Although well-formedness makes our model cleaner than Ethereum, preventing
some problematic behaviours like reentrant calls [21], we only need it on the anal-
ysed contracts ∆ and their dependencies (see Section 5). We write S = W | Γ
for a blockchain state S composed of user wallets W and contract states Γ . We
can deconstruct wallets, writing S = W | W ′ | Γ when domW and domW ′ are
disjoint, as well as contract states, writing S = W | Γ | ∆. We denote by †Γ the
set of contract accounts in Γ (i.e. †Γ = domΓ), and let deps(∆) = deps(†∆).
Finally, we assume that contracts cannot inspect the state of other accounts,
including users’ wallets and the state of other contracts.5 Formally, we are re-
quiring that each transaction enabled in S produces the same effect in a “richer”
state S ′ ≥$ S containing more tokens in users’ wallets (Definition B.2 in [11]).

Transactions We model contracts behaviour as a deterministic transition re-
lation −→ between blockchain states, where state transitions are triggered by
transactions X,X′, A transaction is a call to a contract method, written
A: C.f(args), where A is the user signing the transaction, C is the called contract,
f is the called method, and args is the list of actual parameters, which can also
include transfers of tokens from A to C. Invalid transactions are rolled-back, i.e.
−→ preserves the state. There are various reasons for invalidity, e.g. the called
method aborts, a token transfer without the needed tokens is attempted, etc.
Given X = A: C.f(args), we write callee(X) for the target contract C. Methods
can refer to A via the identifier origin and to the caller (contract or user) account
via sender (corresponding, resp., to tx.origin and msg.sender in Solidity).

Example: an Automated Market Maker In our examples, we specify con-
tracts in pseudo-code. Its syntax is similar to Solidity, with some extra features:
(i) the expression #T denotes the number of tokens T stored in the contract;
(ii) the formal parameter ?x: T requires the sender to transfer some tokens T to
the contract along with the call (the unsigned integer variable x generalises So-
lidity’s msg.value to multi-tokens); (iii) the command a! e: T transfers e units of
T from the contract to account a, where e is an expression, and a could be either
a user account or the method sender). We exemplify pseudo-code in Figure 1,
specifying an Automated Market Maker inspired by Uniswap v2 [5,6,9,26]. Users
can add liquidity, query the token pair and the exchange rate, and swap units of
T0 with units of T1 or vice-versa. More specifically, A: swap(?x: T0, ymin) allows
A to send x: T0 to the contract, and receive at least ymin: T1 in exchange. Sym-
metrically, A: swap(?x: T1, ymin) allows A to exchange x: T1 for at least ymin: T0.

Wealth and gain Measuring the effect of an attack requires to estimate the
wealth of the adversary before and after the attack. We denote by $A(S) the
wealth of accounts A in S . Such wealth is given by the weighted sum of the
tokens in A’s wallets, where the weights are the token prices. We denote by $1T

5 These are not restrictions in practice. To make a contract depend on a user’s wallet,
we can require the users to transfer tokens along with contract calls. To make it
depend on the state of other contracts, we can access it through getter methods.

5

contract AMM {
addLiq (?x0:T0 ,?x1:T1) { // add liquidity to the AMM

require #T0 * (#T1 -x1) == (#T0 -x0) * #T1 }
getTokens () { return (T0 ,T1) } // token pair
getRate (t) { // exchange rate

if (t==T0) return #T0/#T1 // r:T0 for 1:T1
else if (t==T1) return #T1/#T0 // r:T1 for 1:T0
else abort }

swap (?x:t,ymin) {
if (t==T0)

{ y=(x*#T1)/#T0; require ymin <=y<#T1; sender !y:T1 }
else if (t==T1)

{ y=(x*#T0)/#T1; require ymin <=y<#T0; sender !y:T0 }
else abort }

}

Fig. 1: A constant-product AMM contract.

the (strictly positive) price of token type T. This implicitly assumes that token
prices are constant, since they do not depend on the blockchain state.6

Definition 1 (Wealth). The wealth of A ⊆ A in S = W | Γ is given by:

$A(S) =
∑

A∈A∩domW, T

W(A)(T) · $1T +
∑

C∈A∩domΓ , T

fst(Γ (C))(T) · $1T (2)

To rule out ill-formed states with an infinite amount of tokens, we require
blockchain states to enjoy the finite tokens axiom, i.e.

∑
A,T S(A)(T) ∈ N. This

makes the global wealth always finite. The success of attacks is measured as
gain, i.e. the difference of the attackers’ wealth before and after the attack.

Definition 2 (Gain). The gain of A ⊆ A upon firing a transactions sequence

X⃗ in S is given by γA(S, X⃗) = $A(S ′)− $A(S) if S
X⃗−→ S ′.

3 Local MEV

The MEV in a state S is the maximum gain of the adversary M upon firing a
sequence of transactions constructed by M [7,12]. If we denote by κ(M, P) the
set of transactions craftable by M using a mempool P , and by κ(M, P)

∗
their

finite sequences, the MEV in a blockchain state S can be formalised as:

MEV(S, P) = max
{
γM(S, X⃗)

∣∣∣ X⃗ ∈ κ(M, P)
∗
}

(3)

6 This simplifying assumption allows local MEV to neglect the parts of the state that
could affect token prices. A more realistic handling of token prices would require to
extend the model with a function that determines the token prices in a given state.

6

This notion measures the value that adversaries can extract from any con-
tract in the blockchain and transfer to their wallets. To study composability,
following the intuitions in Section 1 we need instead to check if the contracts
that will be deployed can have a loss when adversaries manipulate their depen-
dencies. Therefore, our notion of MEV diverges from (3) in four aspects:

1. We measure the value that adversaries can extract from a given set of con-
tracts C. This means that only the tokens extracted from the contracts in
C contribute to the extractable value, while the tokens grabbed from other
contracts do not count (while they would count for the global MEV in (3)).

2. We count as MEV all the tokens that M can remove from C, regardless of
whether M can transfer them to their wallets. Namely, while (3) maximises
M’s gain γM , our notion maximises C’s loss −γC . This is because we want
our composability to provide security also against irrational adversaries, who
try to damage contracts without necessarily making a profit.

3. We parameterise our MEV w.r.t. the set D of contracts callable by M. This
allows us to rework the distinction between private and public information in
language-based non-interference. There, the idea is that public outputs are
not affected by private inputs, i.e. restricting inputs to the private ones must
preserve the public outputs. In our context, we rephrase this by requiring
that the MEV extractable from C (the public output) is not affected when
restricting the set of callable contracts to a subset D (the private inputs).

4. We assume that the mempool is empty, just writing κ(M). We do so because
to define secure composability we are concerned about the MEV extractable
by exploiting new contracts, and not that extractable from the mempool.
Note that the mempool is instead considered in the MEV notions in [7,12].

We call this new notion local MEV , and we denote it by MEVD(S,C).

Definition 3 (Local MEV). Let κD(M) = {X ∈ κ(M) | callee(X) ⊆ D} be
the set of transactions craftable by M and targeting contracts in D. We define:

MEVD(S,C) = max
{
−γC(S, X⃗)

∣∣∣ X⃗ ∈ κD(M)
∗
}

(4)

Hereafter, we abbreviate MEVAc
(S,C) as MEV(S,C).

Example 1. Consider two instances of the AMM contract in Figure 1, to swap
respectively the pairs (T0, T1) and (T1, T2). Let $1T0 = $1T1 = $1T2 = 1, and let
S = M[3: T0] | AMM1[6: T0, 6: T1] | AMM2[4: T1, 9: T2], where M is the adversary. We
want to compute the local MEV w.r.t. C = {AMM2}. Recall that we are assuming
the mempool to be empty. In the unrestricted case (i.e., D is the universe), the

trace X⃗ that maximises the loss of AMM2 is the following:

S
M:AMM1.swap(? 3:T0,0)−−−−−−−−−−−−−→ M[2: T1] | AMM1[9: T0, 4: T1] | AMM2[4: T1, 9: T2]
M:AMM2.swap(? 2:T1,0)−−−−−−−−−−−−−→ M[3: T2] | AMM1[9: T0, 4: T1] | AMM2[6: T1, 6: T2]

7

We have that −γ{AMM2}(S, X⃗) = 1, hence MEV(S, {AMM2}) = 1. Instead, when M

is restricted to use D = {AMM2}, it has no way to obtain the tokens T1 that are
needed to extract value from AMM2: therefore, MEV{AMM2}(S, {AMM2}) = 0. ⋄

Lemma 1 establishes some useful properties of local MEV. Item 1 studies
some border cases: in particular, when the set of observed contracts C is the
universe, local MEV over-approximates global MEV. Items 2 and 3 state that
widening the restricted contracts D or the contract state potentially increases
the local MEV7. Item 4 allows to restrict the set of contract accounts C and D

to those occurring in the blockchain state Γ (i.e., †Γ). Item 5 states that the
local MEV extractable from C is non-negative and bounded by the wealth of C.

Lemma 1 (Basic properties of MEV). For all S , C,D ⊆ Ac:

1. MEVD(S, ∅) = MEV∅(S,C) = 0, MEVAc(S,Ac) ≥ MEV(S)
2. if D ⊆ D′, then MEVD(S,C) ≤ MEVD′(S,C)
3. MEVD(W | Γ ,C) ≤ MEVD(W | Γ ′,C), where Γ ′ |domΓ= Γ
4. MEVD(W | Γ ,C) = MEVD(W | Γ ,C ∩ †Γ) = MEVD∩†Γ (W | Γ ,C)
5. 0 ≤ MEVD(S,C) ≤ $C(S)

Lemma 2 states that the only user wallets that need to be taken into account
to estimate the MEV are those of the adversary (Item 1). This is because M

has no way to force other users to spend their tokens in the attack sequence.8

Furthermore, wealthier adversaries may potentially extract more MEV (Item 2).

Lemma 2 (MEV and adversaries’ wallets).

1. if domWM = M, then MEVD(WM | W | Γ ,C) = MEVD(WM | Γ ,C)
2. if S ≤$ S ′, then MEVD(S,C) ≤ MEVD(S ′,C)

Since the overall amount of tokens held in contract wallets is limited, the
MEV no longer increases when the adversary is rich enough (Lemma 3). For-
mally, we prove that there exists a threshold adversary wallet WM yielding the
same MEV as any richer adversary wallet. Together with item 2 of Lemma 2,
this ensures WM yields the maximum MEV over any adversary wallet.

Lemma 3 (Stability). For all C, D, Γ , there exists an adversary wallet WM

such that MEVD(WM | Γ ,C) = MEVD(W ′
M | Γ ,C) for all W ′

M ≥$ WM .

Taking the maximum MEV over all possible user wallets (which always exists
by Lemma 3) we then introduce a notion of MEV that does not depend on user
wallets at all (including M’s). The new notion, dubbed MEV∞, reflects the fact

7 Instead, C ⊆ C′ does not imply MEVD(S,C) ≤ MEVD(S,C′), because maximising
the loss of a contract may increase the gain of another one (see Example B.1 in [11]).

8 This property would not hold if the adversary could play user transactions in the
mempool, since their validity depends on the wallets of the users who signed them.
However, when studying contract composability the question is whether a new con-
tract can be attacked by exploiting its dependencies, so the mempool is irrelevant.

8

that the capital required from the adversary is not a barrier in practice. E.g.,
as already noted in [7], the adversary can apply for a flash loan (a risk-free
operation) to obtain the capital needed to extract the full MEV.9 Consequently,
MEV∞ is the most robust estimation of the value extractable by the adversary.

Definition 4 (Local MEV of wealthy adversaries). For all C,D, Γ , let:

MEV∞
D (Γ ,C) = max

W
MEVD(W | Γ ,C) (5)

Besides satisfying the basic properties of local MEV seen before (Lemma
B.1 in [11]), MEV∞ enjoys a key property: to compute the MEV∞ of C in Γ ,
we can ignore all the contracts in Γ except the dependencies of C. This is not
true for MEV, because non-wealthy adversaries may need to interact with other
contracts to obtain the tokens needed to extract value from C. Formally, we
define the stripping of Γ w.r.t. C (in symbols, Γ ↾C) as the restriction of Γ to
the domain deps(C). Note that when Γ is well-formed, then also Γ ↾C is well-
formed. Theorem 1 gives sufficient conditions under which we can strip from Γ
all the non-dependencies of C, preserving MEV∞

D (Γ ,C). The first condition is
that contract methods are not aware of the identity of the sender, being only
able to use it as a recipient of token transfers: we refer to this by saying that
contracts are sender-agnostic (see Def. B.4 in [11]). The second condition ensures
that D contains enough contracts to reproduce attacks in the stripped state.

Theorem 1 (State stripping). MEV∞
D (Γ ,C) = MEV∞

D (Γ ↾C ,C) holds if the
contracts C′ = deps(C) ∩ deps(D \ deps(C)) satisfy: (i) C′ are sender-agnostic,
and (ii) C′ ⊆ D. In particular, (ii) holds if D = Ac or D = C.

If any of the conditions (i) or (ii) do not hold, then adversaries might not be
able to perform an attack on Γ ↾C with the same effect as an attack on Γ , and
so they might extract less MEV∞ in Γ ↾C than in Γ (see Ex. B.2, B.3 in [11]).

The following corollary of Theorem 1 states another key property of MEV∞:
extending the state with new contracts does not affect the MEV extractable from
the old contracts.10 This is the basis to prove that ̸⇝∞ is resistant to adversarial
contracts (Corollary 2).

Corollary 1. MEV∞(Γ ,C) = MEV∞(Γ | ∆,C) for all C ⊆ †Γ .

Corollary 1 highlights a drawback of the ε-composability in [7], which com-
pares the global MEV in S with that in S | ∆, where new contracts ∆ have
been deployed. Corollary 1 states that for wealthy adversaries, the two MEVs
may only differ in the value extractable from ∆, and so ∆ is 0-composable with
S only if ∆ has zero MEV. Hence, contracts that have intended MEV are not
composable for [7], even if they have no interactions at all with the context.

9 This is true for atomic attacks, where the adversary extracts MEV through a single
transaction. If extracting MEV requires multiple transactions, like e.g. in sandwich
attacks exploiting transactions in the mempool, flash loans are not possible.

10 This property relies on assumptions (e.g., non-circularity of contract dependencies)
that hold in our blockchain model, but may not hold in some concrete platforms.
For instance, in Ethereum one can craft contracts that exploit reentrancy to extract
MEV from already existing contracts, as in the infamous DAO attack [1].

9

contract Airdrop {
constructor (?x:t) { tout=t } // deposit any token t
withdraw () { sender !# tout:tout } // any user withdraws

}
contract Exchange {

constructor (?x:t1 ,t2 ,r) {
require r >0; rate=r; tout=t1; tin=t2; owner= origin }

getTokens () { return (tin ,tout) }
getRate () { return rate }
setRate (newRate) { require origin == owner; rate= newRate }
swap (?x:t) { // receives x units of tin

require t== tin && #tout >=x*rate;
sender !x*rate:tout } // sends x*rate units of tout

}

Fig. 2: An airdrop and an exchange contract.

4 MEV non-interference

To formalise contract composability, we start by defining a relation S ̸⇝ ∆ be-
tween blockchain states S = W | Γ and contract states ∆. Intuitively, S ̸⇝ ∆
means that the adversary cannot leverage S to extract more MEV from ∆ than
it would be possible by interacting with ∆ alone. We will then say that S is MEV
non-interfering with ∆. Note that S ̸⇝ ∆ may or may not hold depending on
the wealth of the adversary in S , as we have already observed in Lemma 2 that
MEV depends on the adversary’s wallets. As noted before, assuming bounds
on the capital available to the adversary may be unsafe, and consequently we
introduced in Definition 4 a notion of MEV that does not make assumptions on
the adversary’s wealth. Based on this notion, we will study later in this section
another relation Γ ̸⇝∞ ∆, which holds when contracts Γ do not interfere with
the MEV extractable from ∆ regardless of the adversary’s wealth.

Formally, MEV non-interference S ̸⇝ ∆ holds when the MEV extractable
from the contract accounts in ∆ (i.e., †∆) using any contract in S | ∆ is exactly
the same MEV that can be extracted using only the contracts in ∆. We write
S ⇝ ∆ when S ̸⇝ ∆ does not hold.11

Definition 5 (MEV non-interference). A state S is MEV non-interfering
with ∆, in symbols S ̸⇝ ∆, when MEV(S | ∆, †∆) = MEV†∆(S | ∆, †∆).12

The following example discriminates MEV non-interference from Babel et al.’
ε-composability, showing that a contract with intended MEV but no interactions
with the context enjoys MEV non-interference, but it is not ε-composable.

11 Note that these definitions only apply when S | ∆ is a well-formed blockchain state.
12 Note that ≥ always holds by Lemma 1, so the definition only requires to check ≤.

10

contract Betoracle {
constructor (?x:ETH ,t,r,d) {

require t!= ETH && oracle . getTokens () ==(ETH ,t);
tok=t; rate=r; owner= origin ; deadline =d }

bet (?x:ETH) {
require player == null && x==# ETH;
player = origin }

win () {
require block.num <= deadline && origin == player ;
require oracle . getRate (ETH)>rate;
player !# ETH:ETH }

close () {
require block.num > deadline && origin == owner;
owner !# ETH:ETH }

}

Fig. 3: A bet contract relying on an external price oracle.

Example 2. Consider the airdrop contract in Figure 2, let S be any blockchain
state, and let∆ = Airdrop[n: T, tout = T]. Babel et al.’ ε-composability requires
MEV(S | ∆) ≤ (1 + ε)MEV(S). In S | ∆, the adversary can extract n: T from
Airdrop, and possibly use these tokens to extract more MEV from S . Therefore,
MEV(S | ∆) ≥ n · $1T +MEV(S), meaning that, for large enough n, the airdrop
is not ε-composable with S . By contrast, MEV(S | ∆, {Airdrop}) = n · $1T =
MEV{Airdrop}(S | ∆, {Airdrop}), and so S ̸⇝ ∆. This correctly reflects the fact
that using the contracts in S does not give M any way to damage the airdrop. ⋄

We now discuss contract conditions that may break MEV non-interference.
Clearly, contract dependencies (i.e., a contract in ∆ that calls a contract in S)
are a possible cause of MEV interferences S ⇝ ∆. Example 3 shows the issue
through a classical DeFi composition, where a bet contract uses an AMM as a
price oracle [7]. Another source of MEV interference is when the contracts in S
and ∆ have token dependencies (i.e., a contract in ∆ outputs tokens which can
be used as input to contract in S , or vice-versa). Example 4 shows that this can
cause MEV interferences, even when S and ∆ have no contract dependencies.

Example 3. The Bet contract in Figure 3 allows anyone to bet on the exchange
rate between a token and ETH. The contract is parameterised over an oracle

contract that is queried for the token price. Bet receives the initial pot from the
owner upon deployment. To join, a player must pay an amount of ETH equal to
the pot. Before the deadline, the pot can be withdrawn by the player if the oracle
exchange rate is greater than the bet rate. After the deadline, the pot goes to
the owner. Consider an instance of Bet using an AMM as price oracle, and let:

S = M[310: ETH] | AMM[600: ETH, 600: T] | block.num = n− k | · · ·
∆ = Bet[10: ETH, tok = T, rate = 3, owner = A, deadline = n]

11

Note that the current oracle exchange rate is 1, while winning the bet requires to
make it exceed 3. Since the deadline has not passed in S (block.num = n−k < n)
and the adversary M is rich enough, she can fire the following sequence:

S | ∆ M:Bet.bet(? 10:ETH)−−−−−−−−−−−→ M[300: ETH] | AMM[600: ETH, 600: T] | Bet[20: ETH, · · ·]
M:AMM.swap(? 300:ETH,0)−−−−−−−−−−−−−−→ M[200: T] | AMM[900: ETH, 400: T] | Bet[20: ETH, · · ·]
M:Bet.win()−−−−−−−→ M[20: ETH, 200: T] | AMM[900: ETH, 400: T] | Bet[0: ETH, · · ·]
M:AMM.swap(? 200:T,0)−−−−−−−−−−−−−→ M[320: ETH] | AMM[600: ETH, 600: T] | Bet[0: ETH, · · ·]

When M can interact with Bet’s dependency AMM, the loss of Bet is 10: ETH,
hence MEV(S | ∆, {Bet}) = 10 · $1ETH. Instead, when M can only use Bet,
MEV{Bet}(S | ∆, {Bet}) = 0. Therefore, S is MEV interfering with the Bet con-
tract. Note that a poorer M may not have enough ETH to produce the short-term
volatility in the oracle exchange rate. Later in Definition 6 we will introduce a
notion of MEV non-interference that does not depend on M’s wealth. ⋄

Example 4. To show that MEV interference can happen even in the absence of
contract dependencies, consider Airdrop and Exchange in Figure 2, and let:

S = M[0: T] | Airdrop[1: T, tout = T]

∆ = Exchange[10: ETH, tin = T, tout = ETH, rate = 10, owner = B]

The unrestricted MEV of Exchange is 10 · $1ETH, since M can first extract 1: T
from the airdrop, and then use the exchange, draining 10 · $1ETH. Instead, its
restricted MEV is zero, since M cannot obtain the needed 1: T. Hence, S ⇝ ∆. ⋄

Theorem 2 devises sufficient conditions for MEV non-interference. Condi-
tion (1) states that S ̸⇝ ∆ holds whenever the new contracts ∆ have zero MEV:
a special case is when ∆ have no tokens, by Lemma 1(5). Condition (2) requires
contract and token independence. Formally, Γ and ∆ are contract independent
when their dependencies are disjoint, i.e. deps(Γ) ∩ deps(∆) = ∅, and they are
token independent in S when the token types that can be received by Γ in S
are disjoint from those that can be sent by ∆ in S , and vice-versa (see Defini-
tion B.5 in [11].) For instance, in Example 4 the Airdrop has no input tokens,
and it has T as output token, while Exchange has T as input token and ETH as
output token. Since T is both in the outputs of Airdrop and in the inputs of
Exchange, the two contracts are not token independent. Condition (3) relaxes
condition (2), allowing contract dependence provided that the dependencies of
∆ occurring in Γ cannot be exploited by adversaries. Formally, we require that
∆ is stable w.r.t. moves of M on Γ , i.e. any transaction craftable by M and
targeting a contract in Γ does not affect the observable behaviour of methods
of Γ called from ∆. The observable behaviour includes the returned values, the
transferred tokens and the aborts of methods that can be called from ∆.

Theorem 2 (Sufficient conditions for ̸⇝). Let S = W | Γ . Each of the
following conditions implies S ̸⇝ ∆: (1) MEV(S | ∆, †∆) = 0 (2) Γ and ∆

12

are token independent in S | ∆ and contract independent (3) Γ and ∆ are token
independent in S | ∆ and ∆ is stable w.r.t. moves of M on Γ .

Note that neither contract independence nor token independence nor stability
are necessary conditions for ̸⇝. For instance, a contract that provides the best
swap between two AMMs (see Figure A.1 in [11]) has both contract dependencies
(on the two called AMMs) and token dependencies (their underlying tokens), but
nonetheless it enjoys MEV non-interference, because it has zero MEV (indeed,
the contract balance is always zero, so there is nothing to extract)13.

MEV non-interference against wealthy adversaries In general, S ̸⇝ ∆
does not imply S | Γ ̸⇝ ∆, even if Γ and ∆ are contract independent. This
means that the notion studied so far (similarly to ε-composability of [7]) gives no
security guarantees against attacks where adversaries manage to deploy contracts
Γ before ∆. For instance, consider the contract Γ = Airdrop[1: T, tout = T] and
the contract ∆ = BetAMM[10: ETH, tok = T, rate = 3, owner = A, deadline = n],
and let S be empty. Since M has 0 tokens in S , she cannot extract MEV from
∆, hence S ̸⇝ ∆ by condition (1) of Theorem 2. Instead, S | Γ ⇝ ∆, as shown
in Example 4. This highlights a usability limitation of ̸⇝: assume that a user
detects that S ̸⇝ ∆, and then sends a transaction to deploy the contracts ∆. If
this transaction is front-run with another transaction that deploys Γ , then the
new state S | Γ could violate MEV non-interference with ∆. To overcome this
limitation, Definition 6 provides a notion of MEV non-interference that is robust
w.r.t. the adversary’s wealth and enjoys resistance to adversarial contracts.

Definition 6 (MEV non-interference against wealthy adversaries). A
contract state Γ is MEV∞ non-interfering with ∆, in symbols Γ ̸⇝∞ ∆, when

MEV∞(Γ | ∆, †∆) = MEV∞
†∆(Γ | ∆, †∆)

Lemma 4 characterizes ̸⇝∞ in terms of ̸⇝: intuitively, Γ ̸⇝∞ ∆ holds when-
ever W | Γ ̸⇝ ∆ holds for rich enough adversaries’ wallets W.

Lemma 4 (̸⇝∞ vs. ̸⇝). Γ ̸⇝∞ ∆ if and only if ∃W0. ∀W ≥$ W0. W | Γ ̸⇝ ∆

The following theorem refines Theorem 2 giving sufficient conditions for ̸⇝∞.
Note that token independence is no longer required.

Theorem 3 (Sufficient conditions for ̸⇝∞). Each of the following condi-
tions implies Γ ̸⇝∞ ∆: (1) MEV∞(Γ | ∆, †∆) = 0; (2) Γ and ∆ are contract
independent; (3) ∆ is stable w.r.t. moves of M on Γ .

13 By contrast, zero-MEV is not a sufficient condition for Babel et al.’ ε-composability:
e.g., a contract may not be 0-composable in S when M does not have the tokens
needed to extract MEV in S , but becomes able to do so after exchanging tokens
between S and ∆, provided that this preserves ∆’s wealth (see Example B.4 in [11]).

13

Table 2: Structural properties of ̸⇝∞. Starred properties additionally require
that some contracts are sender-agnostic. Ref. lemmas/examples are in [11].

Hypothesis Thesis Valid Ref.

Γ ̸⇝∞ ∆

Γ | Γ ′ ̸⇝∞ ∆ ✓⋆ Cor. 2
Γ ′ | Γ ̸⇝∞ ∆ ✓ Lem. B.2
Γ ̸⇝∞ ∆ | ∆′ ✗ Ex. B.6
Γ ̸⇝∞ ∆′ | ∆ ✗ Ex. B.6

Γ | Γ ′ ̸⇝∞ ∆

Γ ̸⇝∞ ∆

✓ Lem. B.3
Γ ′ | Γ ̸⇝∞ ∆ ✓ Lem. B.3
Γ ̸⇝∞ ∆ | ∆′ ✗ Ex. B.7
Γ ̸⇝∞ ∆′ | ∆ ✗ Ex. B.7

Γ ̸⇝∞ ∆1 ∧ Γ ̸⇝∞ ∆2

Γ ̸⇝∞ ∆1 | ∆2

✗ Ex. B.8
Γ ̸⇝∞ ∆1 ∧ Γ | ∆1 ̸⇝∞ ∆2 ✗ Ex. B.8

Γ ̸⇝∞ ∆1 ∧ MEV∞(Γ | ∆1 | ∆2, †∆2) = 0 ✓⋆ Lem. B.4

Theorem 4 establishes a key property of ̸⇝∞: namely, Γ ̸⇝∞ ∆ is preserved
when removing from Γ all the contracts except the dependencies of ∆. Formally.
the statement filters Γ with the state stripping operator ↾†∆ , which preserves
exactly the dependencies of ∆. This highlights the algorithmic advantage of ̸⇝∞

w.r.t. ε-composability, which requires to consider the whole blockchain state.

Theorem 4 (State stripping). Γ ̸⇝∞ ∆ if and only if Γ ↾†∆ ̸⇝∞ ∆ when
the contracts in deps(∆) ∩ deps(†Γ \ deps(∆)) are sender-agnostic.

A direct consequence of Theorem 4, when the dependencies of ∆ are sender-
agnostic, is that the adversary attacking ∆ gains no advantage from creating
additional contracts ΓM before the attack. Indeed, if Γ ̸⇝∞ ∆ holds, then
it also holds when the starting state is extended with ΓM . Intuitively, this is
because any MEV extraction exploiting ΓM can also be performed by directly
calling the dependencies of ∆, since they are not influenced by the caller identity.

Corollary 2 (Resistance to adversarial contracts). If Γ ̸⇝∞ ∆, then
Γ | ΓM ̸⇝∞ ∆ when the contracts in deps(∆) are sender-agnostic.

We summarize in Table 2 some structural properties of ̸⇝∞. The first block
shows that it is possible to extend the LHS of Γ ̸⇝∞ ∆ with new contracts,
while in general it is not possible to extend the RHS. The second block shows
that it is possible to cut contracts from the LHS, but not from the RHS. The last
block studies how to securely deploy a compound contract ∆1 | ∆2 in a state Γ .
To have Γ ̸⇝∞ ∆1 | ∆2 it is not enough to independently check Γ ̸⇝∞ ∆1 and
Γ ̸⇝∞ ∆2. Surprisingly, even after checking the secure deployment of the first
contract (Γ ̸⇝∞ ∆1) and then that of the second contract in the resulting state
(Γ | ∆1 ̸⇝∞ ∆2), we cannot guarantee the MEV non-interference of ∆1 | ∆2.
The last row gives a sufficient condition when the component ∆2 has zero MEV.

DeFi compositions We now evaluate MEV non-interference of typical DeFi
compositions. Each line in Table 3 shows a compound contract ∆, the context

14

Table 3: MEV non-interference of common DeFi compositions ([11], App. A).
Dependencies Γ New contracts ∆ Γ ̸⇝∞ ∆

AMM AMM ✓(2)

AMM BetAMM ✗

Exchange BetExchange ✓(3)

AMM1 | AMM2 BestSwapAMM1,AMM2 ✓(1)

AMM1 | AMM2 SwapRouterAMM1,AMM2 ✓(1)

AMM1 | AMM2 | SwapRouter1AMM1,AMM2 |
BestSwapSwapRouter1,SwapRouter2 ✓(1)

AMM3 | AMM4 | SwapRouter2AMM3,AMM4
AMM1 | AMM2 | LP LPArbitrageAMM1,AMM2,LP ✓(1)

AMM1 | AMM2 | LP FlashLoanArbitrageAMM1,AMM2,LP ✓(1)

Γ , and whether ̸⇝∞ holds (✓) or not (✗). Rows marked ✓ follow by Theorem 3,
and indicate which case of the theorem applies. We omit the contract states in
Γ and ∆: a row marked ✓ means that ̸⇝∞ holds for all contract states, while
one marked ✗ means that ̸⇝∞ fails to hold for some state. Note that the results
still hold for larger Γ , by Theorem 4. The pseudo-code of contracts is [11].

The first row shows that an AMM is always MEV non-interfering with an-
other AMM. This holds because ̸⇝∞ assumes wealthy adversaries, who always
have enough tokens to attack the new AMM in ∆, without the need of exploiting
the context Γ . Note that poor adversaries (like in ̸⇝ and in ε-composability)
could instead need to extract tokens from Γ in order to attack∆. The second and
third rows analyse the Bet contract. We know from Example 3 that Bet is not
MEV non-interfering with an AMM, since the adversary can always win the bet by
creating a price volatility in the AMM. This also holds for ε-composability. As ex-
pected, MEV non-interference holds when using Exchange as a price oracle, since
the adversary cannot affect the exchange rate. Note that ε-composability does
not properly capture the security of this composition: indeed, Bet and Exchange

are not 0-composable when the adversary (honestly) wins the bet, since winning
the bet is indistinguishable from extracting MEV. We then consider two DeFi
contracts that act as wrappers of AMMs: BestSwap allows users to perform
the most profitable swap between two AMMs, while SwapRouter routes a swap
of (T0, T2) across two AMMs for (T0, T1) and (T1, T2). Despite both contracts
have AMMs in their dependencies, they are always securely composable (both
̸⇝∞ and 0-composable), because they have zero balance across calls. The same
holds for BestSwapRouter, that provides the most profitable swap between two
SwapRouters. The contracts LPArbitrage and FlashLoanArbitrage perform
a risk-free arbitrage between two AMMs, atomically borrowing and repaying a
loan from a Lending Pool (LP) (in FlashLoanArbitrage, with no collateral).
As before, ̸⇝∞ follows since the contracts do not hold a balance between calls.
Instead, 0-composability does not hold when the LP fee is greater than 0. If so,
borrowing increases the LP balance, possibly increasing the MEV opportunities.

15

contract C1 {
constructor (?x:T) { require x==1; n=0 }
f1() { require (n==0); n=1; sender !1:T }
f2() { require (n==0); n=2 }
f3() { return n }

}
contract C2 {

constructor (?x:T) { require x==1 }
g() { require (C1.f3 () ==2); sender !1:T }

}

Fig. 4: Babel et al.’ composability does not imply MEV non-interference.

5 Discussion

We have proposed MEV non-interference, a new security notion for DeFi com-
position which ensures that adversaries cannot inflict economic harm on com-
pound contracts by exploiting their dependencies. We have shown that our no-
tion overcomes the drawbacks of ε-composability, the only other related notion
in literature [7]. In particular, while ε-composability is a property of the whole
blockchain state, MEV non-interference only needs to inspect the newly deployed
contracts and their dependencies (Theorem 4). The two notions are incompa-
rable. We already know from Example 2 that MEV non-interference does not
imply ε-composability. Example 5 below shows the converse non-implication.

Example 5. Babel et al.’ composability does not imply MEV non-interference.
To show this, we craft 0-composable Γ and ∆ where both contracts expose
identical and mutually exclusive MEV: one can extract MEV from either con-
tract, but not from both. The choice of extracting MEV from Γ or from ∆
is done by calling a suitable method of Γ . Only after the choice is made the
MEV is exposed, and the MEV from the other contract is permanently dis-
abled. Since the two MEVs are mutually exclusive, we obtain MEV(· · · | Γ) =
MEV(· · · | Γ | ∆), hence 0-composability. Non-interference fails because extract-
ing MEV from ∆ requires calling a method of Γ . More concretely, using the
contracts in Figure 4, let Γ = C1[1: T, n = 0], and let S = M[0: T] | Γ . Assume
that $1T = 1. Let ∆ = C2[1: T]. To study Babel et al.’ composability, we com-
pare the (global) MEV of S and S | ∆. We have that MEV(S) = 1 by the
sequence M: C1.f1(), and MEV(S | ∆) = 1 by the sequence M: C1.f2() M: C2.g()
(or, alternatively, by the sequence M: C1.f1(), which provides the same MEV).
Therefore, the two contracts are 0-composable. To study MEV non-interference,
we have that MEV(S | ∆, {C2}) = 1 by the sequence M: C1.f2() M: C2.g(), while
MEV{C2}(S | ∆, {C2}) = 0, since the only callable method, i.e. g(), always fails.
Therefore, S ⇝ ∆, i.e. ∆ is not composable with S according to our notion. ⋄

We have studied sufficient conditions for MEV non-interference, and rules to
enable its modular verification (Theorem 3, Table 2). We have shown that these

16

rules allow to correctly classify the composability of common DeFi protocols
(Table 3). As future work, we envision MEV non-interference as the basis of
quantitative versions of DeFi composability, which give upper bounds to the loss
of a compound contract caused by manipulation of its dependencies.

A relevant question is whether simpler notions of composability would achieve
the same effect as our Definition 5. For instance, one might be tempted to re-
gard two contracts C and C′ composable whenever the (global) MEV of their
composition is equal to the sum of the two individual MEVs, thus obtaining a
property which could be written along the line of

MEV(C[·] | C′[·]) = MEV(C[·]) + MEV(C′[·]) (6)

While temptingly simple, this notion has several issues. First, it does not consider
the dependencies of the two contracts, which must be part of the blockchain state.
E.g., when both contracts depend on a third contract D, we could amend (6) as:

MEV(D[·] | C[·] | C′[·]) = MEV(D[·] | C[·]) + MEV(D[·] | C′[·]) (7)

However, this equation is almost always false, since in the RHS the MEV ex-
tractable from D is counted twice. Even when D has no MEV, it can still act as a
shared state between C and C′, e.g. making it possible to extract MEV from only
one of them (but not both). This, again, can be used to falsify (7). Furthermore,
(7) does not mention the wallet of the adversary. Using the same wallet in each
MEV(·) would duplicate the adversary wealth in the RHS, leading to similar
double-counting issues as those discussed previously for D.

We discuss some limitations of our work. First, our blockchain model simpli-
fies Ethereum by requiring that contract dependencies are statically known and
acyclic. It looks feasible to refine our results to weaken the assumptions, so that
they are only required on the contracts ∆ tested for composability (see the end
of Appendix B in [11] for a detailed discussion). Note that with this refinement,
the rest of the blockchain state is not constrained, making our results applicable
to a wider class of contracts. Another limitation is that local MEV measures the
loss of a contract as the value of the tokens that adversaries can remove from it:
in practice, adversaries could harm contracts also by freezing tokens without ac-
tually extracting them, as in the infamous Parity Wallet attack [2]. Refining local
MEV to take these attacks into account could be done by adapting the notion
of liquidity [10]. A further possible improvement of our results is weakening the
sufficient conditions of Theorem 3: in particular, condition (3) is unnecessarily
strict, since it forbids benign alterations of the state, which do not affect the loss
of ∆. Standard static analysis techniques for information flow [24,15,13] could be
adapted to refine this condition. Finally, to keep our model simple we assumed
that the price of tokens is constant (see Section 2) and that the mempool is
empty (Section 3). Relaxing these assumptions is left as future work.

Acknowledgments This work was partially supported by project SERICS
(PE00000014) under the MUR National Recovery and Resilience Plan funded
by the European Union – NextGenerationEU, and by PRIN 2022 PNRR project
DeLiCE (F53D23009130001).

17

References

1. Understanding the DAO attack, http://www.coindesk.com/
understanding-dao-hack-journalists/

2. A Postmortem on the Parity Multi-Sig library self-destruct (November 2017),
https://goo.gl/Kw3gXi

3. Defi Pulse: What is DeFi? understanding Decentralized Finance (2019),
www.defipulse.com/blog/what-is-defi

4. Furucombo website (September 2023), https://furucombo.app
5. Angeris, G., Chitra, T.: Improved price oracles: Constant Function Market Makers.

In: ACM Conference on Advances in Financial Technologies (AFT). pp. 80–91.
ACM (2020). https://doi.org/10.1145/3419614.3423251, https://arxiv.org/abs/
2003.10001

6. Angeris, G., Kao, H.T., Chiang, R., Noyes, C., Chitra, T.: An
analysis of Uniswap markets. Cryptoeconomic Systems 1(1) (2021).
https://doi.org/10.21428/58320208.c9738e64

7. Babel, K., Daian, P., Kelkar, M., Juels, A.: Clockwork finance: Auto-
mated analysis of economic security in smart contracts. In: IEEE Sympo-
sium on Security and Privacy. pp. 622–639. IEEE Computer Society (2023).
https://doi.org/10.1109/SP46215.2023.00036

8. Backes, M., Pfitzmann, B.: Computational probabilistic non-interference. In: Euro-
pean Symposium on Research in Computer Security (ESORICS). LNCS, vol. 2502,
pp. 1–23. Springer (2002). https://doi.org/10.1007/3-540-45853-0 1

9. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: A theory of Automated Mar-
ket Makers in DeFi. Logical Methods in Computer Science 18(4) (2022).
https://doi.org/10.46298/lmcs-18(4:12)2022

10. Bartoletti, M., Lande, S., Murgia, M., Zunino, R.: Verifying liquidity
of recursive Bitcoin contracts. Log. Methods Comput. Sci. 18(1) (2022).
https://doi.org/10.46298/lmcs-18(1:22)2022

11. Bartoletti, M., Marchesin, R., Zunino, R.: DeFi composabil-
ity as MEV non-interference. CoRR abs/2309.10781 (2023).
https://doi.org/10.48550/ARXIV.2309.10781, https://doi.org/10.48550/
arXiv.2309.10781

12. Bartoletti, M., Zunino, R.: A theoretical basis for blockchain extractable value.
CoRR abs/2302.02154 (2023). https://doi.org/10.48550/arXiv.2302.02154

13. Bossi, A., Piazza, C., Rossi, S.: Compositional information flow secu-
rity for concurrent programs. J. Comput. Secur. 15(3), 373–416 (2007).
https://doi.org/10.3233/jcs-2007-15303

14. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L.,
Juels, A.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability. In: IEEE Symp. on Security and Privacy.
pp. 910–927. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00040

15. Dimitrova, R., Finkbeiner, B., Kovács, M., Rabe, M.N., Seidl, H.: Model checking
information flow in reactive systems. In: Verification, Model Checking, and Ab-
stract Interpretation (VMCAI). LNCS, vol. 7148, pp. 169–185. Springer (2012).
https://doi.org/10.1007/978-3-642-27940-9 12

16. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: parameterizing non-
interference by abstract interpretation. In: ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL). pp. 186–197. ACM (2004).
https://doi.org/10.1145/964001.964017

18

http://www.coindesk.com/understanding-dao-hack-journalists/
http://www.coindesk.com/understanding-dao-hack-journalists/
https://goo.gl/Kw3gXi
https://www.defipulse.com/blog/what-is-defi
https://furucombo.app
https://doi.org/10.1145/3419614.3423251
https://arxiv.org/abs/2003.10001
https://arxiv.org/abs/2003.10001
https://doi.org/10.21428/58320208.c9738e64
https://doi.org/10.1109/SP46215.2023.00036
https://doi.org/10.1007/3-540-45853-0_1
https://doi.org/10.46298/lmcs-18(4:12)2022
https://doi.org/10.46298/lmcs-18(1:22)2022
https://doi.org/10.48550/ARXIV.2309.10781
https://doi.org/10.48550/arXiv.2309.10781
https://doi.org/10.48550/arXiv.2309.10781
https://doi.org/10.48550/arXiv.2302.02154
https://doi.org/10.3233/jcs-2007-15303
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1007/978-3-642-27940-9_12
https://doi.org/10.1145/964001.964017

17. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy. pp. 11–20. IEEE Computer Society (1982).
https://doi.org/10.1109/SP.1982.10014

18. Gudgeon, L., Pérez, D., Harz, D., Livshits, B., Gervais, A.: The decentralized
financial crisis. In: Crypto Valley Conference on Blockchain Technology (CVCBT).
pp. 1–15. IEEE (2020). https://doi.org/10.1109/CVCBT50464.2020.00005

19. Kitzler, S., Victor, F., Saggese, P., Haslhofer, B.: A systematic investiga-
tion of DeFi compositions in Ethereum. In: Financial Cryptography and
Data Security Workshops. LNCS, vol. 13412, pp. 272–279. Springer (2022).
https://doi.org/10.1007/978-3-031-32415-4 18

20. Kitzler, S., Victor, F., Saggese, P., Haslhofer, B.: Disentangling Decentral-
ized Finance (DeFi) compositions. ACM Trans. Web 17(2), 10:1–10:26 (2023).
https://doi.org/10.1145/3532857

21. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: ACM CCS (2016), http://eprint.iacr.org/2016/633

22. Ryan, P.Y.A., McLean, J.D., Millen, J.K., Gligor, V.D.: Non-interference: Who
needs it? In: IEEE Computer Security Foundations Workshop. pp. 237–238. IEEE
Computer Society (2001). https://doi.org/10.1109/CSFW.2001.930149

23. Ryan, P.Y.A., Schneider, S.A.: Process algebra and non-interference. In: IEEE
Computer Security Foundations Workshop. pp. 214–227. IEEE Computer Society
(1999). https://doi.org/10.1109/CSFW.1999.779775

24. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow analy-
sis. J. Comput. Secur. 4(2/3), 167–188 (1996). https://doi.org/10.3233/JCS-1996-
42-304

25. Werner, S., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., Knot-
tenbelt, W.J.: SoK: Decentralized Finance (DeFi). In: ACM Conference
on Advances in Financial Technologies, (AFT). pp. 30–46. ACM (2022).
https://doi.org/10.1145/3558535.3559780

26. Xu, J., Vavryk, N., Paruch, K., Cousaert, S.: SoK: Decentralized exchanges (DEX)
with automated market maker (AMM) protocols. ACM Comput. Surv. (nov 2022).
https://doi.org/10.1145/3570639

19

https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/CVCBT50464.2020.00005
https://doi.org/10.1007/978-3-031-32415-4_18
https://doi.org/10.1145/3532857
http://eprint.iacr.org/2016/633
https://doi.org/10.1109/CSFW.2001.930149
https://doi.org/10.1109/CSFW.1999.779775
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.1145/3558535.3559780
https://doi.org/10.1145/3570639

	DeFi composability as MEV non-interference

