
Anonymous Reputation Systems
with Revocation, Revisited

Ryuya Hayashi1,3, Shuichi Katsumata2,3, and Yusuke Sakai3

1 The University of Tokyo, Tokyo, Japan
rhys@iis.u-tokyo.ac.jp

2 PQShield Ltd, Oxford, U.K.
shuichi.katsumata@pqshield.com

3 AIST, Tokyo, Japan
yusuke.sakai@aist.go.jp

Abstract. An anonymous reputation system (ARS) was first proposed
by Blömer, Juhnke, and Kolb (FC, 2015), a protocol similar to group
signatures in concept, and its definition has been refined for example
by El Kaafarani, Katsumata, and Solomon (FC, 2018). A representative
application of an ARS is e-commerce sites, where users are allowed to
anonymously write reviews on products they have purchased, while also
preventing them from double reviewing.

In this work, we revisit ARS. Our contributions are threefolds: First, we
show that all previous definitions of ARS allow the users’ purchase his-
tory to leak. While users’ privacy is being guaranteed through the notion
of anonymity, our findings show that this only achieves a weaker form
of privacy, contrary to previously believed. Second, we formally define
purchase privacy, addressing the above shortcoming, and complement
previous security models. Along the way, we notice that one of the main
entities, the system manager, does not play any cryptographically rele-
vant role in the definition of ARS. Effectively, by excluding the system
manager from the definition, we are able to simplify previous definitions.
Lastly, we propose a generic construction and provide one concrete effi-
cient instantiation based on pairing-based cryptography, requiring only
16 kilobits for a signature.

1 Introduction

1.1 Background

The use of e-commerce (EC) sites for shopping has become exceedingly com-
monplace, with reviews by consumers playing a significant role in purchase de-
cisions. However, review credibility is compromised when EC site operators can
alter them for incentives. To ensure trustworthy reviews, an Anonymous Reputa-
tion System (ARS), introduced by Blömer, Juhnke, and Kolb [13], was designed.
While initially for EC sites, ARS is applicable to any secure reputation system
involving user reviews (e.g., Amazon, TripAdvisor, Airbnb, YouTube).

2 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

Requirements for ARS. To ensure the efficacy of an ARS, three essential require-
ments have been considered. Firstly, only users who have purchased the product
should be eligible to submit reviews. This measure not only maintains the relia-
bility of reviews but also acts as a deterrent against potential misuse, such as fake
reviews or Sybil attacks. Secondly, user privacy is paramount within the ARS
framework. This has been captured by the notion user anonymity, informally
guaranteeing that users’ reviews do not leak the information of the user. Finally,
to preserve the credibility of the reputation system, users should be constrained
to submit only one review per product. This restriction is crucial because, under
the cloak of anonymity, malicious users might submit similar reviews repeatedly,
falsely inflating the appearance of widespread consensus among purchasers.

Model and Security Definitions. The formal definition of an ARS, initially pro-
posed by Blömer et al. [13], comprises four entities: the system manager (EC site
operator), key issuers4 (vendors), users, and the tracing manager. A user first
registers via the system manager on an EC site; then purchases products from
key issuers (vendors); and lastly receives a token from the key issues, granting
them the privilege to submit a review for the acquired product. Users with tokens
can generate review signatures5 that are publicly verifiable. Moreover, a tracing
manager can detect if some malicious user submitted multiple reviews for the
same product, and trace them to the user. A tracing manager can then report
this to the authority for removal (i.e., the system manager), preventing mali-
cious users from exploiting anonymity to submit deceptive reviews on different
products.

The current five de facto properties of ARS are the following. For the knowl-
edgeable readers, due to the similarity between ARS and group signatures [5,7,
16], their definitions are close.

- Unforgeability : A malicious user cannot sign without receiving a token from
the key issuer.

- Non-frameability : A malicious user cannot create a signature that is traced
to some honest user.

- Anonymity : A signature should not reveal the user who signed it, even to
the system manager and key issuers.

- Traceability and tracing-soundness : The tracing manager can trace any valid
signature to some user in the system.

- Public-linkability : There is a public algorithm that allows checking whether
two signatures are created by the same user.

Prior Works. The original definition of Blömer et al. [13] modeled the system and
tracing managers to always be honest and lacked the notion of non-frameability
and revocation. They constructed an ARS based on the group signature scheme

4 The name key issuer comes from the fact that the vendors are the ones responsible
for issuing keys, a.k.a. tokens, to the users, allowing them to submit reviews.

5 Throughout the introduction, we use the phrase “submitting a review” and “gener-
ating a signature” interchangeably.

ARS with Revocation, Revisited 3

by Boneh, Boyen, and Shacham [14]. Soon after, El Kaafarani, Katsumata, and
Solomon [20] showed a shortcoming of their model: it allowed malicious users to
falsely link signatures to honest users and sign anonymously. They provided a
new definition fixing this issue; however, due to the added complexity of the new
definitions, they resorted to treating the system manager and every key issuer to
be identical entities. This went against the original motivation of ARS, where the
EC site operator and all vendors should be treated differently. They constructed
an ARS based on the learning with errors (LWE) assumption. In an independent
work, Blömer, Eiden, and Juhnke [12] adopted the UC framework [17] but faced
complexity with a five-page ideal functionality and lacked the mechanism to
revoke malicious users. Their schemes are only selectively secure, as adversaries
must declare the users to be corrupt before the game begins.

1.2 Our Contribution

In this work, we revisit ARS once more and provide a more complete view of
the model. In the following, we outline our three main contributions.

Overlooked privacy guarantee: purchase-privacy. While anonymity captures one
essential aspect of user privacy, the definition only guarantees that a signature
does not leak the signer. We observe that this is too weak for ARS as there are
other sources of leakage. In an ARS, when a user buys a product and receives a
token from the key issuer, the public information maintained by the key issuer is
updated.6 In such a case, the public information may encode information of the
users who purchased a specific product sold by the key issuer. Namely, even if a
user did not generate a signature (i.e., trivially anonymous), the public informa-
tion alone may leak whether a user bought the product. Put differently, all prior
ARS security models overlook the privacy of users’ purchase history. It is clearly
desirable to consider such privacy as it has been shown that combined with
other socially available auxiliary information (e.g., blog posts, social network-
ing sites), purchase history can be further used to trace sensitive information of
users, including gender, location, and political preferences [23,31,34,35]. As one
example, we can easily attack the purchase history of the ARS construction by
El Kaafarani et al. [20] as users’ identities are stored in the public information
of the key issuer. To address this oversight, we introduce purchase privacy to
capture this attack formally.

In the realm of group signatures, Backes et al. [3] introduced a similar security
notion known as membership privacy. It aims to address the scenario where,
given two users who have not joined a group, if one of them decides to join, it
should be impossible to determine which of the two users joined. However, their
definition of membership privacy is very complex, making it difficult to port
to an already complex model such as ARS. Instead, our definition of purchase

6 To be precise, in an incomplete model of ARS where revocation is not considered,
we can have a static system parameter. However, if revocation is considered, then
the system parameter must encode information of the allowed users.

4 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

privacy is straightforward and stated clearly. Informally, we simply modify the
syntax so that the membership information related to honest users is not used
when updating the public information. To see that this is the correct definition,
we show that this simple definition, when combined with anonymity, implies the
complex purchase/membership privacy definition by Backes et al. extended to
the ARS setting. See Section 4 for a detailed discussion.

New model of ARS. As explained above, El Kaafarani et al. [20] made a con-
scious choice of handling the system manager and every key issuer as the same
entity in their security definition to tame the complexity of the model. In this
work, we come back to the original motivation of ARS and treat these entities
independently while maintaining the complexity under control. The main insight
to keep the complexity minimal is noticing that the system manager in prior ARS
models plays a role that is orthogonal to the security offered by ARS. In previous
works, the system manager’s sole role was to issue certificates to the users upon
registering to the reputation system. The only purpose of this certificate was
for the users to prove to a key issuer that the they are valid user of the reputa-
tion system. Notice this is not an inherent security definition for ARS. Indeed,
the same functionality can be easily replicated at the API level. For example, a
system manager can maintain a PKI (outside the ARS model), and users can
talk to the key issuer via an authenticated channel. By excluding the system
manager from the ARS ecosystem, we are able to simplify the security model. It
is worth highlighting that since we treat each key issuer independently, unlike in
El Kaafarani et al. [20], we can consider a stronger security model where a set
of key issuers can act maliciously. We provide the formal model in Section 3.

Generic construction and instantiations. Lastly, we show a generic construction
of an ARS that is secure in our new security model. Our approach builds upon
the ideas introduced in prior works [5, 20, 27, 28, 37], and we further extend it
to satisfy purchase privacy. Our generic construction relies on the integration of
various standard cryptographic primitives, including a PKE scheme, a signature
scheme, an accumulator, a NIZK proof system, and a linkable indistinguishable
tag system [10]. Our definition is general enough to capture accumulators based
on the subset difference method [32] using vector commitments [28]. As a con-
crete example, in this work, we show an efficient instantiation based on pairing
with only 16 kilobits for a signature. We note that due to the lack of a practical
NIZK proof system for accumulators from lattices, we leave it as an open prob-
lem to efficiently instantiate our generic construction via lattices. See Sections 5
and 6 for a detailed discussion.

Independent and concurrent work. Recently, Blömer, Bobolz, and Porzen-
heim [11] proposed a generic construction of ARS. They provide a generic con-
struction similar to ours and provide a full description of a lattice-based ARS.
In contrast, our main contribution lies in the definitional work of ARS and the
introduction of purchase-privacy. Moreover, while their ARS model (and hence
their construction) lacks the ability to revoke malicious users, ours does not.

ARS with Revocation, Revisited 5

2 Preliminaries

Notations are provided in the supplemental material A. This paper uses the
following cryptographic ingredients without introducing their definitions. We
defer these formal definitions to the supplemental materials A.1, A.2, and A.3.

- an IND-CPA secure public key encryption scheme PKE = (PKE.KG,PKE.Enc,
PKE.Dec),

- an EUF-CMA secure signature scheme SIG = (SIG.KG, SIG.Sign, SIG.Ver),
- a non-interactive zero-knowledge proof NIZK = (NIZK.Setup,NIZK.Prove,
NIZK.Verify) that is sound, zero-knowledge, and simulation extractable.

2.1 Linkable Indistinguishable Tag.

We introduce a linkable indistinguishable tag scheme (LIT) that creates a unique
tag corresponding to a user, building upon Bernhard et al.’s construction [10].
While the existing LIT definition is for symmetric key settings, we extend it to a
public key setting. This extension includes the key checking algorithm, additional
security properties (key-secrecy and key-robustness), as well as tag linking and
tag checking algorithms. The following provides a detailed syntax and security
properties for LIT.

Definition 2.1. A linkable and indistinguishable tag system (LIT) with an item
space I and a tag space T consists of the following PPT algorithms.

LIT.KG(1n)→ (tagpk, tagsk) : The tag key generation algorithm, given a security
parameter 1n, outputs a public tag key tagpk and a secret tag key tagsk.

LIT.Tag(tagsk, I)→ τ : The tag generation algorithm, given a secret tag key
tagsk and an item I ∈ I, outputs a tag τ ∈ T.

LIT.Link(τ0, τ1)→ 1/0 : The tag linking algorithm, given two tags τ0 and τ1,
outputs 1 (linked) or 0 (not linked).

LIT.ChkKey(tagpk, tagsk)→ 1/0 : The key checking algorithm, given a public tag
key tagpk and a secret tag key tagsk, outputs 1 (accept) or 0 (reject).

LIT.ChkTag(tagpk, tagsk, I, τ)→ 1/0 : The tag checking algorithm, given a secret
tag key tagsk, an item I ∈ I, and a tag τ ∈ T, outputs 1 (accept) or 0 (reject).

We require a LIT to satisfy the following standard properties. We defer each
formal definition of the followings to the supplemental material A.4.

Correctness. It requires the following three properties: (1) any honestly gener-
ated key pair passes the key checking algorithm, (2) any honestly generated
tag passes the tag checking algorithm, and (3) two tags generated by the
same key and the same item are always linked.

Indistinguishability. Any two tags (generated with different keys) for the
same item are indistinguishable.

Linkability. Any two tags (generated with the same key) for the same item are
linkable.

Key-Secrecy. No can recover the secret key from a public key and tags.
Key-Robustness. If two tags for the same item are linked, then their corre-

sponding secret tag keys are the same.

6 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

2.2 Accumulator with Revocation

In this section, we introduce accumulators with revocation, which is a general-
ization of membership revocation proposed by Libert et al. [28]. While prior
works [4, 15] proposed definitions for general accumulators, our syntax differs
from theirs. We choose to define it in a way that is amenable to our modular
construction of ARS. The setup algorithm takes as input the bit length of the ac-
cumulated elements and outputs a public parameter and a secret key. The secret
key is used to issue a “witness” for an element (we call this an ID) id ∈ {0, 1}m,
which is used to produce a proof of inclusion. Namely, only a party in possession
of a witness for id can prove the inclusion of id in a given accumulator. The accu-
mulation algorithm is ordinary. It takes as input a set of IDs still not included in
an accumulator and outputs an accumulator and auxiliary information, used by
the users with a witness to generate a proof. The proof generation algorithm uses
an auxiliary information, an ID, and a witness to generate a proof of inclusion.
The verification algorithm uses an accumulator, an ID, and a proof to verify if
ID is accumulated in the accumulator.

This syntax fits nicely into an ARS. A prover needs to know a witness for the
ID to prove inclusion of an accumulator. Looking ahead, this witness is issued
by a key issuer to user during the joining protocol.

Definition 2.2. An accumulator with revocation ACC consists of the following
PPT algorithms.

ACC.Setup(1n,m)→ (ppacc, skacc) : The setup algorithm, given a security param-
eter 1n and a bit length m of IDs, outputs a public parameter ppacc and a
secret key skacc.

ACC.Wit(ppacc, skacc, id)→ witid : The witness generation algorithm, given a pub-
lic parameter ppacc, a secret key skacc, and an ID id, outputs a witness witid
of the membership of id.

ACC.Acc(ppacc, R)→ (acc, auxacc) : The accumulation algorithm, given a public
parameter ppacc and a set R ⊆ {0, 1}m of revoked IDs, outputs an accumu-
lator acc and auxiliary information auxacc.

ACC.Prove(ppacc, auxacc, id,witid)→ π : The proving algorithm, given a public pa-
rameter ppacc, auxiliary information auxacc, an identity id, and a witness
witid, outputs a proof π of the membership.

ACC.Verify(ppacc, acc, id, π)→ 1/0 : The verification algorithm, given a public pa-
rameter ppacc, an accumulator acc, an identity id, and a witness π, outputs
a bit 1 (accept) or 0 (reject).

We require an accumulator to satisfy the following basic properties. We provide
each formal definition of the followings in the supplemental materials A.7.

Correctness. For all active users corresponding to the item at the epoch t, the
verification algorithm always returns 1 if a proof of membership is honestly
generated.

Soundness. No one can forge a proof of membership for any non-active user
corresponding to the item at the epoch t.

Succinctness. The size of proof π is O(logm) where m is the bit length of IDs.

ARS with Revocation, Revisited 7

3 Formalizing Anonymous Reputation System

This section proposes our new formalization of anonymous reputation systems
(ARS) based on the previous formalizations [13, 20]. In previous works, there
existed four entities: a system manager SM who is an EC site operator; key issuers
KI who are vendors that sell products on the EC site; users who buy products;
and a tracing manager TM who can trace a user from its review. While Blömer
et al. [13] proposed the first model for ARS and its construction, there were
several caveats. For example, they did not consider the framing scenario where
adversaries try to generate a review that links to another review produced by
an honest user. Later, El Kaafarani et al. [20] proposed a comprehensive model
and a post-quantum construction. However, due to the complexity of handling
traceability and revocations in an already complex security model, they made a
conscious choice to merge SM and the KIs as the same entity. While capturing a
stronger level of security compared to the definition of Blömer et al., they fail to
capture the flexibility of a reputation system where the EC site (i.e., SM) and
every vendors (i.e., KI) are distinct entities. For example, in practice, a specific
vendor may act maliciously, but this is not captured in their model.

We aim to model an ARS that is more in line with a practical reputation
system while keeping the complexity of the definition controlled. Our main in-
sight is that SM plays no cryptographically relevant role in the security model of
ARS. We provide a more detailed discussion on this point in Section 3.4. Below,
we formalize an ARS with only three entities (KIs, users, TM), removing SM.
The main source of simplification of our new model comes from the fact that we
do not need to consider different corruption states between SM and KIs, i.e., it
eliminates the necessity to individually consider each security definition based
on which parties are corrupted.

3.1 Syntax

In this section, we give the syntax of ARS. An ARS consists of ten stand-alone
algorithms (RepSetup,KIgen,TMgen,UKgen,RevokeUser, Sign,Verify, Link,Trace,
Judge), and one pair of interactive algorithms 〈Join, Issue〉.

RepSetup(1n)→ pp : On input a security parameter 1n, it outputs a public pa-
rameter pp.

KIgen(pp)→ (ipk, isk, regipkki , Iipk) : On input a public parameter pp, it outputs a

public and secret key pair (ipk, isk), a private empty registration table regipkki ,
and an item list initialized by Iipk ← ∅.

TMgen(pp)→ (tpk, tsk) : On input a public parameter pp, it outputs a public
and secret key pair (tpk, tsk).

Below, we assume pp is used by all algorithms and omit it from inputs.

UKgen(1n)→ (upk, usk) : This algorithm is run by a user who wants to join
the system. On input the security parameter 1n, it outputs a public and

8 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

secret key pair (upk, usk). We assume the (unique) user public key upk is
authenticated by a public key infrastructure (PKI) and made public to the
entities in the system. Hereafter, we identify a user by its public key upk.

〈Join(upk, usk, ipk, item), Issue(ipk, isk, regipkki , info
ipk
t , upk, item, Iipk)〉 : This is

an interactive protocol between a user upk and a key issuer KI. If this is the
first time that users buy an item from the KI, it sets t← 0 and infoipk0 ← ∅.
Upon successful completion, the key issuer KI issues a token for the user with
respect to the purchased item item and updates the registration table regipkki ,

public information infoipkt+1 for the next epoch, and Iipk ← Iipk ∪ {item}. In
addition, the user upk outputs a signing key ssk. We assume that KI outputs
⊥ if item was included in regipkki [upk] before the protocol execution.

RevokeUser(isk, upk, regipkki , info
ipk
t)→ (regipkki , info

ipk
t+1) : On input KI’s secret key

isk, an active user upk to be revoked, the registration table regipkki , and the

current system information infoipkt , it outputs an updated registration table

regipkki and a new system information infoipkt+1 for the next epoch t+ 1.

Sign(ipk, tpk, ssk, infoipkt , item,M)→ Σ : On input a key issuer’s public key ipk,
the tracing manager’s public key tpk, a signing key ssk, system information
infoipkt (including epoch t), an item, and a message M, it outputs a signature
Σ.

Verify(ipk, tpk, infoipkt , item,M, Σ)→ 1/0 : On input a key issuer’s public key ipk,

the tracing manager’s public key tpk, system information infoipkt (including
epoch t), a message M, and a signature Σ, it outputs 1 (accept) or 0 (reject).

Link(ipk, tpk, infoipkt , item, (M0, Σ0), (M1, Σ1))→ 1/0 : On input a key issuer’s pub-

lic key ipk, the tracing manager’s public key tpk, system information infoipkt

(including epoch t), an item, and two valid message-signature pairs (M0, Σ0)
and (M1, Σ1), it outputs 1 (accept) or 0 (reject), indicating whether the
signatures for item were produced by the same user or not.

Trace(ipk, tpk, tsk, infoipkt , item,M, Σ)→ (upk,ΠTrace)/⊥ : On input a key issuer’s
public key ipk, the tracing manager’s key pair (tpk, tsk), system information

infoipkt (including epoch t), an item, a message M, and a signature Σ, it
outputs the user upk who produced Σ and a proof ΠTrace that attests to this
fact. If tracing fails, it outputs ⊥.

Judge(ipk, tpk, infoipkt , item,M, Σ, upk,ΠTrace)→ 1/0 : On input a key issuer’s pub-
lic key ipk, a tracing manager’s public key tpk, (tpk, tsk), system information

infoipkt (including epoch t), an item, a message M, a signature Σ, a user pub-
lic key upk, and a tracing proof ΠTrace, it outputs 1 (accept) or 0 (reject),
indicating whether ΠTrace is a valid proof that upk produced Σ or not.

We say that an ARS is correct if the Verify algorithm always accepts reviews
produced by honest, non-revoked users and if the honest tracing manager can
always identify the signer of such signatures where the Judge algorithm will
accept his decision. Additionally, two reviews on the same item produced by the
same user should always link.

ARS with Revocation, Revisited 9

3.2 New Security Definition: Purchase Privacy

This section defines purchase privacy. Intuitively, purchase privacy ensures that
the products bought by the user (i.e., purchase history) remains private. To be
more precise, the fact that a user bought some product item should only be
learnt by the key issuer (i.e., the vendor) selling item. While this seems to be
a fundamental security notion for ARS, it turns out that this has never been
incorporated in prior works. For example, we found an attack on purchase privacy
against El Kaafarani et al. [20]. In the 〈Join, Issue〉 protocol of [20], KI includes
the public keys of joined users to the public information, thus trivially leaking
user information. In fact, even if the public information was somehow secured,
there are other issues. For users to prove that they are not revoked, KI provides
a witness for the maintained accumulator. Since [20] uses Merkel trees as the
accumulator, each user learns the co-path from its node to the root, effectively
including a value of the sibling’s public key. Namely, once a user buys some
item, it may implicitly learn who else bought it. This illustrates the subtlety of
purchase privacy.

To prevent such attacks, we introduce a formal definition of purchase privacy.
Our definition is simple: we say an ARS has purchase privacy if the syntax
satisfies the following property. We later show why this is the right definition by
showing equivalence between membership privacy, a similar (but more complex)
security definition proposed by [3] in the context of group signatures.

Definition 3.1 (Purchase Privacy). An ARS satisfies purchase-privacy if
it satisfies the following conditions.

- The 〈Join, Issue〉 protocol can be divided into four parts as follows:

Join1(upk, usk, ipk, item)→ ρ1,

Issue1(ipk, isk, reg
ipk
ki , info

ipk
t , item, Iipk)→ infoipkt+1,

Issue2(ipk, isk, reg
ipk
ki , info

ipk
t , item, Iipk, ρ1)→ (regipkki , ρ2),

Join2(gpk, upk, usk, ρ2)→ ssk,

where ρ1 and ρ2 are messages from the user to the key issuer and from the key
issuer to the user, respectively.

- The RevokeUser algorithm can be replaced as follows:

RevokeUser′(isk, upk, regipkki [upk],info
ipk
t)→ (regipkki [upk], info

ipk
t+1),

where regipkki [upk] is a row upk of the table regipkki , and the other rows of the table
are never referred and modified.

Remark 3.1. In other seemingly related cryptographic protocols, such as those
used for anonymous payments [9], there exists a comparable concept known as
unlinkability. Unlinkability is a security notion designed to ensure privacy for
concealing purchase information. However, this concept does not directly apply
to ARS as it requires public-linkability to detect double reviewing.

10 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

3.3 Basic Security Definitions

In this section, we provide six basic security properties for our ARS. Due to space
limitations, we defer each formal definition in the supplemental materials B.1
and B.2.

Anonymity. This ensures that, for any PPT adversary, it is infeasible to dis-
tinguish between two reviews produced by two honest reviewers (upk0, upk1) of
its choice.

Non-Frameability. This ensures that, for any PPT adversary, it is infeasible
to forge a valid review that traces or links to an uncorrupted user.

Traceability. This ensures that the (honest) manager of an ARS is always able
to trace an active user who produces a valid signature.

Unforgeability. This ensures that an adversary cannot forge a valid review for
an item on bealf of an active member managed by an (honest) key issuer.

Tracing Soundness. This ensures that, for any PPT adversary, it is infeasible
to output a review that traces back to two different reviewers.

Public-Linkability. This ensures that, for any (possibly inefficient) adversary,
it is infeasible to output two reviews for the same item that trace to the same
user but do not link.

3.4 Discussion on the Security Model

As mentioned at the beginning of this section, while the previous definition of
ARS considered four types of entities (SM, KI, user, TM), we remove SM from
the model. The rationale behind this design choice is that the security guarantees
provided by SM in the previous definitions can be easily handled at the API level
and, in particular, do not hold any cryptographic relevance. Namely, the SM only
handles the registration of users to the reputation system. For example, in the
original construction of [13], SM issues certificates to users during registration,
primarily used to verify their legitimate enrollment with the reputation system.
However, this function can be outsourced to a PKI maintained by the system
manager (outside of the ARS model), simplifying the process by relying on an
authenticated channel between the user and the KI.

More formally, recall the three requirements for an ARS we mentioned in Sec-
tion 1.1. In the following, we take a closer look at what SM previously did and
argue that these three requirements remain intact even if we remove SM.

1. The first requirement was that no user can post reviews for products (i.e.,
item) they have not purchased. Unforgeability prevents malicious users from
creating reviews without a token from an honest KI. While a SM can detect
malicious attempts, this can be handled practically at the API level.

2. The second requirement was that purchase information never leaks from
reviews and other public system information. Anonymity makes honest user
reviews indistinguishable, and purchase privacy prevents KI from disclosing
buyers’ product details. These security measures remain effective even in the
presence of a malicious SM, rendering its role unnecessary.

ARS with Revocation, Revisited 11

3. The final requirement was that anyone could link two reviews on the same
product by the same user. However, in all previous definitions, this is achieved
by the public-linkability property, which in particular is independent of SM.

4 Relation with Membership Privacy

This section compares the purchase privacy defined in Section 3.2 and the mem-
bership privacy proposed by [3]. Backes et al. proposed membership privacy,
a new security definition for group signature schemes. Roughly, a group signa-
ture scheme satisfies membership privacy if membership information does not
leak from joined users’ signatures and public information.7 We can easily extend
their definition to the ARS setting (and we denote such a definition by BHS-
PP). However, BHS-PP is highly complicated, as shown in the supplemental
material C.1. To gain confidence in our simple definition of purchase privacy, we
show that if there exists an ARS scheme satisfying anonymity and our purchase
privacy, then we can construct another ARS scheme that satisfies BHS-PP. This
means that there is no need to mind complicated security for purchase privacy
as long as it satisfies some syntactical restrcition.8

Concretely, we construct an ARS scheme ARS′ that satisfies the BHS-PP
security assuming an ARS scheme ARS is anonymous and purchase-private. We
construct ARS′ to have at least one (dummy) member for each item. Adding
a dummy member allows us to respond to queries to the challenge oracle in
the security game of BHS-PP using the challenge oracle in that of anonymity.
The overview of ARS′ is as follows: when the key generation algorithm KIgen′ is
run, it generates a dummy user (upk′, usk′) and appends upk′ (resp., usk′) to the
public (resp., secret) key for the key issuer; when the 〈Join′, Issue′〉 protocol is
run, if there is no joined user to the group, then it first makes the dummy user
upk′ join the group and runs the 〈Join, Issue〉 protocol. The remaining algorithms
of ARS′ are the same as those of ARS. Details are provided in the supplemental
material C.2.

Here, we only provide the theorem and defer its proof in the supplemental
material C.3.

Theorem 4.1. If ARS is anonymous and purchase private, then there exists an
ARS′ satisfying BHS-PP security.

5 Our Generic Construction for ARS

Here we provide the intuition of the construction. Our ARS can be regarded
as multiple groups of group signatures. There exist multiple key issuers KI, and
each KI has a unique key pair (ipk, isk) and manages a set of group signature

7 [3] divided the definition into two parts: join privacy and leave privacy. However,
we do not need to consider leave privacy since no honest users are revoked in ARS.

8 As an independent interest, this observation can apply to group signature schemes.

12 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

schemes, where each group corresponds to an item sold by the key issuer. There
exists only one tracing manager TM corresponding to all key issuers. Every user
in the system is registered to the authentication system and has its own key pair
(upk, usk).9 A user upk who bought an item sold by a KI becomes a member of
the group corresponding to the item managed by the KI. When a user joins the
group, KI assigns an identity id to the user, accumulates id, and issues witid and
θ, indicating that the user is not revoked and id is honestly issued by the KI,
respectively. The user receives witid and generates a proof of the membership
πacc which indicates that the user bought the item from the KI. After that, the
user can write a review for the bought item. Every review has to include the
following three parts: the first one is a ciphertext C = (c1, c2) of its public key
encrypted by the key of TM; the second one is a tag τ with respect to the pair
of the KI’s identifier and the purchased item, using the user’s secret key; and
the last one is a proof π indicating that (1) the user has a certificate θ of the
membership, (2) the user has a proof πacc to show that it is not revoked at the
epoch, and (3) C, τ , θ, and πacc are correctly generated. To anonymously write
a review, we use a NIZKPoK to prove a witness about the above three by the
relation ρ1 defined as follows:

ρ1 = {(((c1,c2), (vk, ppacc), (ek1, ek2), acc, item, τ), (upk, usk, id, πacc, θ, r1, r2)) |
c1 = PKE.Enc(ek1, upk; r1) ∧ c2 = PKE.Enc(ek2, upk; r2)

∧ LIT.ChkKey(upk, usk) = 1

∧ LIT.ChkTag(upk, usk, 〈vk, ppacc, item〉, τ) = 1

∧ ACC.Verify(ppacc, acc, id, πacc) = 1

∧ SIG.Ver(vk, 〈upk, id, item〉, θ) = 1}.

A different point from a group signature is that it includes a tag. The tag is
used for public linkability, i.e., if the user posts two reviews to the same item
sold by the same KI, anyone can detect them by using the LIT.Link algorithm.
Since every signature includes a ciphertext of the signer’s public key, the tracing
manager TM can decrypt it and learn who is the signer. When TM traces a
review, TM outputs not only the signer’s public key but also its proof, so it
provides a NIZK for the relation ρ2 defined as follows:

ρ2 = {((ek1,c1, upk), (dk1, rPKE)) |
upk = PKE.Dec(dk1, c1) ∧ (ek1, dk1) = PKE.KG(1n; rPKE)}.

5.1 Our Construction

We show our generic construction for ARS from PKE, SIG, NIZK1 (resp., NIZK2)
for the relation ρ1 (resp., ρ2), LIT, and ACC defined in Section 2. Refer to the
above for an overview of our construction.

9 We note again that we assume there exists an authentication scheme behind our
ARS and each user has a unique identifier upk.

ARS with Revocation, Revisited 13

RepSetup(1n) : On input a security parameter 1n, it outputs a public param-
eter pp := (crs1, crs2), where crs1 ← NIZK.Setup1(1

n) and crs2 ← NIZK.
Setup2(1

n).
KIgen(pp) : The key issuer KI runs (ppacc, skacc)← ACC.Setup(1n, n) and (vk, sk)

← SIG.KG(1n), and sets ipk := (vk, ppacc), isk := (sk, skacc), reg
ipk
ki := ∅ and

Iipk := ∅. It then outputs (ipk, isk, regipkki , Iipk).
TMgen(pp)→ (tpk, tsk) : The tracing manager TM randomly chooses rPKE ←
{0, 1}poly(n) and computes (ek1, dk1) ← PKE.KG(1n; rPKE) and (ek2, dk2)
← PKE.KG(1n). It then sets tpk := (ek1, ek2), tsk := (dk1, rPKE), and out-
puts (tpk, tsk). Note that the second key pair (ek2, dk2) is not used for the
functionality but for the security proof.

UKgen(1n)→ (upk, usk) : The user computes (tagpk, tagsk) ← LIT.KG(1n) and
sets upk := tagpk and usk := tagsk. Hereafter, the user is identified by his
public key upk.

〈Join(upk, usk, ipk, item), Issue(ipk, isk, regipkki , info
ipk
t , upk, item, Iipk)〉 :

A user upk requests to buy a product item at epoch t. The key issuer KI
computes in the following five steps:

1. If t = 0, then adds Iipk ← Iipk ∪ {item};
2. If regipkki [upk] is empty, then randomly chooses idupk ← {id ∈ {0, 1}n |

Does not appear in regipkki } and sets Listupk ← ϵ. Otherwise, let (idupk,

status, Listupk)← regipkki [upk];
3. If status = revoked or ∃(item,−) ∈ Listupk, then returns ⊥ and termi-

nates. Otherwise, continues;
4. Sets a set of revoked users’ id R as follows:
R := {id ∈ {0, 1}n | ∃upk, regipkki [upk] = (id, revoked,−)};

5. Computes (acc, auxacc) ← ACC.Acc(ppacc, R), witid ← ACC.Wit(ppacc,
skacc, id), θ ← SIG.Sign(sk, 〈upk, id, item〉), and σacc ← SIG.Sign(sk, 〈t +
1, acc〉), where t is included in infoipkt .

Finally, it sends (idupk,witid, θ) to the user upk, updates regipkki [upk]← (idupk,

active, Listupk ∪ {(item, θ)}), and returns infoipkt+1 := (t+1, acc, auxacc, σacc).
The user upk receives θ from the KI and sets ssk[ipk][item] := (upk, usk, id,
witid, θ).

RevokeUser(isk, upk, regipkki , info
ipk
t) : When a key issuer KI revokes a user upk, it

revokes upk from all trees it manages in the following five steps:

1. Gets (idupk,−,−)← regipkki [upk];
2. Sets a set of revoked users’ id R as follows:
R := {id ∈ {0, 1}n | ∃upk, regipkki [upk] = (id, revoked,−)} ∪ {idupk};

3. Computes (acc, auxacc) ← ACC.Acc(ppacc, R) and σacc ← SIG.Sign(sk,

〈t+ 1, acc〉), where t is included in infoipkt .

Finally, it updates regipkki [upk] ← (idupk, revoked,−) and returns infoipkt+1 :=
(t+ 1, acc, auxacc, σacc).

Sign(ipk, tpk, ssk, infoipkt , item,M) : To sign M using (vk, ppacc) ← ipk, (ek1, ek2)

← tpk, (tagpk, tagsk, id,witid, θ) ← ssk, and (t, acc, auxacc, σacc) ← infoipkt , it
computes in the three steps as follows:

14 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

1. Randomly chooses r1 ← {0, 1}poly(n) and r2 ← {0, 1}poly(n), and com-
putes c1 = PKE.Enc(ek1, upk; r1) and c2 = PKE.Enc(ek2, upk; r2). Then,
sets C ← (c1, c2);

2. Computes a tag to show that it buys the product item, i.e., τ ← LIT.Tag
(tagsk, 〈vk, ppacc, item〉);

3. Computes a proof to show that it is not revoked, i.e., πacc ← ACC.Prove
(ppacc, auxacc, id,witid).

Finally, it generates a proof π ← NIZK.Prove1(crs1,M, 〈C, ipk, tpk, acc, item,
τ〉, 〈upk, usk, id, πacc, θ, r1, r2〉) and outputs Σ := (C, τ, π).

Verify(ipk, tpk, infoipkt , item,M, Σ) : Parse (C, τ, π) ← Σ. It returns 1 if NIZK.
Verify1(crs1,M, 〈C, ipk, tpk, acc, item, τ〉, π) = 1 and SIG.Ver(vk, 〈t, acc〉, σacc)
= 1, where (t, acc, auxacc, σacc)← infoipkt . Otherwise, it returns 0.

Link(ipk, tpk, infoipkt , item, (M0, Σ0), (M1, Σ1)) : Parse Σi as (Ci, τi, πi). If Verify

(ipk, tpk, infoipkt , item,Mi, Σi) = 0 for i = 0 or 1, then it returns 0. Otherwise,
it returns the output bit of LIT.Link(τ0, τ1).

Trace(ipk, tpk, tsk, infoipkt , item,M, Σ) : If Verify(ipk, tpk, infoipkt , item,M, Σ) = 0,
then it returns ⊥. Otherwise, it parses Σ as ((c1, c2), τ, π) and tsk as (dk1,
rPKE), and computes upk = PKE.Dec(dk1, c1). If upk = ⊥, then it returns
⊥. Finally, it generates a proof ΠTrace ← NIZK.Prove2(crs2, ϵ, 〈ek1, c1, upk〉,
〈dk1, rPKE〉), where (ek1, ek2)← tpk, and outputs (upk,ΠTrace).

Judge(ipk, tpk, infoipkt , item,M, Σ, upk,ΠTrace) : If Verify(ipk, tpk, infoipkt , item,M, Σ)
= 0, then it returns ⊥. Otherwise, it parses Σ as ((c1, c2), τ, π) and returns
NIZK.Verify2(crs2, ϵ, 〈ek1, c1, upk〉,ΠTrace), where (ek1, ek2)← tpk.

5.2 Security Analysis

We show that our construction is secure. Correctness is straightforward as long
as all building blocks are correct. In the following, we prove that our scheme
satisfies purchase-privacy defined in Section 3.2. We here provide the theorems
with respect to other security properties only, and their proofs are provided in
the supplemental materials D.1 to D.6.

Theorem 5.1. The anonymous reputation system ARS is purchase-private.

This theorem clearly holds with the following reasons:

– In the 〈Join, Issue〉 protocol, to compute infoipkt+1 = (t+1, acc, auxacc, σ), where
(acc, auxacc) ← ACC.Acc(ppacc, R) and σ ← SIG.Sign(sk, 〈t + 1, acc〉), all we
need is to pick an unused id, so there is no need to take upk as input.

– In the RevokeUser algorithm, to compute infoipkt+1 = (t + 1, acc, auxacc, σ), it
needs to take R as input, which is the set of revoked users. Thus, there is no
need to refer the entries of regipkki related to active users.

Theorem 5.2. If the PKE scheme PKE is IND-CPA secure, the NIZK proof
system Π1 is zero-knowledge and simulation-extractable, the NIZK proof sys-
tem Π2 is zero-knowledge, and the linkable indistinguishable tag system LIT is
indistinguishable, then the anonymous reputation system ARS is anonymous.

ARS with Revocation, Revisited 15

Theorem 5.3. If the NIZK proof system Π1 is zero-knowledge and simulation-
extractable, the NIZK proof system Π2 is sound, and the linkable indistinguish-
able tag system LIT is link-sound and key-secret, then the anonymous reputation
system ARS is non-frameable.

Theorem 5.4. If the signature scheme SIG is EUF-CMA secure, the NIZK
scheme Π1 is sound and simulation-extractable, and the accumulator ACC is
sound, then the anonymous reputation system ARS is traceable.

Theorem 5.5. If the signature scheme SIG is EUF-CMA secure, the NIZK
scheme Π1 is simulation-extractable, the NIZK scheme Π2 is sound, and the
accumulator ACC is sound, then the anonymous reputation system ARS is un-
forgeable.

Theorem 5.6. If the NIZK scheme Π2 is sound, then the anonymous reputation
system ARS is tracing sound.

Theorem 5.7. If the NIZK scheme Π1 is knowledge-sound, the NIZK scheme
Π2 is sound, and the subset covering scheme SC is linkable, then the anonymous
reputation system ARS is publicly linkable.

6 Efficient Instantiation From Pairings

In this section, we provide an overview of a pairing-based efficient instantiation of
our generic construction. We defer our concrete instantiation in the supplemental
material E.

Public-Key Encryption. We use the ElGamal encryption scheme [21] from
the decision Diffie-Hellman assumption.

Signature. We use the Abe-Groth-Haralambiev-Ohkubo structure-preserving
signature scheme [1].

Linkable Indistinguishable Tag. We use a simple construction of linkable
indistinguishable tags, where H : {0, 1}∗ → G2 is a cryptographic hash func-
tion modeled as a random oracle.
LIT.KG(1n). Compute (p,G1,G2,GT , e, g, h) ← G(1n) and choose x ← Zp.

Set tagpk← gx and tagsk← x and output (tagpk, tagsk).
LIT.Tag(tagsk, I). Compute τ ← H(I)tagsk and output τ .
LIT.Link(τ0, τ1). Check τ0 = τ1. If it holds, output 1. Otherwise, output 0.
LIT.ChkKey(tagpk, tagsk). Check tagpk = gtagsk. If it holds, output 1. Oth-

erwise, output 0.
LIT.ChkTag(tagpk, tagsk, I, τ). Check tagpk = gtagsk and τ = H(I)tagsk. If

they hold, output 1. Otherwise, output 0.
Accumulator. We use the accumulator abstracted from Libert-Peters-Yung

group signature scheme [28].
NIZK for ρ1 and ρ2. We use Maurer’s generic protocol [30] for linear equa-

tions and a standard technique for proving quadratic equations using a Σ
protocol for a linear equation (Such a technique is, for example, used by
Boneh et al. [14]).

16 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

Signature Size. A signature of our scheme is 16 kilobits if we instantiate our
construction with the BLS12-381 curve. This includes 16 G1 elements, 6 G2

elements, and 15 Zp elements. See the supplemental material E for details.

Acknowledgement. We thank Keisuke Hara for engaging in helpful discussions
in the early phase of the project. We also thank the anonymous referees for their
valuable comments and helpful suggestions. This work was partially supported
by JSPS KAKENHI Grant Numbers JP18K18055 and JP23KJ0548.

References

1. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (Aug 2011) 15, 62

2. Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y.: Shorter QA-
NIZK and SPS with tighter security. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019, Part III. LNCS, vol. 11923, pp. 669–699. Springer, Heidelberg
(Dec 2019) 20

3. Backes, M., Hanzlik, L., Schneider-Bensch, J.: Membership privacy for fully dy-
namic group signatures. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.)
ACM CCS 2019. pp. 2181–2198. ACM Press (Nov 2019) 3, 9, 11, 33

4. Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L.,
Samelin, K., Yakoubov, S.: Accumulators with applications to anonymity-
preserving revocation. In: 2017 IEEE European Symposium on Security and Pri-
vacy. pp. 301–315. IEEE Computer Society Press (2017) 6

5. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (May 2003) 2, 4

6. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.)
ACM CCS 2006. pp. 390–399. ACM Press (Oct / Nov 2006) 25

7. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dy-
namic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153.
Springer, Heidelberg (Feb 2005) 2

8. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and
Fiat-Shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (Apr 2007) 73

9. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE Computer Society Press
(May 2014) 9

10. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N., Warinschi, B.: Anonymous
attestation with user-controlled linkability. Int. J. Inf. Secur. 12, 219–249 (2013)
4, 5

11. Blömer, J., Bobolz, J., Porzenheim, L.: A generic construction of an anonymous
reputation system and instantiations from lattices. Cryptology ePrint Archive,
Paper 2023/464 (2023), https://eprint.iacr.org/2023/464 4

ARS with Revocation, Revisited 17

12. Blömer, J., Eidens, F., Juhnke, J.: Practical, anonymous, and publicly linkable
universally-composable reputation systems. In: Smart, N.P. (ed.) CT-RSA 2018.
LNCS, vol. 10808, pp. 470–490. Springer, Heidelberg (Apr 2018) 3

13. Blömer, J., Juhnke, J., Kolb, C.: Anonymous and publicly linkable reputation
systems. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 478–
488. Springer, Heidelberg (Jan 2015) 1, 2, 7, 10

14. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (Aug 2004) 3,
15

15. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 561–586. Springer, Heidelberg (Aug
2019) 6

16. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.R., Schneider, S. (eds.)
ACNS 16. LNCS, vol. 9696, pp. 117–136. Springer, Heidelberg (Jun 2016) 2

17. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001)
3

18. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (Aug 2006) 20

19. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003), https://doi.org/10.1137/S0097539702403773 37

20. El Kaafarani, A., Katsumata, S., Solomon, R.: Anonymous reputation systems
achieving full dynamicity from lattices. In: Meiklejohn, S., Sako, K. (eds.) FC
2018. LNCS, vol. 10957, pp. 388–406. Springer, Heidelberg (Feb / Mar 2018) 3, 4,
7, 9

21. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp.
10–18. Springer, Heidelberg (Aug 1984) 15, 61

22. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of the
Fiat-Shamir transform. In: Galbraith, S.D., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (Dec 2012) 22

23. Gervais, A., Ritzdorf, H., Lucic, M., Lenders, V., Capkun, S.: Quantifying location
privacy leakage from transaction prices. In: Askoxylakis, I.G., Ioannidis, S., Kat-
sikas, S.K., Meadows, C.A. (eds.) ESORICS 2016, Part II. LNCS, vol. 9879, pp.
382–405. Springer, Heidelberg (Sep 2016) 3

24. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (Dec 2006) 22

25. Groth, J., Maller, M.: Snarky signatures: Minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part II. LNCS, vol. 10402, pp. 581–612. Springer, Heidelberg (Aug 2017) 20

26. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (Dec 2013) 20

27. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032,
pp. 373–403. Springer, Heidelberg (Dec 2016) 4

18 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

28. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571–
589. Springer, Heidelberg (Aug 2012) 4, 6, 15, 65

29. Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 499–517. Springer, Heidelberg (Feb 2010) 68

30. Maurer, U.: Zero-knowledge proofs of knowledge for group homomorphisms. De-
signs, Codes and Cryptography 77(2-3), 663–676 (Jun 2015) 15, 70, 73

31. Mayer, J.R., Mitchell, J.C.: Third-party web tracking: Policy and technology. In:
2012 IEEE Symposium on Security and Privacy. pp. 413–427. IEEE (2012) 3

32. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (Aug 2001) 4, 24, 65

33. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: 22nd ACM STOC. pp. 427–437. ACM Press (May 1990) 41

34. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: 2008 IEEE Symposium on Security and Privacy. pp. 111–125. IEEE Computer
Society Press (May 2008) 3

35. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: 2009 IEEE
Symposium on Security and Privacy. pp. 173–187. IEEE Computer Society Press
(May 2009) 3

36. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO’92. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (Aug 1993) 73

37. Tsudik, G., Xu, S.: Accumulating composites and improved group signing. In: Laih,
C.S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 269–286. Springer, Heidelberg
(Nov / Dec 2003) 4

Supplemental Materials

A Formal Definitions of Basics

Notation. In this paper, we use the following notations. x← X denotes sampling
an element x from a finite set X uniformly at random. y ← A(x; r) denotes that
a probabilistic algorithm A outputs y for an input x using a randomness r, and
we simply denote y ← A(x) when we need not write an internal randomness
explicitly. For interactive Turing machines A and B, (va, vb) ← 〈A(xa),B(xb)〉
denotes that A (resp., B) outputs va (resp., vb) at the end of an execution of
an interactive protocol between A and B, where A and B take xa and xb as
input, respectively. x := y denotes that x is defined by y. n denotes a security
parameter. A function f(λ) is a negligible function in λ if f(λ) tends to 0 faster
than 1

λc for every constant c > 0. negl(λ) denotes an unspecified negligible
function. PPT stands for probabilistic polynomial time. ∅ denotes the empty
set. If n is a natural number, [n] denotes the set of integers {1, · · · , n}. Also, if
a and b are integers such that a ≤ b, [a, b] denotes the set of integers {a, · · · , b}.
If O is a function or an algorithm and A is an algorithm, AO and A{O} denote
that A has oracle access to O.

ARS with Revocation, Revisited 19

A.1 Public-Key Encryption

Definition A.1 (Public-Key Encryption). A PKE scheme PKE with a plain-
text space M consists of the following three PPT algorithms.

PKE.KG(1n)→ (ek, dk) : The key generation algorithm, given a security param-
eter 1n, outputs an encryption key ek and a decryption key dk.

PKE.Enc(ek,m)→ ψ : The encryption algorithm, given an encryption key ek
and a plaintext m, outputs a ciphertext ψ.

PKE.Dec(dk, ψ)→ m : The (deterministic) decryption algorithm, given a de-
cryption key dk, and a ciphertext ψ, outputs a plaintext m ∈ {⊥} ∪M.

We require a PKE scheme to satisfy the following standard properties: correct-
ness and IND-CPA security.

Definition A.2 (Correctness). A PKE scheme PKE satisfies correctness if
for all n ∈ N and m ∈M, we have

Pr[(ek, dk)← PKE.KG(1n) : PKE.Dec(dk,PKE.Enc(ek,m)) = m] = 1.

Definition A.3 (IND-CPA Security). We say that a PKE scheme PKE
is IND-CPA secure if for all PPT adversaries A, the following advantage is
negligible:

Advind-cpaPKE,A(n) :=

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

b← {0, 1},

(ek, dk)← PKE.KG(1n),

(m∗
0,m

∗
1, st)← A(ek),

ψ∗ ← PKE.Enc(ek,m∗
b),

b′ ← A(ψ∗, st)

: b = b′

−
1

2

∣∣∣∣∣∣∣∣∣∣∣∣
,

where it is required that |m∗
0| = |m∗

1| holds.

A.2 Signature

Definition A.4 (Signature). A signature scheme SIG with a message space M
consists of the following three PPT algorithms.

SIG.KG(1n)→ (vk, sk) : The key generation algorithm, given a security parame-
ter 1n, outputs a verification key vk and a signing key sk.

SIG.Sign(sk,m)→ σ : The signing algorithm, given a signing key sk and a mes-
sage m, outputs a signature σ.

SIG.Ver(vk,m, σ)→ 1/0 : The (deterministic) verification algorithm, given a
verification key vk, a message m, and a signature σ, outputs either 1 (accept)
or 0 (reject).

We require a signature scheme to satisfy the following standard properties: cor-
rectness and EUF-CMA security.

20 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

Definition A.5 (Correctness). A signature scheme SIG satisfies correctness
if for all n ∈ N and m ∈M, we have

Pr[(vk, sk)← SIG.KG(1n) : SIG.Ver(vk,m, SIG.Sign(sk,m)) = 1] = 1.

Definition A.6 (EUF-CMA Security). We say that a signature scheme
SIG is EUF-CMA secure if for all PPT adversaries A, the following advantage
is negligible:

AdvunfSIG,A(n) := Pr

 SL := ∅,
(vk, sk)← SIG.KG(1n),

(m∗, σ∗)← AOsign(vk)

:
SIG.Ver(vk,m∗, σ∗) = 1

∧ m∗ /∈ SL

 ,
where the signing oracle Osign is defined as follows:

Signing Oracle. When A accesses the signing oracle Osign by making a query
m, it computes σ ← SIG.Sign(sk,m), returns σ to A, and appends m to SL.

Definition A.7. A signature scheme SIG is a strongly unforgeable one-time sig-
nature scheme if for all PPT adversary A, it holds that

Pr

(vk, sk)← SIG.KG(1n),

(m, state)← A(vk),

σ ← SIG.Sign(sk,m),

(m∗, σ∗)← A(σ, state),

: (m∗, σ∗) 6= (m,σ) ∧ SIG.Ver(vk,m∗, σ∗) = 1

= negl(n).

A.3 Non-Interactive Zero-Knowledge Proof

We define a non-interactive zero-knowledge proof of knowledge protocol (or sim-
ply NIZK). Below, we define a variant where the proof is generated with respect
to a label [2, 26]. Although syntactically different, such NIZK is similar to the
notion of signature of knowledge [18,25].

Definition A.8 (NIZK proof system). Let L denote a label space where check-
ing membership can be done efficiently. A non-interactive zero-knowledge (NIZK)
proof system Π for a NP relation R consists of oracle-calling PPT algorithms
(NIZK.Setup,NIZK.Prove,NIZK.Verify) defined as follows:

NIZK.Setup(1n)→ crs : The setup algorithm, given a security parameter 1n, out-
puts a common reference string crs.

NIZK.Prove(crs, lbl,X,W)→ π : The prove algorithm, given a common reference
string crs, outputs a proof π.

ARS with Revocation, Revisited 21

NIZK.Verify(crs, lbl,X, π)→ 1/0 : The verification algorithm, given a common
reference string crs, a label lbl ∈ L, a statement X, and a proof π, outputs
either 1 (accept) or 0 (reject).

We require a NIZK to satisfy the following standard properties: correctness,
soundness, and zero-knowledge defined as follows.

Definition A.9 (Correctness). A NIZK Π satisfies correctness if for all n ∈
N, lbl ∈ L, (X,W) ∈ R, we have

Pr

[
crs← NIZK.Setup(1n),

π ← NIZK.Prove(crs, lbl,X,W)
: NIZK.Verify(crs, lbl,X, π) = 1

]
= 1.

Definition A.10 (Soundness). We say that a NIZK Π is sound if for all
PPT adversaries A, the following advantage is negligible:

AdvsoundΠ,A := Pr

[
crs← NIZK.Setup(1n),

(lbl,X, π)← A(crs)
:
NIZK.Verify(crs, lbl,X, π) = 1

∧ X /∈ LR

]
,

where LR is the NP language such that LR := {x | ∃w, (x,w) ∈ R}.

Definition A.11 (Zero-knowledge). Let Sim = (Sim0, Sim1) be a zero-knowledge
simulator for Π. We say that a NIZK Π is zero-knowledge if for all PPT ad-
versaries A, the following advantage is negligible:

AdvzkΠ,A :=

∣∣∣∣∣Pr[crs← NIZK.Setup(1n) : AP(crs,·,·,·)(crs) = 1]

−Pr[(crs, τ)← Sim0(1
n) : AS(crs,τ,·,·,·)(crs) = 1]

∣∣∣∣∣ ,
where P and S are oracles that on input (lbl,X,W) return ⊥ if lbl 6∈ L ∨

(X,W) 6∈ R and otherwise return NIZK.Prove(crs, lbl,X,W) or Sim1(crs, τ, lbl,X),
respectively.

In addition, we require a NIZK to satisfy simulation extractability, informally
meaning that there exists an extractor SimExt with respect to a zero-knowledge
simulator such that it can extract a witness from any valid proof.

Definition A.12 (Simulation extractability). We say that a NIZK Π is
simulation extractable (with respect to zero-knowledge simulator Sim = (Sim0,
Sim1)), if there exists a PPT extractor SimExt = (SimExt0, SimExt1) such that no
PPT adversary A has non-negligible advantage, where A’s advantage is defined
as follows:

AdvseΠ,A := Pr

 (crs, τ, ξ)← SimExt0(1
n),

(lbl,X, π)← ASim1(crs,τ,·,·)(crs),

W← SimExt1(crs, ξ, lbl,X, π)

:

NIZK.Verify(crs, lbl,X, π) = 1

∧ (X,W) /∈ R
∧ (lbl,X, π) /∈ LS

 ,
where LS is the list of simulation queries and responses (lbli,Xi, πi)i, and

SimExt0 outputs are identical to Sim0 when restricted to the first two outputs.

22 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

Remark A.1 (Other formalization). Although Groth [24] defines a stronger no-
tion of simulation extractability where ξ can be provided to A, we only require
the weaker variant where ξ is kept hidden from A. Our generic construction
naturally works if we relied on NIZKs in the random oracle model (ROM) [22].
We chose the definition in the standard model since the formal definition of
simulation extractability in the ROM is notoriously contrived, and we believe
this helps our generic construction to be more readable. For the interested read-
ers, we emphasize that the usual definition of simulation extractability where
the extractor can program the random oracle and rewind the adversary (as in
Fiat-Shamir NIZKs) suffices for our generic construction.

A.4 Linkable Indistinguishable Tag

We require a LIT to satisfy the following standard properties: correctness, mean-
ing that (1) any honestly generated key pair passes the key checking algorithm,
(2) any honestly generated tag passes the tag checking algorithm, and (3) two
tags generated by the same key and the same item are always linked; indis-
tinguishability, any two tags (generated with different keys) for the same item
are indistinguishable; linkability, meaning that any two tags generated with the
same public tag key for the same item are always linked; key-secrecy, meaning
that no one can forge a secret key corresponding to the given public key; and
key-robustness, meaning that, if two tags for the same item are linked, then their
corresponding secret tag keys are the same.

Definition A.13 (Correctness). A linkable indistinguishable tag scheme LIT
satisfies correctness if for all n ∈ N and I ∈ I, we have

Pr

 (tagpk, tagsk)← LIT.KG(1n),

τ0 ← LIT.Tag(tagsk, I),

τ1 ← LIT.Tag(tagsk, I)

:

LIT.Link(τ0, τ1) = 1

∧ LIT.ChkTag(tagpk, tagsk, I, τ0) = 1

∧ LIT.ChkTag(tagpk, tagsk, I, τ1) = 1

 = 1.

Definition A.14 (Indistinguishability). A linkable indistinguishable tag scheme
LIT is indistinguishable if for all PPT adversaries A, the following advantage is
negligible:

Advtag-indLIT,A (n) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr

IL := ∅, b← {0, 1},
(tagpk0, tagsk0)← LIT.KG(1n),

(tagpk1, tagsk1)← LIT.KG(1n),

(I∗, st)← AOind
tag (tagpk0, tagpk1),

τ∗ ← LIT.Tag(tagskb, I
∗),

b′ ← AOind
tag (τ∗, st)

: b = b′

− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where A cannnot query I∗ to the tag generation oracle Oind
tag, which is defined

as follows:

ARS with Revocation, Revisited 23

Tag Generation Oracle. When A accesses the tag generation oracle Oind
tag by

making a query (d, I), it computes τ ← LIT.Tag(tagskd, I), returns τ to A.

Definition A.15 (Linkability). A linkable indistinguishable tag scheme LIT
satisfies linkability if for all PPT adversaries A, the following advantage is neg-
ligible:

AdvlinkLIT,A(n) := Pr

 (tagpk, tagsk0, tagsk1, I, τ0, τ1)← A(1n) :∀i ∈ {0, 1}, LIT.ChkTag(tagpk, tagski, I, τi) = 1

∧ LIT.Link(τ0, τ1) = 0

 .
Definition A.16 (Key-Secrecy). A linkable indistinguishable tag scheme LIT
satisfies key-secrecy if for all PPT adversaries A, the following advantage is
negligible:

Advkey-secLIT,A (n) := Pr

[
(tagpk, tagsk)← LIT.KG(1n), tagsk∗ ← AOsec

tag (tagpk) :

LIT.ChkKey(tagpk, tagsk∗) = 1

]
,

where the tag generation oracle Osec
tag is defined as follows:

Tag Generation Oracle. When A accesses the tag generation oracle Osec
tag by

making a query I, it computes τ ← LIT.Tag(tagsk, I), returns τ to A.

Definition A.17 (Key-Robustness). A linkable indistinguishable tag scheme
LIT satisfies key-robustness if for all PPT adversaries A, the following advantage
is negligible:

Advkey-robustATS,A (n) := Pr

(I, tagpk0, tagsk0, τ0, tagpk1, tagsk1, τ1)← A(1n) :
∀i ∈ {0, 1}, LIT.ChkTag(tagpki, tagski, I, τi) = 1

∧ LIT.Link(τ0, τ1) = 1

∧ tagsk0 6= tagsk1

 .

A.5 Vector Commitment

We define vector commitments. A vector commitment scheme allows us to com-
mit to a vector of messages. The scheme then allows to open a coordinate of the
vector compactly, that is, the size of an opening is sublinear in the dimension of
the vector. The scheme needs to satisfy position binding, which ensures that we
cannot open the same position to two different ways.

The formal definition is as follows.

Definition A.18. A vector commitment scheme consists of the following PPT
algorithms.

VC.Setup(1n, q)→ ck : The setup algorithm, given a security parameter 1n and
a dimension q = poly(n), outputs a commitment key ck.

24 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

VC.Com(ck, (m1, . . . ,mq))→ (com, aux) : The committing algorithm, given a com-
mitment key ck and a message vector (m1, . . . ,mq), outputs a commitment
com and auxiliary information aux.

VC.Open(ck, aux, i)→ open : The opening algorithm, given a commitment key
ck, auxiliary information aux, and an index i ∈ [q], outputs an opening
open.

VC.Ver(ck, com, i,m, open)→ 1/0 : The verification algorithm, given a commit-
ment key ck, a commitment com, an index i, a message m, and an opening
open, outputs 1 (accept) or 0 (reject).

We require VC to satisfy the following two properties: correctness and position-
binding.

Definition A.19 (Correctness). A vector commitment scheme VC is correct
if for any n, q ∈ N, (m1, . . . ,mq) ∈ ({0, 1}∗)q, and i ∈ [q] it holds that

Pr

ck← VC.Setup(1n, q),

(com, aux)← VC.Com(ck, (m1, . . . ,mq)),

open← VC.Open(ck, aux, i) :

VC.Ver (ck, com, i,mi, open) = 1

 = 1.

Definition A.20 (Position Binding). A vector commitment scheme VC is
position binding if for any q ∈ N and any PPT A, the following advantage is
negligible:

Advpos-bindVC,A (n) := Pr

ck← VC.Setup(1n, q),

(com, i,m, open,m′, open′)← A(ck) :
VC.Ver(ck, com, i,m, open) = 1

∧ VC.Ver(ck, com, i,m′, open′) = 1

∧m 6= m′

 .

A.6 Subset Difference Method

In this paper, we use the subset difference method [32]. While the subset differ-
ence method is proposed as a combinatorical tool for broadcast encryption, we
formalize this technique as one for expressing a subset of {0, 1}ℓ compactly. More
concretely, the subset difference method is given a subset R ⊆ {0, 1}ℓ which is
not included in the subset to be expressed and outputs a set of subsets Sp1,s1 ,
. . . , Spr,sr whose union Sp1,s1 ∪ · · · ∪ Spr,sr is equal to {0, 1}ℓ \ R. Here, each
subset Sp,s is described by p, s ∈ {0, 1}≤ℓ where p is a prefix of s and has a form
of

Sp,s = {x ∈ {0, 1}ℓ | p is a prefix of x ∧ s is not a prefix of x}.

Naor et al. [32] showed that there is an algorithm SD(1ℓ, R) that outputs a set of
subsets ((p1, s1), . . . , (pr, sr)) which satisfy that Sp1,s1 ∪ · · ·∪Spr,sr = {0, 1}ℓ \R
and r ≤ 2r − 1.

ARS with Revocation, Revisited 25

A.7 Accumulator

We provide the formal definitions of ACC for correctness, soundness, and suc-
cinctness.

Definition A.21. An accumulator with revocation scheme (ACC.Setup,ACC.Wit,
ACC.Acc,ACC.Prove,ACC.Verify) satisfies correctness if for all n ∈ N, m ∈ N,
all id ∈ {0, 1}m, R ⊆ {0, 1}m such that id 6∈ R, it holds that

Pr

ppacc ← ACC.Setup(1n,m),

witid ← ACC.Wit(ppacc, skacc, id),

(acc, auxacc)← ACC.Acc(ppacc, R),

π ← ACC.Prove(ppacc, auxacc, id,witid),

: ACC.Verify(ppacc, acc, id, π) = 1

= 1.

Definition A.22. An accumulator with revocation scheme (ACC.Setup,ACC.Wit,
ACC.Acc,ACC.Prove,ACC.Verify) satisfies soundness if for all PPT adversary A
and all m ∈ N, it holds that

Pr

ppacc ← ACC.Setup(1n,m),

(R, state)← AOwit(ppacc),

(acc, auxacc)← ACC.Acc(ppacc, R),

(id∗, π∗)← AOwit(state, acc, auxacc),

: id∗ ∈ R ∧ ACC.Verify(ppacc, acc, id
∗, π∗) = 1

= negl(n).

where the oracle Owit, given an identity id ∈ {0, 1}m, returns witid ← ACC.Wit(ppacc,
skacc, id).

Definition A.23. An accumulator with revocation scheme (ACC.Setup,ACC.Wit,
ACC.Acc,ACC.Prove,ACC.Verify) is succinct if a proof π output by ACC.Prove has
size O(logm).

A.8 General Forking Lemma

To prove our instantiation secure, we use the forking lemma by Bellare and
Neven [6].

26 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

Lemma A.1 (General Forking Lemma). Fix an integer Q ≥ 1 and a set
H of size h ≥ 2. Let A be a randomized algorithm that on input x, h1, . . . ,
hQ returns a pair, the first element of which is a integer in the range 0, . . . ,
Q and the second element of which we refer to as a side output. Let IG be a
randomized algorithm that we call the input generator. The accepting probability
of A, denoted acc, is defined as the probability that J ≥ 1 in the experiment

x← IG;h1, . . . , hQ ← H; (J, σ)← A(x, h1, . . . , hQ).

The forking algorithm FA associated to A is the randomized algorithm that takes
input x proceeds as follows:

Algorithm FA(x):

Pick coins coin for A at random

h1, . . . , hQ ← H

(I, σ)← A(x, h1, . . . , hQ; coin)
if I = 0 then return (0, ε, ε)

h′I , . . . , h
′
Q ← H

(I ′σ′)← A(x, h1, . . . , hI−1, h
′
I , . . . , h

′
Q; coin)

if I = I ′ and hI 6= h′I then return (1, σ, σ′)

else return (0, ε, ε).

Let
frk = Pr[x← IG; (b, σ, σ′)← FA(x) : b = 1].

Then

frk ≥ acc ·
(
acc

Q
− 1

h

)
.

Alternatively,

acc ≤ Q

h
+
√
Q · frk.

A.9 Pairing Groups

We call G a pairing group generator if G, given a security parameter 1n, outputs
(p,G1,G2,GT , e, g, h) where p is a prime, G1, G2, and GT are multiplicative
gruops of order p, e : G1 × G2 ← GT is a non-degenerated bilinear map, and g
and h are respectively generators of G and H.

We use the following hardness assumption.

Definition A.24. The symmetric q-Diffie-Hellman exponent assumption for G
holds if for all PPTs A, it holds that

Pr

gk = (p,G1,G2,GT , e, g, h)← G(1n),

α← Zp,

: A(gk, (gαi

)i∈[2q]\{q+1}, (h
αi

)i∈[2q]\{q+1}) = hα
q+1

 = negl(n).

ARS with Revocation, Revisited 27

Definition A.25. The decisional Diffie-Hellman (DDH) assumption in G1 for
G holds if for all PPTs A, it holds that

AdvDDH
G,A :=

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

gk = (p,G1,G2,GT , e, g, h)← G(1n),

α, β, γ ← Zp,

: A(gk, gα, gβ , gγ) = 1

−Pr

gk = (p,G1,G2,GT , e, g, h)← G(1n),

α, β ← Zp, γ ← αβ

: A(gk, gα, gβ , gγ) = 1

∣∣∣∣∣∣∣∣∣∣∣∣
= negl(n).

Definition A.26. The discrete logarithm (DL) assumption in G1 for G holds if
for all PPTs A, it holds that

Pr

gk = (p,G1,G2,GT , e, g, h)← G(1n),

α← Zp,

: A(gk, gα) = α

 = negl(n).

B Basic security properties of ARS

B.1 Helpful Oracles for Defining Security

Here, we define several oracles to aid the description of the security experiments.
Each oracle may internally store some lists and we provide an overview of these
lists in Table 1. It is helpful to keep in mind that the oracles are named in such a
way that roughly SndToX means the adversary A engages in a protocol execution
with an honest X, and SndToX-Y means A invokes a protocol execution between
an honest X and Y.

AddU() : It generates (upk, usk) ← UKgen(1n). If it outputs upk ∈ HUL, then
it outputs ⊥. 10 Otherwise, it outputs the user public key upk and updates
HUL← HUL ∪ {upk}.

AddKI() : It generates (ipk, isk, regipkki , Iipk) ← KIgen(pp). It outputs ⊥ if ipk ∈
HKIL. Otherwise, it outputs the key issuer’s public key ipk and updates
HKIL← HKIL ∪ {ipk}.

10 This restriction is required for the assumption that each user has a unique public
key upk.

28 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

Table 1: Lists used by oracles and security experiments

Lists Elements

HUL Honest users

HKIL Honest key issuers

HSSKL Honest system secret keys for users

SL All signatures that are generated by the oracle OSign

CL All signatures that are generated by the oracle AnonChalb and PurChalSignb

IsActive Activation state of a user in the system

SndToU(ipk, upk, item) : It outputs ⊥ if ipk /∈ HUL or HSSKL[ipk][upk][item] 6=
⊥. Otherwise, it executes 〈Join(upk, usk, ipk, item),A〉, where it plays the
role of the honest user. If Join outputs a signing key ssk, then it updates
HSSKL[ipk][upk][item] := ssk.

SndToKI(ipk, upk, item) : It outputs ⊥ if ipk /∈ HKIL. Otherwise, it executes

〈A, Issue(ipk, isk, regipkki , info
ipk

tipkcur
, upk, item, Iipk)〉, where it plays the role of the

honest key issuer. If Issue outputs an updated regipkki and public information

infoipk
tipkcur+1

for the next epoch tipkcur + 1, then it outputs infoipk
tipkcur+1

and updates

IsActive[ipk][item][upk] := [0,∞].
SndToKIU(ipk, upk, item) : It outputs ⊥ if ipk /∈ HKIL or upk /∈ HUL or HSSKL

[ipk][upk][item] 6= ⊥. Otherwise, it executes 〈Join(upk, usk, ipk, item), Issue

(ipk, isk, regipkki , info
ipk

tipkcur
, upk, item, Iipk)〉, where it plays the role of the honest

user and the honest key issuer. If Join outputs a signing key ssk, then it
updates HSSKL[ipk][upk][item] := ssk. If Issue outputs an updated regipkki and

public information infoipk
tipkcur+1

for the next epoch tipkcur + 1, then it outputs

infoipk
tipkcur+1

and updates IsActive[ipk][item][upk] := [0,∞].

AnonChalb(ipk, info
ipk
t , upk0, upk1, item,M) : 11 It checks if the following condi-

tions hold:
– sski ← HSSKL[ipk][upki][item] satisfies sski 6= ⊥ for i = 0 and 1;
– ∃(ipk, upki, item,−,−) ∈ SL for i = 0 or 1.

If not, it outputs ⊥. Otherwise, it generates a signature Σi ← Sign(ipk, tpk,

sski, info
ipk
t , item,M) and checks if Verify(ipk, tpk, infoipkt , item,M, Σi) = 1 for

i = 0 and 1, where infoipkt includes an epoch t. Finally, if all checks pass, it
outputs Σb and updates CL← CL ∪ {(ipk, upk0, upk1, item,M, Σb)}.

OSign(ipk, infoipkt , upk, item,M) : It checks if the following conditions hold:
– ssk = ⊥, where ssk← HSSKL[ipk][upk][item];
– ∃(ipk, upk0, upk1, item,M, Σ) ∈ CL s.t. upk ∈ {upk0, upk1}.

11 This oracle is used in the experiment for anonymity. We assume that in the experi-
ment, an adversary can access this oracle only once.

ARS with Revocation, Revisited 29

If not, it outputs ⊥. Otherwise, it outputs a signature Σ ← Sign(ipk, tpk,

ssk, infoipkt , item,M) and updates SL← SL ∪ {(t, ipk, upk, item,M, Σ)}, where
infoipkt includes an epoch t.

OTrace(ipk, item, infoipkt ,M, Σ) : It outputs ⊥ if there exists (ipk,−,−, item,M,
Σ) ∈ CL. Otherwise, it outputs (upk,ΠTrace) ← Trace(ipk, tpk, tsk, infoipkt ,
item,M, Σ).

RevUser(upk) : It executes (regipkki , info
ipk

tipkcur+1
)← RevokeUser(isk, upk, regipkki , info

ipk

tipkcur
)

for all ipk ∈ HKIL, using the current registration table regipkki and public in-

formation infoipk
tipkcur

, and outputs updated infoipk
tipkcur+1

for the next epoch. It then

updates IsActive[ipk][item][upk] := [0, tipkcur].

RtrKIReg(ipk) : It outputs regipkki .

B.2 Formal Security Definitions of Basic Properties

Correctness. We say that an ARS is correct if reviews produced by honest,
non-revoked users are always accepted by the Verify algorithm and if the hon-
est tracing manager can always identify the signer of such signatures where his
decision will be accepted by the Judge algorithm. Additionally, two reviews pro-
duced by the same user on the same item should always link. The more precise
definition is as follows:

Definition B.1 (Correctness). [t] An ARS is correct if for any PPT adver-
sary A involved in the following experiment, we have AdvcorrectARS,A(n) := Pr[ExpcorrectARS,A(n) =
1] = negl(n).

Experiment ExpcorrectARS,A(n)

pp← RepSetup(1n);HUL,HKIL,HSSKL, IsActive := ∅;
(tpk, tsk)← TMgen(pp);
(ipk, upk, item,M0,M1)← A{AddU,AddKI, SndToKIU,RevUser,RtrKIReg} (tpk);
if upk /∈ HUL or ipk /∈ HKIL or HSSKL[ipk][upk][item] = ⊥

or tipkcur /∈ IsActive[ipk][item][upk] then return 0;
ssk← HSSKL[ipk][upk][item];

Σi ← Sign
(
ipk, tpk, ssk, infoipk

t
ipk
cur
, item,Mi

)
for i = 0 and 1;

(ipki, ΠTrace,i)← Trace
(
ipk, tpk, tsk, infoipk

t
ipk
cur
, item,Mi, Σi

)
for i = 0 and 1;

if Verify
(
ipk, tpk, infoipk

t
ipk
cur
, item,Mi, Σi

)
= 0 for i = 0 or 1 then return 1;

if Judge
(
ipk, tpk, infoipk

t
ipk
cur
, item,Mi, Σi, upki, ΠTrace,i

)
= 0 or upk 6= upki

for i = 0 or 1 then return 1;

if Link
(
ipk, tpk, infoipk

t
ipk
cur
, item, (M0, Σ0), (M1, Σ1)

)
then return 1;

return 0;

Fig. 1: The experiment for defining correctness.

30 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

Anonymity. An ARS is anonymous if for any PPT adversary, it is infeasible to
distinguish between two reviews produced by two honest reviewers (upk0, upk1)
of its choice. Below, we only consider the case where the adversary can query
the oracle AnonChalb once for simplicity.

Definition B.2 (Anonymity). An ARS is anonymous if we have AdvanonARS,A(n)

:=
∣∣Pr [Expanon-0ARS,A(n) = 1

]
− Pr

[
Expanon-1ARS,A(n) = 1

]∣∣ = negl(n) for any PPT adver-
sary A involved in the experiment defined in Figure 2.

Experiment Expanon-bARS,A(n)

pp← RepSetup(1n);HUL,HSSKL,CL, SL := ∅;
(tpk, tsk)← TMgen(pp);
d← A{AddU, SndToU,AnonChalb,OSign,OTrace} (pp, tpk);
if |CL| 6= 1 then return 0;
return d;

Fig. 2: The experiment for defining anonymity.

Remark B.1 (Multi-challenge security). We can consider the definition that al-
lows an adversary to query the challenge oracle multiple times. In such a case, the
following trivial attacks need to be avoided: Let (ipk, upk0, upk1, item,M, Σ) ∈
CL. If ∃(ipk, upk′0, upk

′
1, item,M

′, Σ′) ∈ CL s.t. {upk0, upk1} ∩ {upk
′
0, upk

′
1} 6= ∅,

then we can identify the challenge bit b by the Link algorithm. In the security
definition where we prevent the above attacks from occurring, an adversary must
choose a new pair of two honest users every time querying the challenge oracle,
so it is easy to reduce the multi-challenge security to the single challenge security
via a simple hybrid argument.

Non-Frameability. An ARS is non-frameable if for any PPT adversary, it is
infeasible to forge a valid review that traces or links to an uncorrupted user.

Definition B.3 (Non-Frameability). An ARS is non-frameable if we have

Advnon-frame
ARS,A (n) := Pr

[
Expnon-frame

ARS,A (n) = 1
]
= negl(n) for any PPT adversary A

involved in the following experiment.

ARS with Revocation, Revisited 31

Experiment Expnon-frame
ARS,A=(A1,A2)

(n)

pp← RepSetup(1n);HUL,HSSKL, SL := ∅;
(st, tpk)← A1(pp)
(ipk, info, upk, item,M, Σ,ΠTrace)← A2 {AddU, SndToU,OSign} (st);
if upk /∈ HUL then return 0;
if Verify(ipk, tpk, info, item,M, Σ) = 0 or (−, ipk, upk, item,M, Σ) ∈ SL then

return 0;
if ∃(−, ipk, upk, item,M′, Σ′) ∈ SL

s.t. Link(ipk, tpk, info, item, (M, Σ), (M′, Σ′)) = 1 then return 1;
if Judge(ipk, tpk, info, item,M, Σ, upk, ΠTrace) = 1 then return 1;
return 0;

Fig. 3: The experiment for defining non-frameability.

Traceability. Traceability ensures that the (honest) manager of an ARS is always
able to trace an active user who produces a valid signature. In the following, we
give the definition of traceability for a single honest key issuer. The case where
the adversary can add multiple key issuers is implied by the single honest key
issuer case by a union bound.

Definition B.4 (Traceability). An ARS is traceable if we have AdvtraceARS,A(n) :=

Pr[ExptraceARS,A(n) = 1] = negl(n) for any PPT adversary A involved in the follow-
ing experiment. 12

Experiment ExptraceARS,A(n)

pp← RepSetup(1n); HKIL, IsActive := ∅;
(tpk, tsk)← TMgen(pp);
(info, item,M, Σ)← A{AddKI, SndToKI,RevUser,RtrKIReg} (pp, tpk, tsk);
if |HKIL| 6= 1 then return 0;
{ipk} := HKIL;
if Verify(ipk, tpk, info, item,M, Σ) = 0 then return 0;
(upk, ΠTrace)← Trace(ipk, tpk, tsk, info, item,M, Σ);
Let t be the epoch included in info;
if t /∈ IsActive[ipk][item][upk] then return 1;
if Judge(ipk, tpk, info, item,M, Σ, upk, ΠTrace) = 0 then return 1;
return 0;

Fig. 4: The experiment for defining traceability.

Unforgeability. Unforgeability ensures that an adversary cannot forge a valid
review for an item as an active member managed by an (honest) key issuer.

12 Note that in the traceability game, we allow A to get the (honestly) generated
tracing secret key tsk, but not to choose tsk maliciously. If we allow an adversary
to choose the key of TM maliciously, it can win the game trivially by choosing just
(tpk, tsk) = (⊥,⊥) since the algorithm Judge always outputs 0 in this case.

32 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

Similar to the definition of traceability, we give the definition of unforgeability
for a (single) honest key issuer.

Definition B.5 (Unforgeability). An ARS is unforgeable if we have AdvunfARS,A
(n) := Pr[ExpunfARS,A(n) = 1] = negl(n) for any PPT adversary A involved in the
following experiment.

Experiment ExpunfARS,A(n)

pp← RepSetup(1n); HKIL, IsActive := ∅;
(tpk, info, item,M, Σ, upk, ΠTrace)← A{AddKI, SndToKI,RevUser,RtrKIReg} (pp);
if |HKIL| 6= 1 then return 0;
{ipk} := HKIL;
if Verify(ipk, tpk, info, item,M, Σ) = 0

or Judge(ipk, tpk, info, item,M, Σ, upk, ΠTrace) = 0 then return 0;
Let t be the epoch included in info;
if t /∈ IsActive[ipk][item][upk] then return 1;
return 0;

Fig. 5: The experiment for defining unforgeability.

Tracing Soundness. An ARS has tracing soundness if for any PPT adversary, it
is infeasible to output a review that traces back to two different reviewers.

Definition B.6 (Tracing Soundness). An ARS is tracing-sound if we have
Advtrace-soundARS,A (n) := Pr[Exptrace-soundARS,A (n) = 1] = negl(n) for any PPT adversary A
involved in the following experiment.

Experiment Exptrace-soundARS,A (n)

pp← RepSetup(1n);
(ipk, tpk, info, item,M, Σ, {upki, ΠTrace,i}i=0,1)← A(pp);
if Verify(ipk, tpk, info, item,M, Σ) = 0 then return 0;
if upk0 = upk1 then return 0;
if Judge(ipk, tpk, info, item,M, Σ, upki, ΠTracei) = 0 for i = 0 or 1 then return 0;
return 1;

Fig. 6: The experiment for defining tracing-soundness.

Public-Linkability. An ARS is linkable if for any (possibly inefficient) adversary,
it is infeasible to output two reviews for the same item that trace to the same
user but does not link. This should hold even if the adversary can choose the
keys of SM and TM and the secret keys of key issuers.

Definition B.7 (Public-Linkability). An ARS is public-linkable if we have

Advpublic-linkARS,A (n) := Pr[Exppublic-linkARS,A (n) = 1] = negl(n) for any PPT adversary A
involved in the following experiment.

ARS with Revocation, Revisited 33

Experiment Exppublic-linkARS,A (n)

pp← RepSetup(1n);
(ipk, tpk, info, item, upk, {Mi, Σi, ΠTrace,i}i=0,1)← A(pp);
if Verify(ipk, tpk, info, item,Mi, Σi) = 0 for i = 0 or 1 then return 0;
if Judge(ipk, tpk, info, item,Mi, Σi, upk, ΠTracei) = 0 for i = 0 or 1 then return 0;
if Link(ipk, tpk, info, item, (M0, Σ0), (M1, Σ1)) = 1 then return 0;
return 1;

Fig. 7: The experiment for defining public-linkability.

C Relation between Membership Privacy and Purchase
Privacy

C.1 Definition of Membership Privacy [3]

Firstly, we introduce the helpful oracles for defining BHS-PP in the same way
as Section B.1.

OSign∗upk0,upk1(ipk, info
ipk
t , upk, item,M) : It outputs ⊥ if (−, upk,−, item,−,−) ∈

CL or (−,−, upk, item,−,−) ∈ CL. Otherwise, it works in the same way as

OSign(ipk, infoipkt , upk, item,M).
RevUser∗(R) : It outputs ⊥ if upk0 ∈ R or upk1 ∈ R. Otherwise, it works in the

same way as RevUser(R).

PrivChalb,upk0,upk1(ipk, info
ipk
t , item,M) : It works as the same way as OSign(ipk,

infoipkt , upkb, item,M) except that it updates CL← CL∪{(ipk, upk0, upk1, item,
M, Σ)} instead of updating SL.

Next, we introduce the definition of BHS-PP. Note that we consider the
definition that allows an adversary to query the challenge oracle only one time.
However, the advantage of an adversary in breaking the scheme with multiple
challenge queries can be upper bounded by a function of the advantage of an
adversary of comparable resources in breaking the scheme with single challenge
query via a simple hybrid argument.

Definition C.1 (BHS-PP). An ARS satisfies BHS-PP security if we have∣∣∣Pr[Expbhs-pp-0ARS,A (n) = 1]− Pr[Expbhs-pp-1ARS,A (n) = 1]
∣∣∣ = negl(n) for any PPT adver-

sary A = (A1,A2) involved in the following experiment.

C.2 Construction

We modify an ARS scheme to have at least one (dummy) member for each
item. Let ARS = (RepSetup,KIgen,TMgen,UKgen, 〈Join, Issue〉,RevokeUser, Sign,
Verify, Link,Trace, Judge). ARS′ is constructed as follows:

34 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

Experiment Expbhs-pp-bARS,A=(A1,A2)
(n)

pp← RepSetup(1n);HUL,HSSKL,CL, SL, IsActive := ∅;
(ipk, isk, regipkki , I

ipk)← KIgen(pp);HKIL := {ipk};
(tpk, tsk)← TMgen(pp);

(st, upk0, upk1, item)← A1

{
AddU, SndToKI, SndToKIU,
OSign,OTrace,RevUser∗

}(
pp, ipk, tpk, Iipk

)
;

if {upk0, upk1} ⊈ HUL or HSSKL[ipk][upk0][item] 6= ⊥
or HSSKL[ipk][upk1][item] 6= ⊥ then return 0;

(ssk, (regipkki , info
ipk
t+1))←

⟨
Join(upkb, uskb, ipk, item),

Issue(ipk, isk, regipkki , info
ipk
t , upkb, item, Iipk)

⟩
;

d← A2

{
SndToKI,OSign∗upk0,upk1 ,OTrace,

RevUser∗,PrivChalb,upk0,upk1

}(
st, infoipkt+1

)
;

if |CL| 6= 1 then return 0;
return d;

Fig. 8: The experiment for defining BHS-PP security.

KIgen′(pp) : It first runs (ipk, isk, regipkki , Iipk) ← KIgen(pp). Then, it generates a

dummy user (upk′, usk′)← UKgen(1n). Finally, it outputs (ipk′, isk′, regipk
′

ki , Iipk)
← ((ipk, upk′), (isk, usk′), regipkki , Iipk).
〈Join′(upk, usk, ipk′, item), Issue′(ipk′, isk′, regipk

′

ki , info
ipk′

t , upk, item, Iipk)〉 : It first

checks if infoipk
′

t contains t = 0. If so, it makes the user join the group by

running 〈Join(upk′, usk′, ipk, item), Issue(ipk, isk, regipk
′

ki , info
ipk′

0 , upk′, item, Iipk)〉,
where (ipk, upk′) ← ipk′ and (isk, usk′) ← isk′. Then, it runs (ssk, (regipk

′

ki ,

infoipk
′

2))← 〈Join(upk, usk, ipk, item), Issue(ipk, isk, regipk
′

ki , info
ipk′

1 , upk, item, Iipk)〉.
Otherwise, it runs as the same algorithm as 〈Join, Issue〉.

The other algorithms (RepSetup′,TMgen′,UKgen′,RevokeUser′, Sign′,Verify′, Link′,
Trace′, Judge′) are the same as ARS except that if the algorithm takes ipk′ (resp.,
isk′), then it first parses (ipk, upk′)← ipk′ (resp., (isk, usk′)← isk′) and runs the
corresponding algorithm of ARS that takes as input ipk (resp., isk) instead of
ipk′ (resp., isk′).

C.3 Proof of Theorem 4.1

Proof. Let us fix a PPT adversary A attacking the BHS join privacy of ARS′

and the value of the security parameter n. The attack game used to define the
BHS join privacy is defined in Figure 8. Let Game0 be the original attack game,
T0 be the event that A′ outputs 1 in Game0. Our overall strategy for the proof
is as follows. We shall define a sequence Game0, . . . ,Game5 of modified attack
games. Each of the games Game0, . . . ,Game5 operates on the same underlying
probability space. For any 1 ≤ i ≤ 5, we let Ti be the event that A′ outputs 1 in
Gamei. Our strategy is to show that for 0 ≤ i ≤ 4, the quantity |Pr[Ti]−Pr[Ti+1]|
is negligible.

The sequence of games Game0, . . . ,Game5 is as follows.

ARS with Revocation, Revisited 35

Game0 : This is the same game as Expbhs-pp-0ARS′,A′(n) in Figure 8, i.e., Pr[Expbhs-pp-0ARS′,A′(n)

= 1] = Pr[T0].
Game1 : In this game, it aborts if AddU returns ⊥ when A′ queries AddU. Other

operations are the same as Game0.
Game2 : In this game, it returns Σ′ for each query to PrivChal0,upk0,upk1 from

A′, where Σ′ ← Sign(ipk, tpk, ssk′, infoipkt , item,M). Other operations are the
same as Game1.

Game3 : In this game, it runs the 〈Join′, Issue′〉 protocol between upk1 and KI
instead of the protocol between upk0 and KI. Other operations are the same
as Game2.

Game4 : In this game, it returns Σ1 for each query to PrivChal0,upk0,upk1 from

A′, where Σ1 ← Sign(ipk, tpk, ssk1, info
ipk
t , item,M). We note that ssk1 is the

output of Join′ when it runs 〈Join′, Issue′〉 protocol between upk1 and KI.
Other operations are the same as Game3.

Game5 : In this game, it continues even if AddU returns ⊥ when A′ queries
AddU. Other operations are the same as Game4. Now, this is the same game

as Expbhs-pp-1ARS′,A′(n) in Figure 8, i.e, Pr
[
Expbhs-pp-1ARS′,A′(n) = 1

]
= Pr[T5].

Let us analyze the success probabilities. Firstly, we can ignore the probabil-
ity that AddU′ returns ⊥ since the entropy of the output space of the UKgen
algorithm is sufficiently large w.l.o.g.13 Therefore,

|Pr[T0]− Pr[T1]| = negl(n), (1)

|Pr[T4]− Pr[T5]| = negl(n). (2)

Secondly, any difference between these games Game1 and Game2 yields a PPT
algorithm that distinguishes two signatures generated by the honest user and
the dummy user, respectively. More precisely, we have the following:

Lemma C.1. There exists a PPT algorithm A such that

|Pr[T1]− Pr[T2]| ≤ AdvanonARS,A(n). (3)

Detailed proof of this lemma is provided in the supplemental material C.4. We
can say the same thing about the difference between these two games Game3
and Game4. More precisely, we have the following:

Lemma C.2. There exists a PPT algorithm A such that

|Pr[T3]− Pr[T4]| ≤ AdvanonARS,A(n). (4)

The proof of this lemma is almost identical to the proof of Lemma C.1 .

Finally, we analyze the difference between the success probabilities of the two
games Game2 and Game3. Since ARS satisfies the purchase privacy, we have the
following facts:

13 We assume that each user has its own unique key. Therefore, if the entropy is small,
then the secret key corresponding to upk possibly leak.

36 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

- infoipkt+1 generated by Issue1 does not depend on upk0 or upk1, i.e., the challenge
bit of the game. In addition, A′ cannot get any information about messages
ρ1, ρ2, updated regipkki , and the output of the Join algorithm ssk.

- no infoipkt+1 obtained by querying to the RevUser oracle depends on upk0 or upk1
since A′ is not allowed to revoke them.

Therefore, two games Game2 and Game3 proceed identically until the following
event F occurs: A′

2 receives a signature of the user upk0 or upk1 chosen by
A′

1. Thus, we have |Pr[T2] − Pr[T3]| ≤ Pr[F] . In addition, the event F never
occurs since the signing oracle OSign∗upk0,upk1 returns ⊥ and the challenge oracle
PrivChalb,upk0,upk1 returns a signature of the dummy user. Therefore, we have

Pr[T2] = Pr[T3]. (5)

Theorem 4.1 now follows immediately from (1) - (5).

C.4 Proof of Lemma C.1

Proof. We assume that there exists a PPT adversary A′ = (A′
1,A′

2) that makes
the probability |Pr[T1]−Pr[T2]| non-negligible in the security parameter. Then,
we can construct another PPT adversary A attacking the anonymity of ARS with
success probability |Pr[T1]−Pr[T2]|, which implies this lemma. The description
of A is as follows.

A, given (pp, tpk), computes (ipk, isk, regipkki , Iipk) ← KIgen(pp), generates a
dummy user by querying AddU(), receives the dummy user’s public key upk′,

and sets ipk′ ← (ipk, upk′), regipk
′

ki ← regipkki , Iipk
′ ← Iipk, HKIL′ := {ipk′}, and

HUL′,HSSKL′,CL′, SL′, IsActive′ = ∅. Then, A runs A′
1(pp, ipk

′, tpk, Iipk′). A re-
sponds for each of queries from A′

1 as follows:

- For each query to AddU(), A similarly queries AddU. If AddU outputs ⊥ to
A, then it aborts. Otherwise, A returns the received upk to A′

1 and adds
HUL′ ← HUL′ ∪ {upk}.

- For each query to SndToKI(ipk′, upk, item), A returns ⊥ if ipk′ /∈ HKIL′. Oth-

erwise, it runs 〈A′
1, Issue

′(ipk′, isk, regipk
′

ki , info
ipk′

tipkcur
, upk, item)〉. Then, A updates

IsActive′[ipk′][item][upk] = [0,∞] and returns infoipk
′

tipkcur+1
included in the output

of the Issue′ algorithm.

- For each query to SndToKIU(ipk′, upk, item), A returns ⊥ if ipk′ /∈ HKIL′ or
upk /∈ HUL′. Otherwise, in case tipkcur = 0, A first queries SndToU(ipk, upk′, item),
where (ipk, upk′)← ipk′. Then,A queries SndToU(ipk, upk, item), whereA plays

the role of the honest key issuer, i.e., Issue(ipk, isk, regipk
′

ki , info
ipk′

tipkcur
, upk, item),

where isk is the secret key corresponding to ipk. Then, A updates IsActive′[ipk′]

[item][upk] = [0,∞], and returns infoipk
′

tipkcur+1
included in the output of the Issue

algorithm.

ARS with Revocation, Revisited 37

- For each query to RevUser(R), A computes (regipk
′

ki , info
ipk′

tipk
′

cur +1
) ← RevokeUser

(isk, R, regipk
′

ki , info
ipk′

tipk
′

cur

), where (ipk,−) ← ipk′ and isk is the secret key corre-

sponding to ipk. Then, it updates IsActive′[ipk′][item][upk] = [0, tipkcur] for all
upk ∈ R and item ∈ Iipk such that IsActive′[ipk′][item][upk] = [0,∞].

- For each query to OSign(ipk′, infoipk
′

t , upk, item,M), A parses (ipk,−) ← ipk′,

queries OSign(ipk, infoipk
′

t , upk, item,M), and receivesΣ. Then,A updates SL′ ←
SL′ ∪ {(t, ipk′, upk, item,M, Σ)} and returns Σ to A′

1, where t is included in

infoipk
′

t .
- For each query to OTrace(ipk′, item, info,M, Σ),A parses (ipk,−)← ipk′, queries
OTrace(ipk, item, info,M, Σ), and receives (upk,ΠTrace). Then, A returns (upk,
ΠTrace) to A′

1.

When A′
1 outputs (st, upk0, upk1, item) and terminates, A outputs 0 and termi-

nates if {upk0, upk1} ⊈ HUL′ or HSSKL′[ipk′][upk0][item] 6= ⊥ or HSSKL′[ipk′]
[upk1][item] 6= ⊥. Otherwise, A queries SndToU(ipk, upk0, item) and runs A′

2(st,

infoipk
′

tipk
′

cur

). A responds for each of queries from A′
2 as follows:

- For each of queries to AddU, SndToKI, SndToKIU,RevUser, A similarly makes
each response to A′

2 the same way it does for each of queries from A′
1.

- For each query to PrivChalb,upk0,upk1(ipk
′, infoipk

′

tipk
′

cur

, item,M), A queries AnonChalb

(ipk, infoipkt , upk0, upk
′, item,M). If A receives ⊥, then it returns ⊥ to A′

2. Oth-
erwise, A receives Σ, so it updates CL′ ← CL′ ∪ {(ipk′, upk0, upk1, item,M, Σ)}
and returns Σ to A′

2.

- For each query to OSign∗upk0,upk1(ipk
′, infoipk

′

t , upk, item,M),A outputs 0 if upk =

upk0 or upk = upk1. Otherwise, A queries OSign(ipk, infoipk
′

t , upk, item,M) and
receives Σ, where (ipk,−) ← ipk′. Then, it returns Σ to A′

2 and updates

SL′ ← SL′ ∪ {(t, ipk′, upk, item,M, Σ)}, where t is included in infoipk
′

t .
- For each query to OTrace(ipk′, item, info,M, Σ), A returns ⊥ if ∃(ipk′,−,−,
item,M, Σ) ∈ CL′. Otherwise, it parses (ipk,−) ← ipk′, queries OTrace(ipk,
item, info,M, Σ), and receives (upk,ΠTrace). Then, A returns (upk,ΠTrace) to
A′

1.

When A′
2 outputs d and terminates, A outputs d and terminates.

The above completes the description of A. Note that A perfectly simulates
Game1 (resp., Game2) in case the challenge bit b = 0 (resp., b = 1) for A′ since
A′ receives a signature generated by upk0 (resp., upk′) from the query to the
PrivChal0,upk0,upk1 oracle. Therefore, we have |Pr[T1]− Pr[T2]| ≤ AdvanonARS,A(n).

D Security Proofs of Our Generic Construction

D.1 Proof of Theorem 5.2

Proof. 14 Let us fix a PPT adversary A attacking anonymity of the ARS and the
value of the security parameter n. The attack game used to define anonymity

14 We would like to thank [19] since we referred it well to complete this proof.

38 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

is defined in Figure 2. Let Gameb0 be the original attack game, where b is the
challenge bit, and let T b

0 be the event that A outputs 1 in the Gameb0. Our overall
strategy for the proof is as follows. We shall define a sequence Gameb0, ...,Gameb3
of modified attack games. Each of the games Gameb0, ...,Gameb3 operates on the
same underlying probability space. For any 1 ≤ i ≤ 3, we let T b

i be the event
that A outputs 1 in the Gamebi . Our strategy is to show that for 0 ≤ i ≤ 2
and b ∈ {0, 1}, the quantity |Pr[T b

i]−Pr[T b
i+1]| is negligible and the probability

|Pr[T 0
3]− Pr[T 1

3]| is negligible.
So that the overall structure of the proof is more transparent, we shall defer

the proofs of all lemmas to the end of the proof of the theorem.

Gameb1. We now modify Gameb0 to obtain a new game Gameb1. These two games
are identical, except for a small modification to the RepSetup algorithm and
the OTrace oracle. Instead of using the original Trace algorithm to compute a
tracing result and its proof, we use modified algorithms, in which some steps are
replaced by as follows:

- In the RepSetup algorithm, crs2 ← NIZK.Setup2(1
n) is replaced by (crs2, td2)←

Sim2
0(1

n).
- In the Trace algorithm, ΠTrace ← NIZK.Prove2(crs2, lbl,X,W) is replaced by
Sim2

1(crs2, td2, lbl,X), where lbl← ϵ, X← 〈ek1, c1, upk〉, and W← tsk.

Any difference between these two games yields a PPT algorithm that distin-
guishes the real proof from the simulated proof. More precisely, we have:

Lemma D.1. There exists a PPT algorithm B such that

|Pr[T b
1]− Pr[T b

0]| ≤ AdvzkΠ2,B(n). (6)

Gameb2. We modify Gameb1 to obtain a new game Gameb2. These two games
are identical, except for a small modification to the RepSetup algorithm and
two oracles OSign and AnonChalb. Instead of using the original Sign algorithm
to compute signatures, we use modified algorithms, in which some steps are
replaced by as follows:

- In the RepSetup algorithm, crs1 ← NIZK.Setup1(1
n) is replaced by (crs1, td1)←

Sim1
0(1

n).
- In the Sign algorithm, π ← NIZK.Prove1(crs1, lbl,X,W) is replaced by Sim1

1(crs1,
td1, lbl,X), where lbl ← M, X ← 〈C, ipk, tpk, acc, item, τ〉, and W ← 〈upk, usk,
id, πacc, θ, r1.r2〉.

Similar to the above, any difference between these two games yields a PPT algo-
rithm that distinguishes the real proof from the simulated proof. More precisely,
we have:

Lemma D.2. There exists a PPT algorithm B such that

|Pr[T b
2]− Pr[T b

1]| ≤ AdvzkΠ1,B(n). (7)

ARS with Revocation, Revisited 39

Gameb3. In the following few steps, we modify the AnonChalb oracle in Gameb2
to obtain a new game Gameb3. Instead of using the original Sign algorithm to
compute the target signature, we use the modified Sign algorithm described as
follows:

- c1 ← PKE.Enc(ek1, upkb; r1) and c2 ← PKE.Enc(ek2, upkb; r2) are replaced by
c̃1 ← PKE.Enc(ek1, 0

|upkb|; r1) and c̃2 ← PKE.Enc(ek2, 0
|upkb|; r2), respectively.

Any difference between these two games yields a PPT algorithm that distin-
guishes a ciphertext of upkb from a ciphertext of all-zero string of length equal
to that of upkb. More precisely, we have:

Lemma D.3. There exists a PPT algorithm B1,B2 such that

|Pr[T b
3]− Pr[T b

2]| ≤ 2 · Advind-cpaPKE,B1
(n) + 2 · AdvseΠ1,B2

(n). (8)

Finally, we show that any difference between two games T 0
3 and T 1

3 yields a
PPT algorithm that distinguishes a tag computed using upk0 from one computed
using upk1. More precisely:

Lemma D.4. There exists a PPT algorithm B such that

|Pr[T 0
3]− Pr[T 1

3]| ≤ Advtag-indLIT,B (n). (9)

Theorem 5.2 now follows immediately from (6)-(9).

Proofs of Lemmas.

To complete the proof of Theorem 5.2, we now present the proofs of Lemmata D.1
to D.4. In all proofs except the last one, we fix the challenge bit b.

Proof of Lemma D.1.

Proof. Assume that there exists a PPT adversary A which makes the probability
|Pr[T b

0]−Pr[T b
1]| non-negligible. Then, we can construct another PPT adversary

B that breaks the zero-knowledge property of Π2 with non-negligible probability,
which implies the lemma. The description of B is as follows.
B initially receives crs2, computes crs1 ← NIZK.Setup1(1

n), and sets pp :=
(crs1, crs2). It also computes (tpk, tsk)← TMgen(pp) and sets HUL,HSSKL,CL, SL =
∅. Then, B runs A(pp, tpk). It responds to each of queries from A as follows:

- For each of queries to AddU, SndToU, AnonChalb, OSign, and RevUser, B op-
erates the same as defined in Section B.1.

- For each query to OTrace(ipk, infoipkt , item,M, Σ), B outputs ⊥ if there exists

(ipk,−,−, item,M, Σ) ∈ CL or Verify(ipk, tpk, infoipkt , item,M, Σ) = 0. Other-
wise, it parses ((c1, c2), τ, π) ← Σ and (dk1, dk2, rPKE) ← tsk, and computes
upk ← PKE.Dec(dk1, c1). If upk = ⊥, then it outputs ⊥. Otherwise, it sets
lbl ← ϵ, X ← 〈ek1, c1, upk〉, and W ← tsk. Then, B queries (lbl,X,W) to the
challenge oracle, and receives ΠTrace. Finally, it returns (upk,ΠTrace) to A.

40 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

When A outputs b′ and terminates, B outputs 0 if |CL| 6= 1 or there exists
(ipk, upki, item,−,−) ∈ SL for i = 0 or 1, where (ipk, upk0, upk1, item,M, Σb) ←
CL. Otherwise, B outputs b′ and terminates.

The above completes the description of B. If crs2 is generated by the NIZK.
Setup2 (resp., Sim1

0) algorithm and B accesses the NIZK.Prove2 (resp., Sim1
1)

oracle, then B perfectly simulates Gameb0 (resp., Gameb1) for A. Therefore, we
have |Pr[T b

0]− Pr[T b
1]| = AdvzkΠ2,B(n).

Proof of Lemma D.2.

Proof. Assume that there exists a PPT adversary A which makes the probability
|Pr[T b

2]−Pr[T b
1]| non-negligible. Then, we can construct another PPT adversary

B that breaks the zero-knowledge property of Π1 with non-negligible probability,
which implies the lemma. The description of B is as follows.
B initially receives crs1, computes (crs2, td2) ← Sim2

0(1
n), and sets pp :=

(crs1, crs2). It also computes (tpk, tsk) ← TMgen(pp) and sets HUL,HSSKL,CL,
SL = ∅. Then, B runs A(pp, tpk). It responds to each of queries from A as follows:

- For each of queries to AddU, SndToU, and RevUser, B operates the same as
defined in Section B.1.

- For each query to OSign(ipk, info, upk, item,M), B makes a response as follows:
Check: Return ⊥ if ssk = ⊥ where ssk ← HSSKL[ipk][upk][item]. Otherwise,
continue.

Compute C = (c1, c2): Choose r1 and r2 uniform randomly, then compute
c1 ← PKE.Enc(ek1, upk; r1) and c2 ← PKE.Enc(ek2, upk; r2).

Compute τ : Compute τ ← LIT.Tag(usk, 〈ipk, item〉), where (upk, usk, id,witid,
θ)← ssk.

Compute πacc: Compute πacc ← ACC.Prove(ppacc, auxacc, id,witid), where ppacc
← ipk and (t, acc, auxacc, σ)← info.

Query: Set lbl ← M, X ← 〈C, ipk, tpk, acc, item, τ〉, and W ← 〈upk, usk,
id, πacc, θ, r1, r2〉. Then, send (lbl,X,W) to the challenger for zero-knowledge
of Π1, and receive π.

Finally, it returns (C, τ, π) to A.
- For each query to OTrace(ipk, infoipkt , item,M, Σ), B operates the same as de-
fined in Section B.1 except that it returns a simulated proof instead of a real
proof.

- For each query to AnonChalb(ipk, info
ipk
t , upk0, upk1, item,M), B makes a re-

sponse as follows:
Check: Return ⊥ if sski = ⊥ where sski ← HSSKL[ipk][upki][item] for i = 0
or 1. Otherwise, continue.

Compute C = (c1, c2): Choose r1 and r2 uniform randomly, compute c1 ←
PKE.Enc(ek1, upkb; r1) and c2 ← PKE.Enc(ek2, upkb; r2).

Compute τb: Compute τ ← LIT.Tag(uskb, 〈ipk, item〉), where (upkb, uskb, idb,
witidb , θb)← sskb.

Compute πacc,b: Compute πacc,b ← ACC.Prove(ppacc, auxacc, idb,witidb), where

ppacc ← ipk and (t, acc, auxacc, σ)← infoipkt .

ARS with Revocation, Revisited 41

Query: Set lbl ← M, X ← 〈C, ipk, tpk, acc, item, τb〉, and W ← 〈upkb, uskb,
idb, πacc,b, θb, r1, r2〉. Then, send (lbl,X,W) to the challenger for zero-knowledge
of Π1, and receive π.

Finally, it returns (C, τ, π) to A.

When A outputs b′ and terminates, B outputs 0 and terminates if |CL| 6= 1 or
there exists (ipk, upki, item,−,−) ∈ SL for i = 0 or 1, where (ipk, upk0, upk1, item,
M, Σb)← CL. Otherwise, B outputs b′ and terminates.

The above completes the description of B. If crs1 is generated by the NIZK.
Setup1 (resp., Sim1

0) algorithm and B accesses the NIZK.Prove1 (resp., Sim1
1)

oracle, then B perfectly simulates Gameb1 (resp., Gameb2) for A. Therefore, we
have |Pr[T b

1]− Pr[T b
2]| = AdvzkΠ1,B(n).

Proof of Lemma D.3.

Proof. We use the Naor-Yung paradigm [33] to prove this lemma. In particular,
we consider the following three different games, and informal descriptions are as
follows:

- Gameb2-1: Like Gameb2 except that c2 is computed as an encryption of 0|upkb|.
- Gameb2-2: Like Gameb2-1 except decrypt c2 using dk2 instead of c1 using dk1.
- Gameb2-3: Like Gameb2-2 except that c1 is computed as an encryption of 0|upkb|.

Let T b
2-1, T

b
2-2, T

b
2-3 denote the event that A outputs 1 in the Gameb2-1,Gameb2-2,

Gameb2-3, respectively. Note that Gameb3 is like Gameb2-3 except use dk1 to de-
crypt instead of dk2. We show at each step, with the construction of each new
game, that the ability of the adversary to distinguish between the two games is
negligible.

Firstly, we show there exists a PPT algorithm B1 such that |Pr[T b
3]−Pr[T b

3-1]| ≤
Advind-cpaPKE,B1

. Assume that there exists a PPT adversary A which makes the prob-

ability |Pr[T b
3] − Pr[T b

3-1]| non-negligible. Then, we can construct another PPT
adversary B1 against the IND-CPA security of PKE. The description of B1 is as
follows.
B1 initially receives ek2, computes (ek1, dk1) ← PKE.KG(1n), (crs1, td1) ←

Sim1
0(1

n) and (crs2, td2)← Sim2
0(1

n), and sets tpk := (ek1, ek2), pp := (crs1, crs2)
and HUL,HSSKL,CL, SL = ∅. Then, B1 runs A(pp, tpk). It responds to each of
queries from A as follows:

- For each of queries to AddU and SndToU, B1 operates the same as defined in
Section B.1.

- For each of queries to OSign and OTrace, B1 operates the same as defined in
Section B.1 except that it contains a simulated proof instead of a real proof.

- For each query to AnonChalb(ipk, info, upk0, upk1, item,M), B1 makes a response
as follows:

Check: Return ⊥ if sski = ⊥ where sski ← HSSKL[ipk][upki][item] for i = 0
or 1. Otherwise, continue.

42 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

Query: Compute c1 ← PKE.Enc(ek1, upkb) and set m0 ← upkb and m1 ←
0|upkb|. Then, send (m0,m1) to the challenger for the IND-CPA security of
PKE, receive c∗, and set C∗ ← (c1, c

∗).
Compute τb: Compute τb ← LIT.Tag(uskb, 〈ipk, item〉), where (upkb, uskb,witb)
← sskb.

Compute π̃: Compute π̃ ← Sim1
1(crs1, td1,M,X), where (t, acc, auxacc, σ) ←

info and X← 〈C∗, ipk, tpk, acc, item, τb〉.
Finally, it returns (C∗, τ, π̃) to A.

When A outputs b′ and terminates, B1 outputs 0 and terminates if |CL| 6= 1 or
there exists (ipk, upki, item,−,−) ∈ SL for i = 0 or 1, where (ipk, upk0, upk1, item,
M, Σb)← CL. Otherwise, B1 outputs b′ and terminates.

The above completes the description of B1. Let d be the challenge bit for B1
in the IND-CPA security game. If d = 0, c∗ is represented as c∗ ← PKE.Enc(ek2,
upkb). On the other hand, if d = 1, c∗ is represented as c∗ ← PKE.Enc(ek2, 0

|upkb|).
We note that in both games, B1 need not to know dk2 for responding to a query
to the OTrace oracle. Thus, B1 perfectly simulates Gameb2 if d = 0 and Gameb2-1
if d = 1, respectively. Therefore, we have |Pr[T b

2]− Pr[T b
2-1]| = Advind-cpaPKE,B1

(n).

Secondly, we show there exists a PPT algorithm B2 such that |Pr[T b
2-1] −

Pr[T b
2-2]| ≤ AdvseΠ1,B2

. Let fake be the event in the Gameb2-2 that the adversary
queries OTrace(ipk, item, info,M, Σ) such that PKE.Dec(dk1, c1) 6= PKE.Dec(dk2, c2)
but Verify(ipk, tpk, info, item,M, Σ) = 1, where ((c1, c2),−,−) ← Σ. Since the
adversary’s views in the Game2-1 and the Game2-2 are identical until the event
fake occurs, we have |Pr[T b

2-1]− Pr[T b
2-2]| ≤ Pr[fake]. Thus, it is enough to show

Pr[fake] ≤ AdvseΠ1,B2
.

We first modify the game slightly as follows. In the RepSetup algorithm, we
compute (crs1, td1, ξ) ← SimExt10(1

n) instead of crs1 ← NIZK.Setup1(1
n). Note

that its affects nothing about the probability A wins.
Assume that there exists a PPT adversary A which makes the probabil-

ity Pr[fake] non-negligible. Then, we can construct another PPT adversary B2
against the simulation-extractability of Π1. The description of B2 is as follows.
B2 initially receives crs1, computes (ek1, dk1) ← PKE.KG(1n), (ek2, dk2) ←

PKE.KG(1n) and (crs2, td2) ← Sim2
0(1

n), and sets tpk := (ek1, ek2), pp := (crs1,
crs2) and HUL,HSSKL,CL, SL = ∅. Then, B2 runs A(pp, tpk). It responds to each
of queries from A as follows:

- For each of queries to AddU, SndToU, and AnonChalb, B2 operates the same
way as B1 does in the above.

- For each query to OSign(ipk, info, upk, item,M), B2 computes (C, τ, πacc) in the
same as defined in Section B.1, queries (M, 〈C, ipk, tpk, acc, item, τ〉) to the
Sim1

1 oracle, where (t, acc, auxacc, σacc) ← info, and receives a proof π. Finally,
it returns (C, τ, π) to A.

- For each query to OTrace(ipk, info, item,M, Σ), B2 makes a response as follows.
If the event fake occurs, then B2 outputs (M, (C, ipk, tpk, acc, item, τ), π̃), where
(C, τ, π̃)← Σ. Otherwise, B2 returns the same as defined in Section B.1 except
that it contains a simulated proof that B2 can obtain by querying the Sim1

1

oracle, instead of a real proof.

ARS with Revocation, Revisited 43

When A outputs b′ and terminates, B2 outputs 0 and terminates.
The above completes the description of B2. LetW← SimExt1(crs1, ξ,M,X, π̃),

where X← (C, ipk, tpk, acc, item, τ). We note that the event fake occurs, (X,W) /∈
ρ1 ∧ NIZK.Verify(crs1,M,X, π̃) = 1 since we clearly have X /∈ Lρ1

, where Lρ1
:=

{X | ∃W; (X,W) ∈ ρ1}. We need to show (M,X, π̃) /∈ LS , where LS is the list of
queries and responses to Sim1. A possibly gets a simulated proof π̃ via querying
to the OSign or AnonChalb oracle. However, in case B2 queries a statement X to
the OSign oracle and it returns π̃, we always have X ∈ Lρ1 , thus the event fake
never occurs. In addition, π̃ is never included in a response from a query to the
AnonChalb oracle since all responds from the AnonChalb oracle are included in
CL and the OTrace oracle returns ⊥ if there exists (ipk,−,−, item,M, Σ) ∈ CL.
Therefore, we have Pr[fake] ≤ AdvseΠ1,B2

(n).

Thirdly, we show there exists a PPT algorithm B3 such that |Pr[T b
2-2] −

Pr[T b
2-3]| ≤ Advind-cpaPKE,B3

. Assume that there exists a PPT adversary A which makes

the probability |Pr[T b
2-2] − Pr[T b

2-3]| non-negligible. Then, we can construct an-
other PPT adversary B3 against the IND-CPA security of PKE. The description
of B3 is as follows.
B3 initially receives ek1, computes (ek2, dk2) ← PKE.KG(1n), (crs1, td1) ←

Sim1
0(1

n) and (crs2, td2)← Sim2
0(1

n), and sets tpk := (ek1, ek2), pp := (crs1, crs2)
and HUL,HSSKL,CL, SL = ∅. Then, B3 runs A(pp, tpk). It responds to each of
queries from A as follows:

- For each of queries to AddU, SndToU, OSign, and OTrace, B3 operates the same
way as B2 does in the above.

- For each query to AnonChalb(ipk, info, upk0, upk1, item,M), B3 makes a response
as follows:
Check: Return ⊥ if sski = ⊥ where sski ← HSSKL[ipk][upki][item] for i = 0
or 1. Otherwise, continue.

Query: Compute c2 ← PKE.Enc(ek2, upkb) and set m0 ← upkb and m1 ←
0|upkb|. Then, send (m0,m1) to the challenger for the IND-CPA security of
PKE, receive c∗, and set C∗ ← (c∗, c2).

Compute τb: Compute τb ← LIT.Tag(uskb, 〈ipk, item〉), where (upkb, uskb, idb,
witidb , θb)← sskb.

Compute π̃: Compute π̃ ← Sim1
1(crs1, td1,M,X), where X ← 〈C∗, ipk, tpk,

acc, item, τ〉, where (t, acc, auxacc, σacc)← info.
Finally, it returns (C∗, τ, π̃) to A.

When A outputs b′ and terminates, B3 outputs 0 and terminates if |CL| 6= 1 or
there exists (ipk, upki, item,−,−) ∈ SL for i = 0 or 1, where (ipk, upk0, upk1, item,
M, Σb)← CL. Otherwise, B3 outputs b′ and terminates.

The above completes the description of B3. Let d be the challenge bit for B3
in the IND-CPA security game. If d = 0, c∗ is represented as c∗ ← PKE.Enc(ek1,
upkb). On the other hand, if d = 1, c∗ is represented as c∗ ← PKE.Enc(ek1, 0

|upkb|).
We note that in both games, B3 need not to know dk1 for responding to a query
to the OTrace oracle. Thus, B3 perfectly simulates Gameb2-2 if d = 0 and Gameb2-3
if d = 1, respectively. Therefore, we have |Pr[T b

2-2]− Pr[T b
2-3]| = Advind-cpaPKE,B3

(n).

44 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

Finally, we show there exists a PPT algorithm B4 such that |Pr[T b
2-3] −

Pr[T b
3]| ≤ AdvseΠ1,B4

. As in the proof of indistinguishability between Gameb2-1
and Gameb2-2, let fake’ be the event in the Gameb3 that the adversary queries
OTrace(ipk, item, info,M, Σ) such that PKE.Dec(dk1, c1) 6= PKE.Dec(dk2, c2) but
Verify(ipk, tpk, info, item,M, Σ) = 1, where ((c1, c2),−,−)← Σ. Since the adver-
sary’s views in the Game2-3 and the Game3 are identical until the event fake′

occurs, we have |Pr[T b
2-3] − Pr[T b

3]| ≤ Pr[fake′]. Thus, it is enough to show
Pr[fake′] ≤ AdvseΠ1,B4

. We follow the same way to construct B4 as seen in the
above.

We first modify the game slightly as follows. In the RepSetup algorithm, we
compute (crs1, td1, ξ) ← SimExt10(1

n) instead of crs1 ← NIZK.Setup1(1
n). Note

that its affects nothing about the probability A wins.
Assume that there exists a PPT adversary A which makes the probabil-

ity Pr[fake′] non-negligible. Then, we can construct another PPT adversary B4
against the simulation-extractability of Π1. The description of B4 is as follows.
B4 initially receives crs1, computes (ek1, dk1) ← PKE.KG(1n), (ek2, dk2) ←

PKE.KG(1n) and (crs2, td2) ← Sim2
0(1

n), and sets tpk := (ek1, ek2), pp := (crs1,
crs2) and HUL,HSSKL,CL, SL = ∅. Then, B4 runs A(pp, tpk). It responds to each
of queries from A as follows:

- For each of queries to AddU, SndToU, and AnonChalb, B4 operates the same
way as B3 does in the above.

- For each query to OSign(ipk, info, upk, item,M), B4 computes (C, τ, πacc) in the
same as defined in Section B.1, queries (M, 〈C, ipk, tpk, acc, item, τ〉) to the
Sim1

1 oracle, where (t, acc, auxacc, σacc) ← info, and receives a proof π. Finally,
it returns (C, τ, π) to A.

- For each query to OTrace(ipk, info, item,M, Σ), B4 makes a response as follows.
If the event fake occurs, then B4 outputs (M, (C, ipk, tpk, acc, item, τ), π̃), where
(C, τ, π̃)← Σ. Otherwise, B4 returns the same as defined in Section B.1 except
that it contains a simulated proof that B4 can obtain by querying the Sim1

1

oracle, instead of a real proof.

When A outputs b′ and terminates, B4 outputs 0 and terminates.
The above completes the description of B4. LetW← SimExt1(crs1, ξ,M,X, π̃),

where X← (C, ipk, tpk, acc, item, τ). We note that the event fake’ occurs, (X,W) /∈
ρ1 ∧ NIZK.Verify(crs1,M,X, π̃) = 1 since we clearly have X /∈ Lρ1 , where Lρ1 :=
{X | ∃W; (X,W) ∈ ρ1}. We need to show (M,X, π̃) /∈ LS , where LS is the list of
queries and responses to Sim1. A possibly gets a simulated proof π̃ via querying
to the OSign or AnonChalb oracle. However, in case B4 queries a statement X to
the OSign oracle and it returns π̃, we always have X ∈ Lρ1

, thus the event fake
never occurs. In addition, π̃ is never included in a response from a query to the
AnonChalb oracle since all responds from the AnonChalb oracle are included in
CL and the OTrace oracle returns ⊥ if there exists (ipk,−,−, item,M, Σ) ∈ CL.
Therefore, we have Pr[fake′] ≤ AdvseΠ1,B4

(n).

Proof of Lemma D.4.

ARS with Revocation, Revisited 45

Proof. Assume that there exists a PPT adversary A which makes the probability
|Pr[T 0

3]−Pr[T 1
3]| non-negligible. Then, we can construct another PPT adversary

B attacking the indistinguishability of LIT. The description of B is as follows.
B initially receives (tagpk0, tagpk1), randomly chooses rPKE ← {0, 1}poly(n),

computes (crs1, td1) ← Sim1
0(1

n), (crs2, td2) ← Sim2
0(1

n), (ek1, dk1) ← PKE.KG
(1n; rPKE), and (ek2, dk2)← PKE.KG(1n), and sets pp := (crs1, crs2), (tpk, tsk) :=
((ek1, ek2), (dk1, dk2, rPKE)), and HUL,HSSKL,CL, SL := ∅. Moreover, B chooses
two indexes i∗, j∗ ∈ [Q] uniform randomly, where Q is the number of queries to
the AddU oracle. Note that we can fix Q before running A without loss of general-
ity. Then, B sets upki∗ ← tagpk0 and upkj∗ ← tagpk1. We remark that B cannot
compute sski∗ and sskj∗ since B does not know the tag secret keys (tagsk0, tagsk1)
corresponding to the tag public keys (tagpk0, tagpk1), respectively. Then, B runs
A(pp, tpk). It responds to each of queries from A as follows:

- For each of queries to SndToU, OTrace, and RevUser, B operates the same as
defined in Section B.1 with the modification for Gameb2.

- For each query to AddU(), B returns tagpk0 for the i∗-th query and tagpk1 for
the j∗-th query. Other operations are the same as defined in Section B.1.

- For each query to OSign(ipk, info, upk, item,M), if upk = tagpk0 (resp., upk =
tagpk1), then B queries (0, 〈ipk, item〉) (resp., (1, 〈ipk, item〉)) to the Oind

tag oracle,
and receives a tag τ . Otherwise, B computes τ ← LIT.Tag(usk, 〈ipk, item〉),
where usk is the secret key of the user upk. Other operations are the same as
defined in Section B.1 except that it contains a simulated proof instead of a
real proof.

- For each query to AnonChalb(ipk, info, upk0, upk1, item,M), B makes a response
as follows:

Check: Return⊥ and continue if sski = ⊥ where sski ← HSSKL[ipk][upki][item]
for i = 0 or 1. Else, output 0 and terminate if upk0 6= tagpk0 or upk1 6= tagpk1.
Otherwise, continue.

Compute c∗ = (c∗1, c
∗
2): Compute c∗1 ← PKE.Enc(ek1, 0

|upk0|) and c∗2 ← PKE.Enc
(ek2, 0

|upk0|). Note that we assume |upk0| = |upk1| w.l.o.g.
Query: Send 〈ipk, item〉 to the challenger for the indistinguishability of LIT,
and receives τ .

Compute π̃: Compute π̃ ← Sim1
1(crs1, td1,M,X), where X← 〈c∗, ipk, tpk, acc,

item, τ〉, where (t, acc, auxacc, σ)← info.

Finally, it returns (c∗, τ, π̃) to A.

When A outputs b′ and terminates, B outputs 0 and terminates if |CL| 6= 1 or
∃(ipk, upki, item,−,−) ∈ SL for i = 0 or 1, where (ipk, upk0, upk1, item,M, Σb)←
CL. Otherwise, B outputs b′ and terminates.

The above completes the description of B. Let d be the challenge bit for
the indistinguishability game of LIT. If upk0 = tagpk0 and upk1 = tagpk1
and d = 0, τ is represented as τ = LIT.Tag(tagsk0, 〈ipk, item〉). Therefore, B
perfectly simulates Game04 for A. On the other hand, if upk0 = tagpk0 and
upk1 = tagpk1 and d = 1, τ is represented as τ = LIT.Tag(tagsk1, 〈ipk, item〉).
Therefore, B perfectly simulates Game14 for A. Note that in both games, B never

46 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

queries 〈ipk, item〉 from the definition of the OSign oracle. Now, the probabil-
ity that upk0 = tagpk0 and upk1 = tagpk1 hold is Q(Q − 1). Thus, we have

1/2 ·
∣∣Q(Q− 1)Pr[T 0

4]−Q(Q− 1)Pr[T 1
4]
∣∣ = Advtag-indLIT,B (n). Clearly, |Pr[T 0

4] −
Pr[T 1

4]| = 2
Q(Q−1)Adv

tag-ind
LIT,B (n).

D.2 Proof of Theorem 5.3

Proof. Let us fix a PPT adversary A = (A1,A2) attacking non-frameability of
the ARS and the value of the security parameter n. The attack game used to
define non-frameability is defined in Figure 3. Let Game0 be the original attack
game, and let T0 be the event that A wins in the Game0. Our overall strategy for
the proof is as follows. We shall define a modified attack game Game1. Then, we
separate the winning condition in Game1 into two cases: A2 wins when it out-
puts (ipk, info, upk, item,M, Σ,ΠTrace) such that Verify(ipk, tpk, info, item,M, Σ) =
1 ∧ (−, ipk, upk, item,M, Σ) /∈ SL and (1) ∃(−, ipk, upk, item,M′, Σ′) ∈ SL s.t.
Link(ipk, tpk, info, item, (M, Σ), (M′, Σ′)) = 1, or (2) Judge(ipk, tpk, info, item,M,
Σ, upk,ΠTrace) = 1. We denote T 1

1 as the event that A wins with the former
condition, and T 2

1 as the event that A wins with the latter condition. Each of
the games operates on the same underlying probability space. Our strategy is to
show that the quantity |Pr[T0]−Pr[T1]| is negligible and Pr[T 1

1] and Pr[T 2
1] are

negligible, respectively.

Game1. We now modify Game0 to obtain a new game Game1. These two games
are identical, except for a small modification to the RepSetup algorithm and the
OSign oracle. Instead of using the original Sign algorithm to sign a message, we
use modified algorithms, in which some steps are replaced by as follows:

- In the RepSetup algorithm, crs1 ← NIZK.Setup1(1
n) is replaced by (crs1, td1)←

Sim1
0(1

n).
- In the Sign algorithm, π ← NIZK.Prove1(crs1, lbl,X,W) is replaced by π̃ ←
Sim1

1(crs1, td1, lbl,X), where lbl ← M, X ← 〈C, ipk, tpk, acc, item, τ〉, and W ←
〈upk, usk, id,wit, θ, r〉.

Any difference between these two games yields a PPT algorithm that distin-
guishes the real proof from the simulated proof. More precisely, we have:

Lemma D.5. There exists a PPT algorithm B such that

|Pr[T1]− Pr[T0]| ≤ AdvzkΠ1,B(n). (10)

Proof. Assume that there exists a PPT adversary A = (A1,A2) which makes the
probability |Pr[T1]−Pr[T0]| non-negligible. Then, we can construct another PPT
adversary B that breaks the zero-knowledge property of Π1 with non-negligible
probability, which implies the lemma. The description of B is as follows.
B initially receives crs1, computes crs2 ← NIZK.Setup2(1

n), and sets pp :=
(crs1, crs2) and HUL,HSSKL, SL = ∅. Then, B runs A(pp). After B receives
(st, tpk) from A1, it runs A2(st) It responds to each of queries from A as follows:

ARS with Revocation, Revisited 47

- For each of queries to AddU and SndToU, B operates the same as defined in
Section B.1.

- For each query to OSign(ipk, info, upk, item,M), B makes a response as follows:
Check: Return ⊥ if ssk = ⊥ where ssk ← HSSKL[ipk][upk][item]. Otherwise,
continue.

Compute C = (c1, c2): Choose r1 and r2 uniform randomly, and compute
c1 ← PKE.Enc(ek1, upk; r1) and c2 ← PKE.Enc(ek2, upk; r2).

Compute τ : Compute τ ← LIT.Tag(usk, 〈ipk, item〉), where (upk, usk, id,witid,
θ)← ssk.

Compute πacc: Compute πacc ← ACC.Prove(ppacc, auxacc, id,witid), where ppacc
← ipk and (t, acc, auxacc, σ)← info.

Query: Set lbl← M, X← 〈C, ipk, tpk, acc, item, τ〉, andW← 〈upk, usk, id, πacc,
θ, r1, r2〉. Then, send (lbl,X,W) to the challenger for the zero-knowledge prop-
erty of Π1, and receive π.

Finally, it returns (C, τ, π) to A and updates SL ← SL ∪ {(tipkcur, ipk, upk, item,
M, Σ)}, where tipkcur is the current epoch.

When A2 outputs (ipk, info, upk, item,M, Σ,ΠTrace) and terminates, B outputs 1
and terminates if A wins. Otherwise, B outputs 0 and terminates.

The above completes the description of B. If crs1 is generated by the NIZK.
Setup1 (resp., Sim1

0) algorithm and B accesses the NIZK.Prove1 (resp., Sim1
1)

oracle, then B perfectly simulates Game1 (resp., Game2) for A. Therefore, we
have |Pr[T1]− Pr[T0]| = AdvzkΠ1,B(n).

Next, we show Pr[T 1
1] = negl(n). Beforehand, we slightly modify the game

as follows: we use SimExt = (SimExt0, SimExt1) instead of Sim1. We note that
this modification does not affect the probability A wins since SimExt0 out-
puts the identical distribution to Sim1

0 with respect to the first two outputs.
At the end of Game1, A outputs (ipk, info, upk, item,M, Σ,ΠTrace). Let Σ =
(C, τ, π̃) and X = 〈C, ipk, tpk, acc, item, τ〉. Since NIZK.Verify(crs1,M,X, π̃) =
1 ∧ (−, ipk, upk, item,M, Σ) /∈ SL when A wins, we can extract the witness W
such that (X,W) ∈ ρ1 by using the extractor SimExt. We prove that for any A in
Game1, there exists such an extractor. Let Efail be the event that (X,W) /∈ ρ1, i.e.,
SimExt fails to extract. Clearly, we have Pr[T 1

1] ≤ Pr[T 1
1 ∧Efail]+Pr[T 1

1 ∧¬Efail].
We will prove Pr[T 1

1 ∧ Efail] = negl(n) and Pr[T 1
1 ∧ ¬Efail] = negl(n) in order.

Lemma D.6. There exists a PPT algorithm B such that

Pr[T 1
1 ∧ Efail] ≤ AdvseΠ1,B(n). (11)

Proof. Assume that there exists a PPT adversary A which causes the event T 1
1

and Efail. Then, we can construct another PPT adversary B that breaks the
simulation extractability of Π1, which implies the lemma. The description of B
is as follows.
B initially receives crs1, computes crs2 ← NIZK.Setup2(1

n), and sets pp :=
(crs1, crs2) and HUL,HSSKL, SL = ∅. Then, B runs A1(pp). After B receives
(st, tpk) from A1, it runs A2(st). It responds to each of queries from A by the

48 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

same way as the proof of Lemma D.5 except that it sends a query to the Sim1

oracle instead of the challenger for the ZK property of Π1 when responding to
each OSign query.

WhenA2 outputs (ipk, info, upk, item,M, Σ,ΠTrace) and terminates, B outputs
(M,X, π̃) and terminates if A wins, where Σ = (C, τ, π̃) and X = 〈C, ipk, tpk, acc,
item, τ〉. Otherwise, B outputs 0 and terminates.

The above completes the description of B. Let W← SimExt1(crs1, ξ,M,X, π̃).
We note that when A wins and the event Efail occurs, (M,X, π̃) /∈ LS ∧ (X,W) /∈
ρ1 ∧NIZK.Verify(crs1,M,X, π̃) = 1, where LS is the list of queries and responses
to Sim1. Therefore, we have Pr[T 1

1 ∧ Efail] ≤ AdvseΠ1,B(n).

In the following, we assume that the SimExt successfully extract the witness.
Let W = 〈upk∗, usk∗, id, πACC, θ, r1, r2〉 be the witness extracted from the proof π̃.
We further separate A’s winning condition into two cases: (i) the extracted tag
public key tagpk∗ := upk∗ is the same as upk, i.e., tagpk∗ = upk; (ii) otherwise.
We denote T 1,1

1 as the event that A wins in the case (i) and T 1,2
1 as the event A

wins in the case (ii). Clearly, we have Pr[T 1
1 ∧¬Efail] ≤ Pr[T 1,1

1 ∧¬Efail]+Pr[T 1,2
1 ∧

¬Efail]. In the following, we show Pr[T 1,1
1 ∧ ¬Efail] ≤ poly(n) · Advkey-secLIT,B1

(n) and

Pr[T 1,2
1 ∧ ¬Efail] ≤ Advlink-soundLIT,B2

(n), respectively.

Lemma D.7. There exists a PPT algorithm B such that

Pr[T 1,1
1 ∧ ¬Efail] = poly(n) · Advkey-secLIT,B (n). (12)

Proof. Assume that there exists a PPT adversary A which makes the probability
Pr[T 1,1

1 ∧¬Efail] non-negligible. Then, we can construct another PPT adversary B
that breaks the key-secrecy of LIT with non-negligible probability, which implies
the lemma. The description of B is as follows.
B, initially given tagpk, computes (crs1, td1, ξ) ← SimExt0(1

n) and crs2 ←
NIZK.Setup2(1

n), and sets pp := (crs1, crs2) and HUL,HSSKL, SL = ∅. Then, B
runs A1(pp). After B receives (st, tpk) from A1, it runs A2(st). Let the number of
queries to AddU from A be K = poly(n). B randomly chooses k ← [K] and sets
the k-th user’s key pair (upkk, uskk) (corresponding to the k-th query to AddU)
as the target, i.e., B sets upkk = tagpk and does not know uskk. B responds to
each of queries from A as follows.

- For each query to AddU, B operates the same as defined in Section B.1 except
that it returns upkk for the k-th query from A.

- For each query to SndToU, B operates the same as defined in Section B.1.
- For each query to OSign(ipk, info, upk, item,M), B makes a response as follows:
Check: Return ⊥ if ssk = ⊥ where ssk ← HSSKL[ipk][upk][item]. Otherwise,
continue.

Compute C = (c1, c2): Choose r1 and r2 uniform randomly, and compute
c1 ← PKE.Enc(ek1, upk; r1) and c2 ← PKE.Enc(ek2, upk; r2).

Compute τ : If upk = upkk, then send 〈ipk, item〉 to the tag generation oracle
Osec

tag, and receive τ . Otherwise, compute τ ← LIT.Tag(usk, 〈ipk, item〉), where
(upk, usk,wit)← ssk.

ARS with Revocation, Revisited 49

Compute π̃: Compute π̃ ← Sim1(crs1, td1,M,X), where X← 〈C, ipk, tpk, acc,
item, τ〉.

Finally, B returns (C, τ, π̃) to A and updates SL← SL∪{(tipkcur, ipk, upk, item,M,
Σ)}, where tipkcur is the current epoch.

When A2 outputs (ipk, info, upk, item,M, Σ,ΠTrace) and terminates, B outputs ⊥
and terminates if upk 6= upkk. Otherwise, B parses (C, τ, π̃)← Σ and computes
〈upk∗, usk∗, id, πacc, θ, r1, r2〉 ← SimExt1(crs1, ξ,M,X, π̃), where X ← 〈C, ipk, tpk,
acc, item, τ〉. Then, B outputs usk∗ and terminates.

The above completes the description of B. By the definition of the event T 1,1
1 ∧

¬Efail, we have upk = upk∗ and LIT.ChkKey(upk∗, usk∗) = 1. The probability that

upk = upkk is 1/K. Therefore, we have Pr[T 1,1
1 ∧ ¬Efail] = K · Advkey-secLIT,B (n).

Lemma D.8. There exists a PPT algorithm B = (B1,B2) such that

Pr[T 1,2
1 ∧ ¬Efail] ≤ Advkey-robustLIT,B1

(n) + poly(n) · Advkey-secLIT,B2
(n). (13)

Proof. Let (ipk, info, upk, item,M, Σ,ΠTrace) be the output of A in Game1 and usk
be the secret key corresponding to upk. Since the event Efail never occurs, we can
extract a witness W = 〈upk∗, usk∗, πACC, r〉 from the proof π included in Σ. We
divide the case into two depending on whether usk 6= usk∗ or not. Intuitively,
in case usk = usk∗, A breaks the key-secrecy of LIT since we can extract the
corresponding secret key usk by extracting the witness. In other case, A breaks
the key-robustness of LIT. We denote the latter case by the event Ebad. We clearly
have Pr[T 1,2

1 ∧ ¬Efail] ≤ Pr[T 1,2
1 ∧ ¬Efail ∧ Ebad] + Pr[T 1,2

1 ∧ ¬Efail ∧ ¬Ebad]. We
show each probability is negligible in order.

First, we show Pr[T 1,2
1 ∧ ¬Efail ∧ Ebad] ≤ Advkey-robustLIT,B1

(n). Assume that there

exists a PPT adversary A which makes the probability Pr[T 1,2
1 ∧ ¬Efail ∧ Ebad]

non-negligible. Then, we can construct another PPT adversary B1 that breaks
the key-robustness of LIT with non-negligible probability.
B1 computes (crs1, td1, ξ) ← SimExt0(1

n) and crs2 ← NIZK.Setup2(1
n), and

sets pp← (crs1, crs2) and HUL,HSSKL, SL = ∅. Then, B1 runs A1(pp). After B1
receives (st, tpk) from A1, it runs A2(st). B1 responds to each of queries from A2

as follows.

- For each of queries to AddU and SndToU, B1 operates the same as defined in
Section B.1.

- For each query to OSign(ipk, info, upk, item,M), B1 operates the same as defined
in Section B.1 except that it returns the simulated proof π̃ ← Sim1(crs1, td1,M,X),
where X← 〈C, ipk, tpk, info, item, τ〉, instead of the real proof.

When A outputs (ipk, info, upk, item,M, Σ,ΠTrace) and terminates, B1 parses
(C, τ∗, π̃)← Σ and computes 〈upk∗, usk∗, id, πacc, θ, r1, r2〉 ← SimExt1(crs1, ξ,M,
X, π̃), where X ← 〈C, ipk, tpk, acc, item, τ∗〉. Now, there exists (−, ipk, upk, item,
M′, Σ′) ∈ SL. Let (C ′, τ ′, π′)← Σ′ and usk be the tag secret key corresponding
to upk. Note that B1 knows usk since it generates all users for A. B1 outputs
(〈ipk, item〉, upk, usk, τ ′, upk∗, usk∗, τ∗) and terminates.

50 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

The above completes the description of B1. Since the tag τ ′ is honestly gener-
ated, we have LIT.ChkTag(upk, usk, 〈ipk, item〉, τ ′) = 1. Since the event Efail never
occurs (i.e., succeed in extracting the witness), we have LIT.ChkTag(upk∗, usk∗,
〈ipk, item〉, τ∗) = 1. By the definition of the event Ebad, we have usk 6= usk∗. By
the definition of the event T 1,2

1 , we have Link(τ ′, τ∗) = 1. Therefore, B1 breaks

the key-robustness of LIT, so we have Pr[T 1,2
1 ∧ ¬Efail ∧ Ebad] ≤ Advkey-robustLIT,B1

(n).

Second, we show Pr[T 1,2
1 ∧¬Efail∧¬Ebad] ≤ poly(n)·Advkey-secLIT,B2

(n). Assume that

there exists a PPT adversary A which makes the probability Pr[T 1,2
1 ∧ ¬Efail ∧

¬Ebad] non-negligible. Then, we can construct another PPT adversary B2 that
breaks the key-secrecy of LIT with non-negligible probability. The description of
B2 is as follows.
B2, initially given tagpk, computes (crs1, td1, ξ) ← SimExt0(1

n) and crs2 ←
NIZK.Setup2(1

n), and sets pp ← (crs1, crs2) and HUL,HSSKL, SL = ∅. Then, it
runs A1(pp). After B2 receives (st, tpk), it runs A2(st). Let the number of queries
to AddU from A be K = poly(n). B randomly chooses k ← [K] and sets the k-th
user’s key pair (upkk, uskk) (corresponding to the k-th query to AddU) as the
target, i.e., B sets upkk = tagpk and does not know uskk.
B2 responds to each of queries from A as follows.

- For each query to AddU, B2 operates the same as defined in Section B.1 except
that it returns tagpk for the k-th query from A.

- For each query to SndToU, B2 operates the same as defined in Section B.1.
- For each query to OSign(ipk, info, upk, item,M), B makes a response as follows:
Check: Return ⊥ if ssk = ⊥ where ssk ← HSSKL[ipk][upk][item]. Otherwise,
continue.

Compute C = (c1, c2): Choose r1 and r2 uniform randomly, and compute
c1 ← PKE.Enc(ek1, upk; r1) and c2 ← PKE.Enc(ek2, upk; r2).

Compute τ : If upk = upkk, then send 〈ipk, item〉 to the tag generation oracle
Osec

tag, and receive τ . Otherwise, compute τ ← LIT.Tag(usk, 〈ipk, item〉), where
(upk, usk, id,witid)← ssk.

Compute π̃: Compute π̃ ← Sim1(crs1, td1,M,X), where X← 〈C, ipk, tpk, acc,
item, τ〉.

Finally, B returns (C, τ, π̃) toA and updates SL← SL∪{(tipkcur, ipk, upk, item,M, Σ)},
where tipkcur is the current epoch.

When A outputs (ipk, info, upk, item,M, Σ,ΠTrace) and terminates, B2 outputs
⊥ and terminates if upk 6= tagpk. Otherwise, B2 parses (C, τ∗, π̃) ← Σ and
computes 〈upk∗, usk∗, id, πacc, θ, r1, r2〉 ← SimExt1(crs1, ξ,M,X, π̃), where X ←
〈C, ipk, tpk, acc, item, τ∗〉. Finally, B2 outputs usk∗ and terminates.

The above completes the description of B2. Since the event Ebad never occurs,
the extracted secret key usk∗ is corresponding to upk, i.e., LIT.ChkKey(upk, usk∗) =
1. The probability that upk = tagpk is 1/K. Therefore, we have Pr[T 1,2

1 ∧¬Efail∧
¬Ebad] = K · Advkey-secLIT,B2

(n).

Clearly, we have the following since we can separate the condition A wins
into two case.

Pr[T1] ≤ Pr[T 1
1] + Pr[T 2

1]. (14)

ARS with Revocation, Revisited 51

Pr[T 1
1] ≤ Pr[T 1

1 ∧ Efail] + Pr[T 1,1
1 ∧ ¬Efail] + Pr[T 1,2

1 ∧ ¬Efail]. (15)

Finally, we show Pr[T 2
1] = negl(n). Consider the case thatA2 outputs (ipk, info,

upk, item,M, Σ,ΠTrace). Let Σ = (C, τ, π̃), W ← SimExt11(crs1, ξ,M,X, π̃), and
(upk∗, usk∗) is included in W. In addition, let R be the event that upk 6= upk∗

and Judge(ipk, tpk, info, item,M, Σ, upk,ΠTrace) = 1. Clearly, we have Pr[T 2
1] ≤

Pr[R] +Pr[T 2
1 ∧¬R]. We will show both Pr[R] and Pr[T 2

1 ∧¬R] are negligible in
n.

Lemma D.9. There exists a PPT algorithm B such that

Pr[R] = AdvsoundΠ2,B(n). (16)

Proof. Assume that there exists a PPT adversary A which causes the event R.
Then, we can construct another PPT adversary B that breaks the soundness of
Π2, which implies the lemma. The description of B is as follows.
B initially receives crs2, computes (crs1, td1, ξ)← SimExt0(1

n), and sets pp←
(crs1, crs2) and HUL,HSSKL, SL = ∅. Then, B runs A1(pp). After it receives
(st, tpk) from A1, it runs A(st). It responds to each of queries from A2 as follows.

- For each of queries to AddU and SndToU, B operates the same as defined in
Section B.1.

- For each query to OSign(ipk, info, upk, item,M), B operates the same as defined
in Section B.1 except that it returns the simulated proof instead of the real
proof.

When A outputs (ipk, info, upk, item,M, Σ,ΠTrace) and terminates, B outputs
(M, 〈ek1, c1upk〉,ΠTrace) and terminates, where ((c1, c2), τ, π̃)← Σ.

The above completes the description of B. By the definition of the event R, we
have upk∗ 6= upk ∧ Judge(ipk, tpk, info, item,M, Σ, upk,ΠTrace) = 1, where upk∗ is
included in W← SimExt11(crs1, ξ,M,X, π̃) and X = 〈(c1, c2), ipk, tpk, acc, item, τ〉.
Now, c1 = PKE.Enc(ek1, upk

∗; r1) holds since (X,W) ∈ ρ1, so we have 〈ek1, c1,
upk〉 /∈ Lρ2

. On the other hand, NIZK.Verify2(crs2,M, 〈ek1, c1, upk〉,ΠTrace) = 1
since Judge(ipk, tpk, info, item,M, Σ, upk,ΠTrace) = 1. Therefore, B has a success-
ful attack. Thus, we have Pr[R] ≤ AdvsoundΠ2,B(n).

Lemma D.10. There exist PPT algorithms B such that

Pr[T 2
1 ∧ ¬R] = poly(n) · Advkey-secLIT,B (n). (17)

Proof. Assume that there exists a PPT adversary A which makes the probability
Pr[T 2

1] non-negligible. Then, we can construct another PPT adversary B that
breaks the key-secrecy of LIT with non-negligible probability, which implies the
lemma. The description of B is as follows.
B initially receives tagpk, computes (crs1, td1, ξ) ← SimExt0(1

n) and crs2 ←
NIZK.Setup2(1

n), and sets pp ← (crs1, crs2) and HUL,HSSKL, SL = ∅. Then, B
runs A1(pp). After it receives (st, tpk) from A1, it runs A2(st). Let the number
of queries to AddU from A2 be K = poly(n). B randomly chooses k ← [K] and

52 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

sets the k-th user’s key pair (upkk, uskk) (corresponding to the k-th query to
AddU) as the target tagpk, i.e., B is given upkk = tagpk and tries to break the
key-secrecy.
B responds to each of queries from A2 in the same way as B does in the proof

of Lemma D.7, so we omit it here. When A2 outputs (ipk, info, upk, item,M, Σ,
ΠTrace) and terminates, B outputs ⊥ and terminates if upk 6= upkk. Otherwise, B
parses (C, τ, π̃) ← Σ and computes 〈upk∗, usk∗, id, πacc, θ, r1, r2〉 ← SimExt(crs1,
ξ,M,X, π̃), where X ← 〈C, ipk, tpk, acc, item, τ〉. Then, B outputs usk∗ and ter-
minates.

The above completes the description of B. By the definition of the event
T 2
1 ∧¬R, we have upk∗ = upk since Judge(ipk, tpk, info, item,M, Σ, upk,ΠTrace) =

1. Thus, we have LIT.ChkKey(upk, usk∗) = 1, which means that B has a success-
ful attack. Now, the probability that upk = upkk is 1/K. Therefore, we have

Pr[T 1,2
1] = K · Advkey-secLIT,B (n).

Theorem 5.3 now follows immediately from (10)-(17).

D.3 Proof of Theorem 5.4

Proof. Let A be a PPT adversary in the experiment ExptraceARS,A(n) defined in
Figure 4. We can separate the case A wins into two cases: when A outputs
(info, item,M, Σ), A wins if |HKIL| = 1, Verify(ipk, tpk, info, item,M, Σ) = 1, and
(i) t /∈ IsActive[ipk][item][upk], or (ii) Judge(ipk, tpk, info, item,M, Σ, upk,ΠTrace) =
0, where t is included in info and (upk,ΠTrace)← Trace(ipk, tpk, info, item,M, Σ).
We denote E as the event that A wins with the condition (i) and F as the event
that A wins with the condition (ii). Then, we have AdvtraceARS,A(n) ≤ Pr[E]+Pr[F].
We will analyze the probability that each event occurs in order.

First, we analyze the probability Pr[E]. Let (info, item,M, Σ) be the output
by A in the experiment ExptraceARS,A(n) and info includes an epoch t. When the
event E occurs, we have t /∈ IsActive[ipk][item][upk]. In addition, let Efail be the
event that the knowledge extractor Ext fails to extract the witness from the proof
π included in Σ. We clearly have Pr[E] ≤ Pr[E ∧Efail] + Pr[E ∧ ¬Efail]. We will
prove that each probability is negligible in n in order.

Beforehand, we slightly modify the game as follows: we use SimExt1 = (SimExt10,
SimExt11) instead of NIZK.Setup1. We note that this has negligible effect on the
probability A wins as seen in the proof of appendix D.2.

Lemma D.11. There exists a PPT algorithm B such that

Pr[E ∧ Efail] ≤ AdvseΠ1,B(n). (18)

Proof. We assume that there exists a PPT adversary A that causes the event E∧
Efail. Then, we can construct another PPT adversary B attacking the knowledge
soundness of Π1. The description of B is as follows.
B, given crs1, randomly chooses rPKE ← {0, 1}poly(n), computes crs2 ← NIZK.

Setup2(1
n), (ek1, dk1) ← PKE.KG(1n; rPKE), and (ek2, dk2) ← PKE.KG(1n), and

sets pp← (crs1, crs2), (tpk, tsk)← ((ek1, ek2), (dk1, dk2, rPKE)), and HKIL, IsActive =

ARS with Revocation, Revisited 53

∅. Then, B runs A(pp, tpk, tsk). B responds to each of queries from A in the
same manner as defined in Section B.1. Note that B can respond correctly to all
queries since it generates all parameters for ARS except crs1, which is honestly
generated by the challenger for the knowledge soundness of Π1. When A out-
puts (info, item,M, Σ) and terminates, B outputs ⊥ if |HKIL| 6= 1. Otherwise, it
outputs (M, 〈C, ipk, tpk, acc, item, τ〉, π) and terminates, where ipk ← HKIL and
(C, τ, π)← Σ and (t, acc, auxacc, σ)← info.

The above completes the description of B. When the event E occurs (i.e., A
wins the game), we have NIZK.Verify(crs1,M,X, π) = 1. On the other hand, when
the event Efail occurs (i.e., the extractor Ext fails to extract a witness), we have
(X,W) /∈ ρ1, where W ← SimExt11(crs1, ξ,M,X, π). In addition, B never queried
to the zero-knowledge simulation oracle clearly, i.e., LS = ∅. Therefore, when
the both events occur, B has a successful attack on the simulation extractability
of Π1, i.e., Pr[E ∧ Efail] ≤ AdvseΠ1,B(n).

Lemma D.12. There exist PPT algorithms B1,B2 such that

Pr[E ∧ ¬Efail] ≤ poly(n) · AdvsoundACC,B1
(n) + 2 · AdvunfSIG,B2

(n). (19)

Proof. Let (info, item,M, Σ) be the output of A in the experiment. Since the
event Efail never occurs, we can extract the witness 〈upk, usk, id∗,wit∗id, θ∗, r1, r2〉
from π included in Σ. We divide the case into two depending on whether the
following three conditions are satisfied: (a) the extracted upk is included in the
queries from A to the SndToKI oracle, (b) the extracted id∗ equals to idupk that

is recorded in regipkki [upk], and (c) A outputs info = (t, acc, auxacc, σ) such that
it obtained 〈t, acc〉 by querying to the SndToKI or RevUser oracle. Roughly, in
case the above three conditions are satisfied, A breaks the soundness of ACC.
Otherwise, A breaks the EUF-CMA security of SIG. We denote the former case
by the event Ebad. We clearly have Pr[E∧¬Efail] ≤ Pr[E∧¬Efail∧Ebad]+Pr[E∧
¬Efail ∧ ¬Ebad]. We analyze each probability in order.

Firstly, we show Pr[E ∧ ¬Efail ∧ Ebad] ≤ poly(n) · AdvsoundACC,B1
(n). We assume

that there exists a PPT adversary A that causes the event E1 ∧ ¬Efail ∧ Ebad.
Then, we can construct another PPT adversary B1 = (B1,1,B1,2) attacking the
soundness of ACC. The description of B1 is as follows.
B1,1, given ppacc, randomly chooses rPKE ← {0, 1}poly(n), computes (crs1, td,

ξ)← SimExt10(1
n), crs2 ← NIZK.Setup2(1

n), (ek1, dk1)← PKE.KG(1n; rPKE), and
(ek2, dk2) ← PKE.KG(1n), and sets pp ← (crs1, crs2), (tpk, tsk) ← ((ek1, ek2),
(dk1, dk2, rPKE)), and HKIL, IsActive = ∅. Then, B1,1 runs A(pp, tpk, tsk). Let
the number of queries to SndToKI and RevUser from A be K = poly(n). B1,1
randomly chooses k ← [K] and outputs the k-th set of revoked users Rk to the
challenger to the soundness game. B1,1 responds to each of queries from A as
follows.

- For each query to AddKI(), B1,1 computes (vk, sk) ← SIG.KG(1n), sets ipk ←
(vk, ppacc) and Iipk := ∅, returns ipk to A, and updates HKIL ← HKIL ∪ {ipk}
for the first time. If this oracle is called the second time, B1,1 returns ⊥ and
terminates.

54 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

- For each query to SndToKI(ipk, upk, item), B1,1 computes in the following steps:
1. If t = 0, then adds Iipk ← Iipk ∪ {item};
2. If regipkki [upk] is empty, then randomly chooses idupk ← {id ∈ {0, 1}n |

Does not appear in regipkki } and sets Listupk ← ϵ. Otherwise, let (idupk,

status, Listupk)← regipkki [upk];
3. If status = revoked or ∃(item,−) ∈ Listupk, then returns ⊥ to A. Other-

wise, continues;
4. Sets a set of revoked users’ id R as follows:
R := {id ∈ {0, 1}n | ∃upk, regipkki [upk] = (id, revoke,−)};

5. If it is the k-th of the total number of queries to SndToKI and RevUser, then
outputs (R, st) and terminates, where st ← (pp, ipk, tpk, info, item,M, Σ).
Otherwise, computes (acc, auxacc) ← ACC.Acc(ppacc, R), θ ← SIG.Sign(sk,
〈upk, id, item〉), and σ ← SIG.Sign(sk, 〈t + 1, acc〉), where t is included in

infoipkt .
6. Queries Owit(ppacc, skacc, id) and receives witid.
Then, it returns (idupk,witid, θ) and infoipkt+1 := (t+1, acc, auxacc, σ), and updates
IsActive[ipk][item][upk] = [0,∞].

- For each query to RevUser(upk), B1,1 computes in the following steps:

1. Gets (idupk,−,−)← regipkki [upk];
2. Sets a set of revoked users’ id R as follows:
R := {id ∈ {0, 1}n | ∃upk, regipkki [upk] = (id, revoked,−)} ∪ {idupk};

3. If it is the k-th of the total number of queries to SndToKI and RevUser, then
outputs (R, st) and terminates, where st ← (pp, ipk, tpk, info, item,M, Σ).
Otherwise, computes (acc, auxacc)← ACC.Acc(ppacc, R) and σ ← SIG.Sign(sk,

〈t+ 1, acc〉), where t is included in infoipkt .
Finally, it updates regipkki [upk] ← (idupk, revoked,−) and returns infoipkt+1 :=
(t+ 1, acc, auxacc, σ).

- For each query to RtrKIReg(ipk), B1,1 returns regipkki to A.

The above completes the description of B1,1. Then, B1,2 receives (st, acck, auxacc)
from the challenger and continues to run A. B1,2 responds to each of queries as
the same ways as B1,1 does.

When A outputs (info, item,M, Σ) and terminates, B1,2 outputs ⊥ and termi-
nates if 〈t, acc〉 6= 〈tk, acck〉, where acc is included in info. Otherwise, it computes
(upk, usk, id∗, π∗

acc, θ, r1, r2)← SimExt11(crs1, ξ,M, 〈C, ipk, tpk, acc, item, τ〉, π), where
(C, τ, π)← Σ, and outputs (id∗, π∗

acc) and terminates.
The above completes the description of B1,2. Let (upkTrace,ΠTrace)← Trace(ipk,

tpk, tsk, info, item,M, Σ). From the definition of the Trace algorithm, we have
upkTrace = PKE.Dec(dk1, c1). Thus, upkTrace = upk holds since the event Efail

never occurs. When the event E ∧ Ebad occurs, we have (i) id∗ = idupk, (ii) acc
included in the output of A is also included in one of responses from queries
to SndToKI and RevUser, and (iii) t /∈ IsActive[ipk][item][upk], which means

idupk ∈ R, where (idupk,−,−) ← regipkki [upk]. The probability that acc = acck
is 1/K. In case acc = acck, we have ACC.Verify(ppacc, acck, id

∗, π∗) = 1 since the
Verify algorithm returns 1. Therefore, B1 has a successful attack on the soundness
of ACC with probability 1/K, i.e., Pr[E ∧ ¬Efail ∧ Ebad] ≤ K · AdvsoundACC,B1

(n).

ARS with Revocation, Revisited 55

Secondly, we show Pr[E ∧ ¬Efail ∧ ¬Ebad] ≤ 2 · AdvunfSIGB2
(n). We assume that

there exists a PPT adversary A that causes the event E1 ∧¬Efail ∧¬Ebad. Then,
we can construct another PPT adversary B2 attacking the EUF-CMA security
of SIG. The description of B2 is as follows.
B2, given vk, randomly chooses rPKE ← {0, 1}poly(n), computes (crs1, td, ξ)←

SimExt10(1
n), crs2 ← NIZK.Setup2(1

n), (ek1, dk1)← PKE.KG(1n; rPKE), and (ek2,
dk2)← PKE.KG(1n), and sets pp← (crs1, crs2), (tpk, tsk)← ((ek1, ek2), (dk1, dk2,
rPKE)), and HKIL, IsActive = ∅. Then, B2 runs A(pp, tpk, tsk). B2 responds to each
of queries from A as follows.

- For each query to AddKI(), B2 computes (ppacc, skacc) ← ACC.Setup(1n), sets
ipk← (vk, ppacc) and Iipk := ∅, returns ipk to A, and updates HKIL← HKIL ∪
{ipk} for the first time. If this oracle is called the second time, B1,1 returns ⊥
and terminates.

- For each query to SndToKI(ipk, upk, item), B1,1 computes in the following steps:
1. If t = 0, then adds Iipk ← Iipk ∪ {item};
2. If regipkki [upk] is empty, then randomly chooses idupk ← {id ∈ {0, 1}n |

Does not appear in regipkki } and sets Listupk ← ϵ. Otherwise, let (idupk,

status, Listupk)← regipkki [upk];
3. If status = revoked or ∃(item,−) ∈ Listupk, then returns ⊥ to A. Other-

wise, continues;
4. Sets a set of revoked users’ id R as follows:
R := {id ∈ {0, 1}n | ∃upk, regipkki [upk] = (id, revoke,−)};

5. Computes (acc, auxacc) ← ACC.Acc(ppacc, R) and witid ← ACC.Wit(ppacc,
skacc, id).

6. Queries Osign(〈upk, idupk, item〉) and Osign(〈t+ 1, acc〉) and receives θ and

σ, respectively, where t is included in infoipkt .
Then, it returns (idupk,witid, θ) and infoipkt+1 := (t+1, acc, auxacc, σ), and updates
IsActive[ipk][item][upk] = [0,∞].

- For each query to RevUser(upk), B2 computes in the following steps:
1. Gets (idupk,−,−)← regipkki [upk];
2. Sets a set of revoked users’ id R as follows:
R := {id ∈ {0, 1}n | ∃upk, regipkki [upk] = (id, revoked,−)} ∪ {idupk};

3. Computes (acc, auxacc)← ACC.Acc(ppacc, R).

4. Queries 〈t+ 1, acc〉 and receives σ, where t is included in infoipkt .
Finally, it updates regipkki [upk] ← (idupk, revoked,−) and returns infoipkt+1 :=
(t+ 1, acc, auxacc, σ).

- For each query to RtrKIReg(ipk), B1,1 returns regipkki to A.

WhenA outputs (info, item,M, Σ) and terminates, B2 computes (upk, usk, id∗,
π∗
acc, θ

∗, r1, r2)← SimExt11(crs1, ξ,M, 〈C, ipk, tpk, acc, item, τ〉, π), where (C, τ, π)←
Σ. Then, if regipkki [upk] is empty, then it outputs (〈upk, id∗, item〉, θ∗). Else if
id∗ 6= idupk, it outputs (〈upk, id∗, item〉, θ∗) and terminates. Otherwise, it outputs
(〈t, acc〉, σ) and terminates, where (t, acc, auxacc, σ)← info.

When the event E ∧ ¬Ebad occurs, there are two cases: (1) regipkki [upk] is
empty or id∗ 6= idupk, which means 〈upk, id∗, item〉 has never been queried, or (2)

56 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

id∗ = idupk and acc included in the output of A is not included in the responses
from queries to SndToKI and RevUser. In each case, B2 has a successful attack on
the EUF-CMA security of SIG since we have SIG.Ver(vk, 〈upk, id∗, item〉, θ∗) = 1
(because the Verify algorithm returns 1) or SIG.Ver(vk, 〈t, acc〉, σ) = 1, where
(t, acc, auxacc, σ)← info without querying each message to the challenge oracle of
the EUF-CMA game. Therefore, we have Pr[E∧¬Efail∧¬Ebad] ≤ 2·AdvunfSIG,B2

(n).

Next, we analyze the probability Pr[F]. Let (tpk, tsk) = ((ek1, ek2), (dk1, dk2,
rPKE)) be the honestly generated key pair for the tracer, ipk be the honest key
issuer, and (ipk, item,M, Σ) be the output of A in the experiment. When the
event F occurs, the Trace algorithm (1) outputs ⊥, or (2) successfully decrypts
upk← PKE.Dec(dk1, c1) but fails to make a valid proof ofΠ2, where (c1, c2)← C.
As a matter of fact, the latter case never happens as long as Π2 is correct.
Since the Trace algorithm honestly runs, we have upk ← PKE.Dec(dk1, c1) and
ΠTrace ← NIZK.Prove2(crs2, ϵ, 〈ek1, c1, upk〉, tsk), where (C, τ, π) ← Σ, so we
clearly have (〈ek1, c1, upk〉, tsk) ∈ ρ2. In addition, when A wins, we have NIZK.
Verify1(crs1,M,X, π) = 1, where X ← 〈C, ipk, tpk, acc, item, τ〉. Thus, we always
have Judge(ipk, tpk, info, item,M, Σ, upk,ΠTrace) = 1 from its definition. There-
fore, we only consider the former case.

When the former case occurs, i.e., NIZK.Verify1(crs1,M,X, π) = 1 but Trace
outputs ⊥, A breaks the soundness of Π1. More precisely, we have the following:

Lemma D.13. There exists a PPT algorithm B such that

Pr[F] ≤ AdvsoundΠ1,B(n). (20)

Proof. Assume that there exists a PPT adversary A which causes the event F .
Then, we can construct another PPT adversary B that breaks the soundness of
Π1, which implies the lemma. The description of B is as follows.

B, given crs1, randomly chooses rPKE ← {0, 1}poly(n), computes crs2 ← NIZK.
Setup2(1

n), (ek1, dk1) ← PKE.KG(1n; rPKE), and (ek2, dk2) ← PKE.KG(1n), and
sets pp← (crs1, crs2), (tpk, tsk)← ((ek1, ek2), (dk1, dk2, rPKE)), and HKIL, IsActive =
∅. Then, B runs A(pp, tpk, tsk). It is easy to see that B can respond to each
of queries from A in the same way as defined in Section B.1. When A out-
puts (info, item,M, Σ) and terminates, B outputs ⊥ if |HKIL| 6= 1. Otherwise,
it outputs (M,X, π) and terminates, where (C, τ, π) ← Σ, ipk ← HKIL, and
X← 〈C, ipk, tpk, acc, item, τ〉.

The above completes the description of B. As discussed above, we have
⊥ ← Trace(ipk, tpk, tsk, info, item,M, Σ) when the event F occurs. From our
construction of the Trace algorithm, the PKE.Dec algorithm fails, i.e., ⊥ ←
PKE.Dec(dk1, c1). Thus, we have 〈C, ipk, tpk, acc, item, τ〉 /∈ Lρ1 . On the other
hand, we also have Verify(ipk, tpk, info, item,M, Σ) = 1. Therefore, B has a suc-
cessful attack on the soundness of Π1, i.e., Pr[F] ≤ AdvsoundΠ1,B(n).

Theorem 5.4 now follows immediately from (18)-(20).

ARS with Revocation, Revisited 57

D.4 Proof of Theorem 5.5

Proof. Let A be a PPT adversary in the experiment ExpunfARS,A(n) defined in
Figure 5. Let (tpk, info, item,M, Σ, upkTrace,ΠTrace) be the output by A in the ex-
periment and t be included in info. When A wins, we have t /∈ IsActive[ipk][item]
[upkTrace]. Let E denote the event A wins the experiment ExpunfARS,A(n). In ad-
dition, let Efail be the event that A wins but the extractor Ext fails to extract
the witness from the proof π included in Σ, and Es be the event that upkTrace
and upk included in the witness extracted from π are different. We clearly have
AdvunfARS,A(n) ≤ Pr[E ∧Efail] +Pr[E ∧Es ∧¬Efail] +Pr[E ∧¬Efail ∧¬Es]. We will
analyze the probability that each event occurs in order.

Lemma D.14. There exists a PPT algorithm B such that

Pr[E ∧ Efail] ≤ AdvseΠ1,B(n). (21)

Proof. We first modify the game slightly as follows. In the RepSetup algorithm,
we compute (crs1, td1, ξ) ← SimExt10(1

n) instead of crs1 ← NIZK.Setup1(1
n).

Note that this affects nothing about the probability A wins.
We assume that there exists a PPT adversary A that causes the event Efail.

Then, we can construct another PPT adversary B attacking the knowledge
soundness of Π1. The description of B is as follows.
B, given crs1, computes crs2 ← NIZK.Setup2(1

n) and sets pp ← (crs1, crs2)
and HKIL, IsActive = ∅. Then, B runsA(pp). B responds to each of queries from A
in the same manner as defined in Section B.1. Note that B can respond correctly
to all queries since it generates all parameters for ARS except crs1, which is
honestly generated by the challenger for the knowledge soundness of Π1. When
A outputs (tpk, info, item,M, Σ, upkTrace,ΠTrace) and terminates, B outputs ⊥ if
|HKIL| 6= 1. Otherwise, it outputs (M, 〈C, ipk, tpk, acc, item, τ〉, π) and terminates,
where ipk← HKIL and (C, τ, π)← Σ.

The above completes the description of B. When the event Efail occurs,
we have NIZK.Verify(crs1,M,X, π) = 1 (since A wins) and (X,W) /∈ ρ1, where
W ← SimExt11(crs1,M,X, π) (since all extractor fail to extract a valid witness).
In addition, B never queried to the zero-knowledge simulation oracle clearly, i.e.,
LS = ∅. Therefore, when the event Efail occurs, B has a a successful attack on
the simulation extractability of Π1, i.e., Pr[E ∧ Efail] ≤ AdvseΠ1,B(n).

Lemma D.15. There exists a PPT algorithm B such that

Pr[E ∧ Es ∧ ¬Efail] ≤ AdvsoundΠ2,B(n). (22)

Proof. We assume that there exists a PPT adversary A that causes the event
Es ∧ ¬Efail. Then, we can construct another PPT adversary B attacking the
soundness of Π2. The description of B is as follows.
B, given crs2, computes (crs1, td, ξ)← SimExt10(1

n) and sets pp← (crs1, crs2)
and HKIL, IsActive = ∅. Then, B runs A(pp). B responds to each of queries
from A in the same manner as defined in Section B.1. Note that B can respond
correctly to all queries since it generates all parameters for ARS except crs2,

58 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

which is honestly generated by the challenger for the soundness of Π2. When
A outputs (tpk, info, item,M, Σ, upkTrace,ΠTrace) and terminates, B outputs ⊥ if
|HKIL| 6= 1. Otherwise, it outputs (ϵ, 〈ek1, c1, upkTrace〉,ΠTrace) and terminates,
where (C, τ, π)← Σ.

The above completes the description of B. Let 〈upk, usk, id, πacc, θ, r1, r2〉 ←
SimExt11(crs1, ξ,M, 〈C, ipk, tpk, acc, item, τ〉), where ipk← HKIL. When the event
Es occurs, we have upkTrace 6= upk. If the event Efail never occurs, we always
have c1 = PKE.Enc(ek1, upk; r1). Thus, when the event Es∧¬Efail occurs, 〈ek1, c1,
upkTrace〉 /∈ Lρ2

. On the other hand, we have NIZK.Verify2(crs2, ϵ, 〈ek1, c1, upkTrace〉,
ΠTrace) = 1 since A wins. Therefore, B has a successful attack on the soundness
of Π2, i.e., Pr[E ∧ Es ∧ ¬Efail] ≤ AdvsoundΠ2,B(n).

Lemma D.16. There exist PPT algorithms B1,B2 such that

Pr[E ∧ ¬Efail ∧ ¬Es] ≤ poly(n) · AdvsoundACC,B1
(n) + 2 · AdvunfSIG,B2

. (23)

Proof. Let (tpk, info, item,M, Σ, upkTrace,ΠTrace) be the output of A in the exper-
iment. Since the event Efail never occurs, we can extract the witness 〈upk, usk, id∗,
wit∗id, θ

∗, r1, r2〉 from π included in Σ. We divide the case into two depending on
whether the three conditions are satisfied: (a) the extracted upk is included in
the queries from A to the SndToKI oracle, (b) the extracted id∗ equals to idupk
that is recorded in regipkki [upk], and (c) A outputs info = (t, acc, auxacc, σ) such
that it obtained 〈t, acc〉 by querying to the SndToKI or RevUser oracle. Roughly,
in case the above conditions are satisfied, A breaks the soundness of ACC. Oth-
erwise, A breaks the EUF-CMA security of SIG. We denote the former case by
the event Ebad. We clearly have Pr[E∧¬Efail¬Es] ≤ Pr[E∧¬Efail∧¬Es∧Ebad]+
Pr[E ∧ ¬Efail ∧ ¬Es ∧ ¬Ebad]. We analyze each probability in order.

Firstly, we show Pr[E∧¬Efail∧¬Es∧Ebad] ≤ poly(n) ·AdvsoundACC,B1
. We assume

that there exists a PPT adversary A that causes the event E∧¬Efail∧¬Es∧Ebad.
Then, we can construct another PPT adversary B1 attacking the soundness of
ACC. The description of B1 is as follows.
B1,1, given ppacc, computes (crs1, td, ξ) ← SimExt10(1

n) and crs2 ← NIZK.
Setup2(1

n), and sets pp← (crs1, crs2), ((dk1, dk2, rPKE)), and HKIL, IsActive = ∅.
Let the number of queries to SndToKI and RevUser from A be K = poly(n).
B1,1 randomly chooses k ← [K] and outputs the k-th set of revoked users Rk to
the challenger to the soundness game. Then, B1,1 runs A(pp). B1,1 responds to
each of queries from A in the same way as the proof of Lemma D.12. Then, B1,2
receives (st, acck, auxacc) from its challenger and continues to run A.

When A outputs (tpk, info, item,M, Σ, upkTrace,ΠTrace) and terminates, B1,2
outputs ⊥ and terminates if 〈t, acc〉 6= 〈tk, acck〉, where acc is included in info.
Otherwise, it computes (upk, usk, id∗, π∗

acc, θ, r1, r2)← SimExt11(crs1, ξ,M, 〈C, ipk, tpk, acc,
item, τ〉, π), where (C, τ, π)← Σ, and outputs (id∗,wit∗id) and terminates.

The above completes the description of B1,2. Since the event Es never occurs,
we always have upkTrace = upk. When the event E∧Ebad occurs, we have (1) id

∗ =
idupk, (2) acc included in the output of A is also included in one of responses from
queries to SndToKI and RevUser, and (3) t /∈ IsActive[ipk][item][upk], which means

ARS with Revocation, Revisited 59

idupk ∈ R, where (idupk,−,−) ← regipkki [upk]. The probability that acc = acck is
1/K. In case acc = acck, we have ACC.Verify(ppacc, acck, id

∗, π∗) = 1, where
π∗ ← ACC.Prove(ppacc, auxacc, id

∗,wit∗id), since the Verify algorithm returns 1.
Therefore, B has a a successful attack on the soundness of ACC with probability
1/K, i.e., Pr[E ∧ ¬Efail ∧ ¬Es ∧ Ebad] ≤ K · AdvsoundACC,B(n).

Secondly, we show Pr[E ∧¬Efail∧¬Es∧¬Ebad] ≤ 2 ·AdvunfSIGB2
(n). We assume

that there exists a PPT adversary A that causes the event E1 ∧ ¬Efail ∧ ¬Es ∧
¬Ebad. Then, we can construct another PPT adversary B2 attacking the EUF-
CMA security of SIG. The description of B2 is as follows.

B2, given vk, randomly chooses rPKE ← {0, 1}poly(n), computes (crs1, td, ξ)←
SimExt11(1

n), crs2 ← NIZK.Setup2(1
n), (ek1, dk1)← PKE.KG(1n; rPKE), and (ek2,

dk2)← PKE.KG(1n), and sets pp← (crs1, crs2), (tpk, tsk)← ((ek1, ek2), (dk1, dk2,
rPKE)), and HKIL, IsActive = ∅. Then, B2 runs A(pp, tpk, tsk). B2 responds to
each of queries from A in the same way as the proof of Lemma D.12. When
A outputs (tpk, info, item,M, Σ, upkTrace,ΠTrace) and terminates, B2 computes
(upk, usk, id∗, π∗

acc, θ
∗, r1, r2)← SimExt11(crs1, ξ,M, 〈C, ipk, tpk, acc, item, τ〉, π), where

(C, τ, π)← Σ. Then, if regipkki [upk] is empty or id∗ 6= idupk, it outputs (〈upk, id∗, item〉, θ∗)
and terminates. Otherwise, it outputs (〈t, acc〉, σ) and terminates, where (t, acc, auxacc, σ)←
info.

When the event E ∧ ¬Ebad occurs, there are two cases: (1) regipkki [upk] is
empty or id∗ 6= idupk, which means 〈upk, id∗, item〉 has never been queried, or
(2) id∗ = idupk and acc included in the output of A is not included in the
responses from queries to SndToKI and RevUser. In the former case, B2 has
a successful attack on the EUF-CMA security of SIG since we have SIG.Ver
(vk, 〈upk, id∗, item〉, θ∗) = 1 (because the Verify algorithm returns 1). In the latter
case, B2 also has a successful attack on the EUF-CMA security of SIG since we
have SIG.Ver(vk, 〈t, acc〉, σ) = 1, where (t, acc, auxacc, σ) ← info. Therefore, B2
has a a successful attack on the EUF-CMA security of SIG, i.e., Pr[E ∧ ¬Efail ∧
¬Es ∧ ¬Ebad] ≤ 2 · AdvunfSIG,B2

(n).

Theorem 5.5 now follows immediately from (21)-(23).

D.5 Proof of Theorem 5.6

Proof. We assume that there exists a PPT adversary A that attacks the tracing
soundness of ARS. Then, we can construct another PPT adversary B attacking
the soundness of Π2. The description of B is as follows.

B, given crs2, computes crs1 ← NIZK.Setup1(1
n) and sets pp ← (crs1, crs2)

and HKIL, IsActive = ∅. Then, B runs A(pp). When A outputs (ipk, tpk, info, item,
M, Σ, {upki,ΠTrace,i}i=0,1) and terminates, B randomly chooses b ∈ {0, 1} and
outputs (ϵ, 〈ek1, c1, upkb〉,ΠTrace,b) and terminates, where (C, τ, π)← Σ.

The above completes the description of B. When A wins, we have NIZK.
Verify2(crs2, ϵ, 〈ek1, c1, upki〉,ΠTrace,i) = 1 for i = 0, 1 and upk0 6= upk1, which
means that one of the followings hold: upk0 = PKE.Dec(dk1, c1) or upk1 =

60 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

PKE.Dec(dk1, c1). Thus, we have 〈ek1, c1, upki〉 /∈ Lρ2 for i = 0 or 1. There-
fore, B has a successful attack on the soundness of Π2 with probability 1/2, i.e.,
Advtrace-soundARS,A (n) ≤ 2 · AdvsoundΠ2,B(n).

D.6 Proof of Theorem 5.7

Proof. Let us fix a PPT adversary A attacking the public-linkability of ARS
and the value of the security parameter n. The attack game used to define the
public-linkability is defined in Figure 7. Let E be the event that A wins in
the original attack game, (ipk, tpk, info, item, upk, {Mi, Σi,ΠTrace,i}i=0,1) be the
output of A, Efail be the event that the knowledge extractor Ext fails to extract
a witness Wi from πi included in Σi for i = 0 or 1, and Ebad be the event that
upk 6= upk0 or upk 6= upk1, where upki is included in Wi for i = 0, 1. We clearly
have Pr[E] ≤ Pr[E ∧ Efail] + Pr[E ∧ Ebad ∧ ¬Efail] + Pr[E ∧ ¬Ebad ∧ ¬Efail]. We
will analyze each probability in order.

Beforehand, we slightly modify the game as follows: we use SimExt1 = (SimExt10,
SimExt11) instead of NIZK.Setup1. We note that this has negligible effect on the
probability A wins as seen in the proof of appendix D.2.

Lemma D.17. There exist PPT adversaries B such that

Pr[E ∧ Efail] ≤ 2 · AdvseΠ1,B(n). (24)

Proof. We assume that there exists a PPT adversary A that causes the event E∧
Efail. Then, we can construct another PPT adversary B attacking the simulation
extractability of Π1. The description of B is as follows.
B, given crs1, computes crs2 ← NIZK.Setup2(1

n) and sets pp ← (crs1, crs2).
Then, B runsA(pp). WhenA outputs (ipk, tpk, info, item, upk, {Mi, Σi,ΠTrace,i}i=0,1)
and terminates, B randomly chooses a bit b ∈ {0, 1} and outputs (Mb, 〈Cb, ipk,
tpk, t, item, τb〉, πb) and terminates, where (Cb, τb, πb)← Σb.

The above completes the description of B. When the event Efail occurs, for
i = 0 or 1, we have (Xi,Wi) /∈ ρ1, where Xi ← 〈Ci, ipk, tpk, acc, item, τi〉 and
Wi ← SimExt11(crs1, ξ,Mi,Xi, πi). On the other hand, when the event E occurs
(i.e., A wins), for both i = 0 and 1, we have NIZK.Verify1(crs1,Mi,Xi, πi) = 1.
Therefore, B has a successful attack on the simulation extractability of Π1 with
probability 1/2 (since it never queries to the zero-knowledge simulation oracle),
i.e., Pr[E ∧ Efail] ≤ 2 · AdvksΠ1,B(n).

Lemma D.18. There exists a PPT adversary B such that

Pr[E ∧ Ebad ∧ ¬Efail] ≤ 2 · AdvsoundΠ2,B(n). (25)

Proof. We assume that there exists a PPT adversary A that causes the event
E ∧ Ebad ∧ ¬Efail. Then, we can construct another PPT adversary B attacking
the soundness of Π2. The description of B is as follows.
B, given crs2, computes (crs1, td, ξ)← SimExt10(1

n) and sets pp← (crs1, crs2).
Then, B runsA(pp). WhenA outputs (ipk, tpk, info, item, upk, {Mi, Σi,ΠTrace,i}i=0,1)

ARS with Revocation, Revisited 61

and terminates, B randomly chooses a bit b ∈ {0, 1} and outputs (ϵ, 〈tpk, c1,b,
upk〉, πb) and terminates, where (Cb, τb, πb)← Σb and (c1,b, c2,b)← Cb.

The above completes the description of B. Let 〈upkb, uskb, idb,witidb , θb, r1,b,
r2,b〉 ← SimExt11(crs1, ξ,M, 〈Cb, ipk, tpk, acc, item, τb〉, π). When the event E ∧
¬Efail occurs, we have (Xi,Wi) ∈ ρ1, where Xi ← 〈Ci, ipk, tpk, acc, item, τi〉 and
Wi ← 〈upki, uski, idi,witidi , θi, r1,i, r2,i〉, for both i = 0 and 1. Thus, we have ci =
PKE.Enc(ek1, upki; r1,i) for both i = 0 and 1. In addition, when the event Ebad

occurs, we have upk 6= upk0 or upk 6= upk1. On the other hand, when the event
E occurs (i.e., A wins), we have NIZK.Verify2(crs2, ϵ, 〈tpk, ci, upk〉,ΠTrace,i) = 1
for both i = 0 and 1. Thus, if upk 6= upkb, then we have 〈tpk, cb, upk〉 /∈ Lρ2 .
Therefore, since b is randomly chosen, B has a successful attack on the soundness
of Π2 with probability 1/2, i.e., Pr[E ∧ Ebad ∧ ¬Efail] ≤ 2 · AdvsoundΠ2,B(n).

Lemma D.19. There exists a PPT adversary B such that

Pr[E ∧ ¬Ebad ∧ ¬Efail] ≤ AdvlinkLIT,B(n). (26)

Proof. Assume that there exists a PPT adversary A attacking the public link-
ability of ARS. Then, we can construct another PPT adversary B that breaks
the linkability of LIT whose success probability is the same as that of A, which
implies the lemma. The description of B is as follows.

B computes (crs1, td, ξ) ← SimExt10(1
n) and crs2 ← NIZK.Setup2(1

n)), and
set pp← (crs1, crs2). Then, B runs A(pp). Consider that A outputs (ipk, tpk, info,
item, upk, {Mi, Σi,ΠTrace,i}i=0,1) and terminates. For i = 0, 1, B parses (Ci, τi, πi)←
Σi and computes 〈upki, uski, idi,witidi , θi, r1,i, r2,i〉 ← SimExt11(crs1, ξ,Mi,Xi, πi),
where Xi ← 〈Ci, ipk, tpk, info, item, τi〉. Finally, B outputs (upk, usk0, usk1, 〈ipk, item〉, τ0, τ1)
and terminates.

The above completes the description of B. If the event Ebad never occurs,
we always have upk = upk0 = upk1. If the event Efail never occurs, we always
have LIT.ChkTag(upki, uski, 〈ipk, item〉, τi) = 1 for i = 0, 1 since (Xi,Wi) ∈ ρ1,
where Wi ← 〈upki, uski, idi,witidi , θi, r1,i, r2,i〉. When the event E occurs (i.e., A
wins), we have LIT.Link(τ0, τ1) = 0. Therefore, B has a successful attack on the

linkability of LIT, i.e., Advpublic-linkARS,A (n) ≤ AdvlinkLIT,B(n).

Theorem 5.7 now follows immediately from (24)-(26).

E Instantiation of Our Generic Construction

In this section, we provide a pairing-based instantiation of our generic construc-
tion of anonymous reputation system. Below, we provide an instantiation of each
building blocks from pairing.

Public-Key Encryption. We use the ElGamal encryption scheme [21] from
the decision Diffie-Hellman assumption.

62 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

Signatures. We use the Abe-Groth-Haralambiev-Ohkubo structure-preserving
signature scheme [1]. We need two types of schemes, one with message space

Gℓsig,1
1 and one with message space Gℓsig,2

2 , which we present below.

The description of the scheme with message space Gℓsig,1
1 is below.

SIG.KG(1n). Compute (p,G1,G2,GT , e, g, h) ← G(1n). Choose u1, . . . , uℓsig,1 ,
and v ← Z∗

p and compute U1 ← hu1 , . . . , Uℓsig,1 ← huℓsig,1 , and V ← gv. Set
vk← (U1, . . . , Uℓsig,1 , V) and sk← (u1, . . . , uℓsig,1 , v) and output (vk, sk).

SIG.Sign(sk, (m1, . . . ,mℓsig,1)). Choose r ← Z∗
p and set R ← hr, S ← Rv, and

T ← (g
∏ℓsig,1

i=1 m−ui
i)1/r. Output σ ← (R,S, T).

SIG.Rerand(vk, (R,S, T)). Choose s← Z∗
p and compute (R̃, S̃, T̃)← (Rs, Ss, T 1/s).

Output (R̃, S̃, T̃).
SIG.Ver(vk, (m1, . . . ,mℓsig,1), (R,S, T)). Verify T , m1, . . . , mℓsig,1 ∈ G1, R, S ∈

G2, e(V,R) = e(g, S), and e(T,R)
∏ℓsig,1

i=1 e(mi, Ui) = e(g, h). If all the equa-
tions hold, output 1. Otherwise, output 0.

Theorem E.1. The above scheme is EUF-CMA secure in the generic bilinear
group model.

The description of the scheme with message space Gℓsig,2
2 is below.

SIG.KG′(1n). Compute (p,G1,G2,GT , e, g, h) ← G(1n). Choose u′1, . . . , u′ℓsig,2 ,

and v′ ← Z∗
p and compute U ′

1 ← gu
′
1 , . . . , U ′

ℓsig,2
← g

u′
ℓsig,2 , and V ′ ← hv

′
. Set

vk← (U ′
1, . . . , U

′
ℓsig,2

, V ′) and sk← (u′1, . . . , u
′
ℓsig,2

, v′) and output (vk, sk).

SIG.Sign′(sk, (m′
1, . . . ,m

′
ℓsig,2

)). Choose r′ ← Z∗
p and set R′ ← gr

′
, S′ ← (R′)v

′
,

and T ′ ← (h
∏ℓsig,2

i=1 (m′
i)

−u′
i)1/r

′
. Output σ ← (R′, S′, T ′).

SIG.Rerand′(vk, (R′, S′, T ′)). Choose s← Z∗
p and compute (R̃′, S̃′, T̃ ′)← ((R′)s,

(S′)s, (T ′)1/s). Output (R̃′, S̃′, T̃ ′).
SIG.Ver′(vk, (m1, . . . ,mℓsig,2), (R,S, T)). VerifyR′, S′ ∈ G1, T

′,m′
1, . . . ,m

′
ℓsig,2

∈
G2, e(R

′, V ′) = e(S′, h), and e(R′, T ′)
∏ℓsig,2

i=1 e(U ′
i ,m

′
i) = e(g, h). If all the

equations hold, output 1. Otherwise, output 0.

Theorem E.2. The above construction is EUF-CMA secure in the generic bi-
linear group model.

Linkable Indistinguishable Tag. We provide a simple construction of linkable
indistinguishable tags from the DDH assumption. Here, H : {0, 1}∗ → G2 is a
cryptographic hash function modeled as a random oracle.

LIT.KG(1n). Compute (p,G1,G2,GT , e, g, h) ← G(1n) and choose x ← Zp. Set
tagpk← gx and tagsk← x and output (tagpk, tagsk).

LIT.Tag(tagsk, I). Compute τ ← H(I)tagsk and output τ .
LIT.Link(τ0, τ1). Check τ0 = τ1. If it holds, output 1. Otherwise, output 0.
LIT.ChkKey(tagpk, tagsk). Check tagpk = gtagsk. If it holds, output 1. Otherwise,

output 0.

ARS with Revocation, Revisited 63

LIT.ChkTag(tagpk, tagsk, I, τ). Check tagpk = gtagsk and τ = H(I)tagsk. If they
hold, output 1. Otherwise, output 0.

Theorem E.3. If the DDH assumption on G1 for G holds, the above construc-
tion of linkable indistinguishable tags is indistinguishable in the random oracle
model.

Theorem E.4. The above construction is linkable.

Theorem E.5. If the DL assumption on G1 for G holds, the above construction
is key secret.

Theorem E.6. The above construction is key robust.

In the following, we give proof of security of the DDH-based Instantiation of
LIT.

Proof of Theorem E.3

Proof. Let A be a PPT adversary against the indistinguishability of the scheme.
Let fix a security parameter n. We consider the following games. In the games,
we assume that the challenge query I∗ should be queried to the random oracle
beforehand and any tag generation oracle query should be so.

Game1. This is the real security game of the indistinguishability.
Game2. In this game, each tag generation query of the form (0, I) is responded

with a fresh random element in G1. In addition, if b = 0, the challenge tag
τ∗ is set to be a fresh random element in G1.

Game3. In this game, each tag generation query of the form (1, I) is also re-
sponded with a fresh random element in G1. In addition, if b = 0, the
challenge tag τ∗ is also set to be a fresh random element in G1.

Let Wi be the event taht A’s guess b′ is equal to b in Gamei.
We bound the difference between the games one by one.

Lemma E.1. If the DDH assumption on G1 holds for G, there exists a PPT ad-
versary B1 against the DDH assumption satisfying |Pr[W1]−Pr[W2]| = AdvDDH

G,B1
.

Proof. We construct B1 as follows. Given (p,G1,G2,GT , e, g, h) and a DDH
problem (gα, gβ , gαβ+γ) where γ = 0 or a random element in Zp \ {0}, B1
sets tagpk0 ← gα, choose tagsk1 ← Zp, and sets tagpk1 ← gtagsk1 ; then B1
runs A(tagpk0, tagpk1). When A issues a random oracle query I, B1 chooses
uI , vI ← Zp, records uI and vI , and returns guI (gβ)vI . When A issues a tag
generation query (0, I), B1 retrieves uI and vI and returns (gα)uI (gαβ+γ)vI .
When A issues a tag generation query (1, I), B1 retrieves uI and vI and returns
(guI (gβ)vI)tagsk1 . When A issues a challenge query I∗, B1 chooses b ← {0, 1}.
Then B1 retrieves uI∗ and vI∗ , returns (gα)uI∗ (gαβ+γ)vI∗ if b = 0, and returns
(guI∗ (gβ)vI∗)tagsk1 if b = 1. Once A outputs b′ and terminates, B1 outputs 1 if
b = b′ and outputs 0 if b 6= b′.

64 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

We claim that if γ = 0 then B1 perfectly simulates Game1 and that if γ 6= 0
then B1 perfectly simulates Game2. To see this, we examine the joint distribution
of the response H(I) to the random oracle query I and the response τ to the
tag generation query (0, I). These values are computed as H(I) = guI (gβ)vI and
τ = (gα)uI (gαβ+γ)vI . Due to the randomness of uI ,H(I) is distributed unifromly
over G1. Furthermore, if γ = 0, we have that τ = (gα)uI (gαβ)vI = (guI+βvI)α.
This means that τ is generated honestly using tagsk0 = α. If γ 6= 0, due to
the randomness of vI , τ is distributed uniformly over G1 and independently of
H(I). Therefore, if γ = 0, B1 perfectly simulates Game1 and if γ 6= 0, B1 perfectly
simulates Game2. Hence the lemma holds.

Lemma E.2. If the DDH assumption on G1 holds for G, there exists a PPT ad-
versary B2 against the DDH assumption satisfying |Pr[W1]−Pr[W2]| = AdvDDH

G,B2
.

Proof. We construct B2 as follows. Given (p,G1,G2,GT , e, g, h) and a DDH prob-
lem (gα, gβ , gαβ+γ) where γ = 0 or a random element in Zp \ {0}, B2 chooses
tagpk0 ← G1, sets tagpk1 ← gα, and runs A(tagpk0, tagpk1). When A issues a
random oracle query I, B2 chooses uI , vI ← Zp, records uI and vI , and returns
guI (gβ)vI . When A issues a tag generation query (0, I), B2 chooses a uniformly
random element in G1 and returns it. When A issues a tag generation query
(1, I), B2 retrieves uI and vI and returns (gα)uI (gαβ+γ)vI . When A issues a
challenge query I∗, B2 chooses b← {0, 1}. If b = 0, then B2 chooses a uniformly
random element in G1 and returns it. If b = 1, then B2 retrieves uI∗ and vI∗

and returns (gα)uI∗ (gαβ+γ)vI∗ . Once A outputs b′ and terminates, B2 outputs
1 if b = b′ and outputs 0 if b 6= b′.

From a similar argument as in the above lemma, we have that if γ = 0,
B2 perfectly simulates Game2 and that if γ 6= 0, B2 perfectly simulates Game3.
Hence the lemma holds.

Using the lemmas above, we have that∣∣∣∣Pr[W1]−
1

2

∣∣∣∣
≤ |Pr[W1]− Pr[W2]|+ |Pr[W2]− Pr[W3]|+

∣∣∣∣Pr[W3]−
1

2

∣∣∣∣
= AdvDDH

G,B1
+ AdvDDH

G,B2
.

The last equality is due to the lemmas and the fact that in Game3, the challenge
bit is independent of the view of A. This completes the proof.

Proof of Theorem E.4

Proof. Let A be an PPT adversary against the linkability of the scheme. Let
(tagpk, tagsk0, tagsk1, I, τ0, τ1) be the output ofA in the experiment. If LIT.ChkTag
(tagpk, tagsk0, I, τ0) = 1, it holds that tagpk = gtagsk0 and τ0 = H(I)tagsk0 . Sim-
ilarly, if LIT.ChkTag(tagpk, tagsk1, I, τ1) = 1, it holds that tagpk = gtagsk1 and

ARS with Revocation, Revisited 65

τ1 = H(I)tagsk1 . Since g is a generator of G1 and thus the order of g is p, the map-
ping Zp 3 x 7→ gx ∈ G1 is bijection. Then, the fact that tagpk = gtagsk0 = gtagsk1

implies that tagsk0 = tagsk1. Hence, if the above conditions hold, it holds
that τ0 = H(I)tagsk0 = H(I)tagsk1 = τ1. For such a pair of inputs (τ0, τ1),
LIT.Link(τ0, τ1) outputs 1. This concludes the proof.

Proof of Theorem E.5

Proof. Let A be a PPT adversary against the key secrecy of the scheme. Let
us fix a security parameter n. We construct a reduction B that satisfies that
Advkey-secLIT,A (n) = AdvDL

G,B(n). The construction of B is as follows. Given a de-
scription of bilinear groups (p,G1,G2,GT , e, g, h) and a DL problem y, B sets
tagpk← y and runs A(tagpk). We assume that any tag generation oracle query
should be queried to the random oracle beforehand. When A issues a random
oracle query I, B chooses rI ← Zp and returns grI . When A issues a tag gener-
ation oracle query I, B retrieves rI and returns tagpkrI . Once A outputs tagsk∗

and terminates, B outputs tagsk∗.
This completes the description of B. It holds that B perfectly simulate the

experiment. Furthermore, if A wins the game, it holds that y = tagpk = gtagsk
∗
.

This means that if A wins the game, B solves the DL problem. This concludes
the proof.

Proof of Theorem E.6

Proof. Let A be a PPT adversary against the key robustness of the scheme. Let
(I, tagpk0, tagsk0, τ0, tagpk1, tagsk1, τ1) be the output of A. If LIT.ChkTag(tagpk0,
tagsk0, I, τ0) = 1, we have that tagpk0 = gtagsk0 and τ0 = H(I)tagsk0 . Similarly,
if LIT.ChkTag(tagpk1, tagsk1, I, τ1) = 1, we have that tagpk1 = gtagsk1 and τ1 =
H(I)tagsk1 . If LIT.Link(τ0, τ1) = 1, it holds thatH(I)tagsk0 = τ0 = τ1 = H(I)tagsk0 .
If these three conditions holds, with overwhelming probability, it holds that
tagsk0 = tagsk1. This is because H(I) 6= 1, and hence H(I) is a generator of
G1. In that case, the mapping Zp 3 x 7→ H(I)x ∈ G1 is bijection and thus
tagsk0 = tagsk1. The probability that A finds I satisfying H(I) = 1 is at most
qh/p where qh is the number of random oracle queries from A. This concludes
the proof.

Accumulators with revocation. We present a construction of accumulator
with revocation from the q-DHE assumption. They are abstracted from the
Libert-Peters-Yung group signature scheme [28]. In this construction, we use the
Libert-Yung construction of VC, which is presented in the appendix E. Next,
we provide the instantiation of ACC using VC with the above instantiation. The
following instantiation makes use of the subset difference method by Naor et
al. [32] (See Section A.6).

ACC.Setup(1n,m). Compute a commitment key ck ← VC.Setup(1n,m + 1) of
the vector commitment scheme and generate a key pair (vkcert, skcert) ←
SIG.KG(1n). Then set ppacc ← (m, ck, vkcert) and skacc ← skcert. Output
(ppacc, skacc).

66 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

ACC.Wit(ppacc, skacc, id). Compute (com, aux)← VC.Com(ck, (id|0, id|1, . . . , id|m))
and generate ζ ← SIG.Sign(skcert, 〈id, com〉). Set wit← (com, aux, ζ) and out-
put wit.

ACC.Acc(ppacc, R). Parse (m, ck, vkcert)← ppacc. Compute ((p1, s1), . . . , (pr, sr))
← SD(1m, R). Generate a key pair (vkrevoke, skrevoke)← SIG.KG(1n) and gen-
erate a signature ρi ← SIG.Sign(skrevoke, 〈pi, |pi|, si, |si|〉) for all i ∈ [r]. Set
acc← vkrevoke and auxacc ← (vkrevoke, (pi, si, ρi)i∈[r]) and output (acc, auxacc).

ACC.Prove(ppacc, auxacc, id,wit). Parse (m, ck, vkcert)← ppacc, (vkrevoke, (pi, si, ρi)i∈[r])
← auxacc, and (com, aux, ζ)← wit. Find i ∈ [r] satisfying that pi is a prefix of
id and si is not a prefix of id. Compute openings open1 ← VC.Open(ck, aux,
|pi|+ 1) and open2 ← VC.Open(ck, aux, |si|+ 1). Set π ← (com, ζ, pi, |pi|, si,
|si|, ρi, id||si|, open1, open2) and output wit.

ACC.Verify(ppacc, acc, id, π). Parse (m, ck, vkcert) ← ppacc, vkrevoke ← acc, and
(com, ζ, p, ℓ1, s, ℓ2, ρ, ŝ, open1, open2)← π. Check that SIG.Ver(vkcert, 〈id, com〉,
ζ) = 1, SIG.Ver(vkrevoke, 〈p, ℓ1, s, ℓ2〉, ρ) = 1, VC.Open(ck, com, ℓ1+1, p, open1)
= 1, VC.Open(ck, com, ℓ2 +1, ŝ, open2) = 1, and s 6= ŝ. If all the checks pass,
output 1. Otherwise, output 0.

In the following, we provide the theorems with respect to the soundness. Proofs
of the theorems are provided in the appendix E.

Theorem E.7. If the signature scheme SIG is EUF-CMA secure and the vector
commitment scheme VC is position binding, the pairing-based accumulator with
revocation scheme is sound.

Proof of Theorem E.7

Proof. Let A be a PPT adversary against the soundness of the pairing-based
accumulator with revocation scheme. Fix a bound m of the number of users and
a security parameter n ∈ N. Let W be the event that A wins the game.

In the experiment of soundness, parsing the output of A as (com∗, ζ∗, p∗, ℓ∗1, s
∗,

ℓ∗2, ρ
∗, ŝ∗, open∗1, open

∗
2), we define the following events.

Ecert. The oracle Owit did not sign on (id∗, com∗) at any point.
Erevoke. The experiment did not sign on 〈p∗, ℓ∗1, s∗, ℓ∗2〉 when generating a chal-

lenge.
Ebind. The event Ecert did not occur, and p∗ is not a length-ℓ∗1 prefix of id∗ or

ŝ∗ is not a length-ℓ∗ prefix of id∗.

Then we have the following inequality:

Pr[W] ≤ Pr[W ∧ Ecert] + Pr[W ∧ Erevoke] + Pr[W ∧ Ebind]

+ Pr[W ∧ ¬Ecert ∧ ¬Erevoke ∧ ¬Ebind].

We will bound each term one by one.

Lemma E.3. There is an EUF-CMA adversary B1 satisfying Pr[W ∧ Ecert] ≤
AdvunfSIG,B1

(n).

ARS with Revocation, Revisited 67

Proof. We construct B1 by internally running A and simulating the soundness
experiment. The construction of B1 is as follows. Given a verification key vk of
SIG, B1 computes ppacc following the experiment with an exception that vkcert ←
vk and runsA(ppacc). WhenA issues anOwit query id, B1 computes (com, aux)←
VC.Com(ck, (id|0, id|1, . . . , id|m)) and sends 〈id, com〉 to the signing oracle. Receiv-
ing a signature ζ on 〈id, com〉, B1 sets wit← (com, aux, ζ) and returns wit to A.
WhenA issues a challenge oracle R, B1 responds to this following the experiment.
WhenA outputs (id∗, π∗), B1 parses (com∗, ζ∗, p∗, ℓ∗1, s

∗, ℓ∗2, ρ
∗, ŝ∗, open∗1, open

∗
2)←

π∗ and outputs (〈id∗, com∗〉, ζ∗).
This completes the description of B1. Then we bound the probability Pr[W ∧

Ecert]. Firstly, B1 perfectly simulates the experiment. If the event W occurs, the
output of B1 is verified as valid. Furthermore, if the event Ecert occurs, B1 has
not queried 〈id∗, com∗〉 to the signing oracle. Therefore, if W ∧ Ecert occurs, B1
wins the EUF-CMAgame. This implies the lemma.

Lemma E.4. There is an EUF-CMA adversary B1 satisfying Pr[W ∧ Ecert] ≤
AdvunfSIG,B1

(n).

Proof. We construct B2 by internally running A and simulating the soundness
experiment. The construction of B2 is as follows. Given a verification key vk,
B2 sets up ppacc following the experiment and runs A(ppacc). When A issues an
Owit query, B2 responds to this following the experiment. Since B2 set up ppacc
by itself, B2 knows skacc and thus B2 can compute ζ. When A issues a challenge
query R, B2 computes ((p1, s1), . . . , (pr, sr)) ← SD(1m, R) and issues signing
queries 〈p1, |p1|, s1, |s1|〉, . . . , 〈pr, |pr|, sr, |sr|〉 and receives ρ1, . . . , ρr. Then B2
sets acc← vk and auxacc ← (vk, ((pi, si, ρi))i∈[r]) and returns (acc, auxacc). Once
A outputs (id∗, π∗), B2 parses (com∗, ζ∗, p∗, ℓ∗1, s

∗, ℓ∗2, ρ
∗, ŝ∗, open∗1, open

∗
2) ← π∗

and outputs (〈p∗, ℓ∗1, s∗, ℓ∗2〉, ρ∗).
This completes the description of B2. Then we bound the probability Pr[W ∧

Erevoke]. Firstly, B2 perfectly simulates the experiment. If the event W occurs,
the output of B2 is verified as valid under the verification key vk. Furthermore, if
the event Erevoke occurs, B2 has not queried 〈p∗, ℓ∗1, s∗, ℓ∗2〉 to the signing oracle.
Therefore, if W ∧ Erevoke occurs, B2 wins EUF-CMAgame. This implies the
lemma.

Lemma E.5. There is a position binding adversary B3 satisfying Pr[W∧Ebind] ≤
Advpos-bindVC,B3

(n).

Proof. We construct B3 by internally running A and simulating the soundness
experiment. The construction of B3 is as follows. Given a commitment key ck, B3
sets up ppacc by using this given ck as a part of ppacc. Then B3 runsA(ppacc) by re-
sponding to queries from A honestly. When responding to Owit queries, B3 stores
(com, aux) computed in response to queries for later purpose. Once A outputs
(id∗, π∗) and terminates, B3 parses (com∗, ζ∗, p∗, ℓ∗1, s

∗, ℓ∗2, ρ
∗, ŝ∗, open∗1, open

∗
2)←

π∗. Then B3 searches for an Owit query id satisfying that id = id∗ and the com
computed in response to this query is equal to com∗ and retrieves aux that is
generated together with com. Then B3 checks whether p∗ is not the length-ℓ∗1

68 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

prefix of id∗. If not, B3 computes open1 ← VC.Open(ck, aux, ℓ∗1 + 1) and outputs
(com∗, ℓ∗1 + 1, id∗|ℓ∗1 , open1, p

∗, open∗1). If it is, B3 checks whether ŝ∗ is not the
length-ℓ∗2 prefix of id∗. If not, B3 computes open2 ← VC.Open(ck, aux, ℓ∗2+1) and
outputs (com∗, ℓ∗2+1, id∗|ℓ∗1 , open2, ŝ

∗, open∗2). If it is, outputs (⊥,⊥,⊥,⊥,⊥,⊥).
This completes the description of B3. Then we bound the probability Pr[W ∧

Ebind]. Let us assume W ∧ Ebind occurs. Since Ebind occurs, we have ¬Ecert

occur. Then B3 can find an Owit query id which is equal to id∗ and com that
is generated in response to this query is equal to com∗. Since Ebind occurs, B3
finds one of the following two conditions holds: p∗ is not the length-ℓ∗1 prefix
of id∗, or s∗ is not the length-ℓ∗2 prefix of id∗. If the former is true, B3 outputs
(com∗, ℓ∗1+1, id∗|ℓ∗1 , open1, p

∗, open∗1). Due to the correctness of VC, it holds that
VC.Ver(ck, com, ℓ∗1 + 1, id|ℓ∗1 , open1) = VC.Ver(ck, com∗, ℓ∗1 + 1, id∗|ℓ∗1 , open1) =
1. Due to the event W , it holds that VC.Ver(ck, com∗, ℓ∗1 + 1, p∗, open∗1) = 1.
Thus, in this case, B3 breaks the position bindingproperty of VC. In the latter
case, B3 outputs (com∗, ℓ∗2 + 1, id∗|ℓ∗1 , open2, ŝ

∗, open∗2). Similarly, we have that
VC.Ver(ck, com, ℓ∗2 + 1, id|ℓ∗2 , open2) = VC.Ver(ck, com∗, ℓ∗2 + 1, id∗|ℓ∗2 , open2) = 1
and VC.Ver(ck, com∗, ℓ∗2+1, ŝ∗, open∗2) = 1. In either case, B3 breaks the position
bindingproperty, which implies the lemma.

Lemma E.6. It holds that Pr[W ∧ ¬Ecert ∧ ¬Erevoke ∧ ¬Ebind] = 0.

Proof. Let us assume that the eventW∧¬Ecert∧¬Erevoke∧¬Ebind occurs. Then,
due to the event ¬Erevoke, we have that the subset described by (p∗, s∗) does not
include id∗. Besides, since ¬Ebind occurs, p∗ is the length-ℓ∗1 prefix of id∗ and ŝ∗

is the length-ℓ∗2 prefix of id∗. Furthermore, s∗ is length ℓ∗2 and ŝ∗ 6= s∗, which
implies that id∗ does not have s∗ as a prefix. This means that id∗ is included in
the subset described by (p∗, s∗). This contradicts to the event Erevoke and hence
the probability in the lemma is 0.

These lemmas prove the inequality and hence conclude the proof.

Instantiation of VC from the q-DHE assumption. Here, we provide a
construction of q-DHE assumption by Libert and Yung [29].

VC.Setup(1n, q). Compute (p,G1,G2,GT , e, g, h) ← G(1n). Choose z ← Zp and

sets gi ← gz
i

and hi ← hz
i

for i ∈ [2q]\{q+1}. Output ck← ((gi)i∈[2q]\{q+1},
(hi)i∈[2q]\{q+1}).

VC.Com(ck, (m1, . . . ,mq)). Compute com ←
∏

i∈[q] g
mi
q+1−i and aux ← (m1, . . . ,

mq) and output (com, aux).
VC.Open(ck, aux, j). Compute open←

∏
i∈[q]\{j} g

mj

q+1−i+j and output open.

VC.Ver(ck, com, i,m, open). Verify e(com, gi) = e(open, h)e(g1, hq)
m. If it holds,

output 1. Otherwise, output 0.

Theorem E.8. If the symmetric q-Diffie-Hellman exponent assumption for G
holds, the above vector commitment scheme is position binding.

ARS with Revocation, Revisited 69

Non-Interactive Zero-Knowledge for ρ1. We need a non-interactive zero-
knowledge for the following language:

ρ1 = {(((c1,c2), (vk, ppacc), (ek1, ek2), acc, item, τ), (upk, usk, id, πacc, θ, r1, r2)) |
c1 = PKE.Enc(ek1, upk; r1) ∧ c2 = PKE.Enc(ek2, upk; r2)

∧ LIT.ChkKey(upk, usk) = 1

∧ LIT.ChkTag(upk, usk, 〈vk, ppacc, item〉, τ) = 1

∧ ACC.Verify(ppacc, acc, id, πacc) = 1

∧ SIG.Ver(vk, 〈upk, id, item〉, θ) = 1}.

This condition is equivalent to the following:

c1 = PKE.Enc(ek1, upk; r1),

c2 = PKE.Enc(ek2, upk; r2),

LIT.ChkKey(upk, usk) = 1,

LIT.ChkTag(upk, usk, 〈ipk, item〉, τ) = 1,

SIG.Ver(vkcert, 〈id, com〉, ζ) = 1,

SIG.Ver′(vkrevoke, 〈p, ℓ1, s, ℓ2, 〉, ρ) = 1,

VC.Ver(ck, com, ℓ1 + 1, p, open1) = 1,

VC.Ver(ck, com, ℓ2 + 1, ŝ, open2) = 1,

s 6= ŝ,

SIG.Ver(vk, 〈upk, id, item〉, θ) = 1

where ppacc = (n, ck, vkcert), acc = vkrevoke, and πacc = (com, ζ, p, ℓ1, s, ℓ2, ρ,
ŝ, open1, open2). By substituting the equations with the instantiation, we can
rewrite the equation as follows:

e1 = gr1 ,

e2 = gr2 ,

f1/y
r1
1 = f2/y

r2
2 ,

f1/y
r1
1 = gusk,

τ = H(〈ipk, item〉)usk,
e(V,R) = e(g, S),

e(T,R)e(hid, U1)e(com, U2) = e(g, h),

e(R′, V ′) = e(S′, h),

e(R′, T ′)e(U ′
1, h

p)e(U ′
2, hℓ1+1)e(U

′
3, h

s)e(U ′
4, hℓ2 + 1) = e(g, h),

e(com, hℓ1+1) = e(open1, h)e(g1, hℓ+1)
p,

e(com, hℓ2+1) = e(open2, h)e(g1, hℓ+1)
ŝ,

s 6= ŝ,

e(V ′′, R′′) = e(g, S′′),

70 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

e(T ′′, R′′)e(f1/y
r1
1 , U

′′
1)e(g

id, U ′′
2)e(g

item, U ′′
3) = e(g, h)

where c1 = (e1, f1), c2 = (e2, f2), ek1 = y1, ek2 = y2, vkcert = (U1, U2, V), ζ =
(R,S, T), vkrevoke = (U ′

1, . . . , U
′
4, V

′), ρ = (R′, S′, T ′), ck = ((gi)i∈[2(ℓ+1)]\{ℓ+2}, (hi)i∈[2(ℓ+1)]\{ℓ+2}),
vk = (U ′′

1 , . . . , U
′′
3 , V

′′), and θ = (R′′, S′′, T ′′). Here, the equation LIT.ChkKey(upk, usk) =
1, which is instantiated as upk = gusk, is replaced with f1/y

u1
1 = gusk for the

consistency between this equation and the ElGamal encryption. Similarly, the
appearance of upk in the verification equations of θ is also replaced with f1/y

r1
1 .

In addition, note that in order to sign on ℓ1 +1 and ℓ2 +1 by ρ, we instead sign
on hℓ1+1 and hℓ2+1.

We explain how these equations are proved by a Schnorr-like protocol. Lin-
ear equations are easy to adapt to a Schnorr-like protocol (e.g., by Maurer’s
abstraction [30]) but non-linear equations are not.

We explain how these non-linear equations are adapted to a Schnorr-like
protocol.

To this end, we let the protocol send the following encryption of some wit-
nesses and the random element:

C0 ← gρ, C1 ← pkρ1com C2 ← pkρ2g
s, C3 ← pkρ3g

ŝ,

D0 ← hσ, D1 ← (pk′1)
σhℓ1+1, D2 ← (pk′2)

σhℓ2+1, E ← gυ(s−ŝ).

where ρ, σ ← Zp, υ ← Z∗
p, and the public keys pk1, pk2, pk3 ∈ G1 and pk′1,

pk′2 ∈ G2 are chosen by a random oracle. Here, we need to prove the well-
formedness of the part of the ciphertext C0, C2, C3, and D0:

C0 = gρ, C2 = pkρ2g
s, C3 = pkρ3g

ŝ, D0 = hσ.

Furthermore, we let the protocol rerandomize (R,S, T) and (R′, S′, T ′) by
running (R̃, S̃, T̃) ← SIG.Rerand(vkcert, (R,S, T)), (R̃′, S̃′, T̃ ′) ← SIG.Rerand′(
vkrevoke, (R

′, S′, T ′)), and (R̃′′, S̃′′, T̃ ′′)← SIG.Rerand(vk, (R′′, S′′, T ′′)) and prove

e(V, R̃) = e(g, S̃),

e(T̃ , R̃)e(hid, U1)e(com, U2) = e(g, h),

e(R̃′, V ′) = e(S̃′, h),

e(R̃′, T̃ ′)e(U ′
1, h

p)e(U ′
2, hℓ1+1)e(U

′
3, h

s)e(U ′
4, hℓ2 + 1) = e(g, h),

e(V ′′, R̃′′) = e(g, S̃′′),

e(T̃ ′′, R̃′′)e(f1/y
r1
1 , U

′′
1)e(g

id, U ′′
2)e(g

item, U ′′
3) = e(g, h)

instead. This way, we can send R̃, R̃′, and R̃′′ in the clear. In addition, for
consistency between the above equation and the encryption C1, D1, and D2, we
need to replace the appearance of com, hℓ1+1, and hℓ2+1 with the ciphertexts:

e(V, R̃) = e(g, S̃),

e(T̃ , R̃)e(hid, U1)e(C1/pk
ρ
1, U2) = e(g, h),

ARS with Revocation, Revisited 71

e(R̃′, V ′) = e(S̃′, h),

e(R̃′, T̃ ′)e(U ′
1, h

p)e(U ′
2, D1/(pk

′
1)

σ)e(U ′
3, h

s)e(U ′
4, D2/(pk

′
2)

σ) = e(g, h)

These equations are now linear. Then we can adapt these to a Schnorr-type
protocol.15

Then the remaining non-linear equations are as follows:

e(com, hℓ1+1) = e(open1, h)e(g1, hℓ+1)
p,

e(com, hℓ2+1) = e(open2, h)e(g1, hℓ+1)
ŝ,

s 6= ŝ.

We explain how we prove the above three equations.
The first equation can be rewritten by substituting com and hℓ1+1 by their

encryption as follows:

e(C1/pk
ρ
1, D1/(pk

′
1)

σ) = e(open1, h)e(g1, hℓ+1)
p.

This equation is equivalent to

e(C1, D1)e(C1, pk
′
1)

σe(pk1, D1)
ρe(pk1, pk

′
1)

δρσ = e(open1, h)e(g1, hℓ+1)
p,

if we substitute ρσ = δρσ. We need to ensure that δρσ = ρσ, which can be done
by proving the additional equation

Cσ
0 = gδρσ .

Similarly, the second equation can be rewritten as

e(C1, D2)e(C1, pk
′
2)

σe(pk1, D2)
ρe(pk1, pk

′
2)

δρσ = e(open2, h)e(g1, hℓ+1)
ŝ.

Finally, the equation s 6= ŝ is rewritten as follows. Note we included the ele-
ment E = gυ(s−ŝ). Then if we can prove the well-formedness of E, the remaining
task is to check that E 6= 1. Since E is sent in the clear, this check is easy. To
prove the well-formedness of E, we introduce variables δυ(s−ŝ) = υ(s − ŝ) and
δυρ = υρ to linearize the well-formedness of E. Then we prove the following
equations:

E = gδυ(s−ŝ) , (C2/C3)
υ = (pk2/pk3)

δυρgδυ(s−ŝ) , Cυ
0 = gδυρ .

To summarize, our Schnorr-like protocol proceeds as follows. Firstly, the
prover sends C0, C1, C2, C3, D0, D1, D2, and E computed as above. Then the

15 We use some group elements as a part of the witnesses of a Shcnorr-like protocol.
This is not a very popular approach but it completely fits into Maurer’s abstraction.
For example, if we prove the knowledge of S̃ satisfying e(V, R̃) = e(g, S̃) with public
V , R̃, and g, we simply consider a one-way group homomorphism f : S̃ 7→ e(g, S̃) and
prove the knowledge of the preimage S̃ such that e(V, R̃) = f(S̃) following Maurer’s
abstraction.

72 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

prover and the verifier conduct a Schnorr-like protocol for proving the following
linear equations:

C0 = gρ,

C2 = pkρ2g
s,

C3 = pkρ3g
ŝ,

D0 = hσ,

e1 = gr1 ,

e2 = gr2 ,

f1/y
r1
1 = f2/y

r2
2 ,

f1/y
r1
1 = gusk,

τ = H(〈ipk, item〉)usk,
e(V, R̃) = e(g, S̃),

e(T̃ , R̃)e(hid, U1)e(C1/pk
ρ
1, U2) = e(g, h),

e(R̃′, V ′) = e(S̃′, h),

e(R̃′, T̃ ′)e(U ′
1, h

p)e(U ′
2, D1/(pk

′
1)

σ)e(U ′
3, h

s)e(U ′
4, D2/(pk

′
2)

σ) = e(g, h),

e(C1, D1)e(C1, pk
′
1)

σe(pk1, D1)
ρe(pk1, pk

′
1)

δρσ = e(open1, h)e(g1, hℓ+1)
p,

e(C1, D2)e(C1, pk
′
2)

σe(pk1, D2)
ρe(pk1, pk

′
2)

δρσ = e(open2, h)e(g1, hℓ+1)
ŝ,

e(V ′′, R̃′′) = e(g, S̃′′),

e(T̃ ′′, R̃′′)e(f1/y
r1
1 , U

′′
1)e(g

id, U ′′
2)e(g

item, U ′′
3) = e(g, h),

Cσ
0 = gδρσ ,

E = gδυ(s−ŝ) ,

(C2/C3)
υ = (pk2/pk3)

δυρgδυ(s−ŝ) ,

Cυ
0 = gδυρ .

If the protocol ends with acceptance and E 6= 1, the verifier accepts the state-
ment. Otherwise, the verifier rejects it.

In addition, we need the simulation extractability of NIZK in our generic
construction. It is not necessarily true that the Fiat-Shamir transformation of
any Σ protocol is simulation extractable but there is a simple way to enhance the
Fiat-Shamir transformation in such a way that any Σ protocol is transformed
into a simulation extractable NIZK. The idea is that, when generating a non-
interactive proof, a prover generates a key pair of a strongly unforgeable one-time
signature scheme, appends the verification key to the input to the hash function
for generating a challenge, and signs on the response. The resulting proof consists
of the standard Fiat-Shamir transformed proof together with the verification key
and a signature. A verifier verifies the Fiat-Shamir transformed proof and the
one-time signature and accepts the entire proof if both of the verifications pass.
Detailed description will be provided in the supplemental materials F.

ARS with Revocation, Revisited 73

Non-Interactive Zero-Knowledge for ρ2. We then explain how we instan-
tiated the NIZK for ρ2. The statement that needs to be proven is as follows:

ρ2 = {((ek1,c1, upk), (dk1, rPKE)) |
upk = PKE.Dec(dk1, c1) ∧ (ek1, dk1) = PKE.KG(1n; rPKE)}.

This statement is instantiated with the above Cramer-Shoup encryption as fol-
lows:

f1/e
x1
1 = upk,

y1 = gx1 .

where ek1 = y1 = gx1 , c1 = (e1, f1), and dk1 = x1.
These relations are all linear. Then we can instantiate the NIZK by simply

applying Maurer’s generic protocol [30].

Signature Size. A signature of our ARS scheme includes two ElGamal cipher-
texts in G1, one linkable indistinguishable tag in G1, a Fiat-Shamir NIZK, and
a verification key and a signature of a one-time signature scheme. The two El-
Gamal ciphertexts requires four G1 elements and the likable indistinguisable tag
requires one G1 element. The language that our Fiat-Shamir NIZK proves has
three G1 witnesses, three G2 elements, and 12 Zp witnesse. The response of the
underlying Σ protocol includes the same number of elements as above. In addi-
tion to this, one Zp challenge is needed. Finally, for the one-time signature, we
use Bellare-Shoup’s transformation [8] applied to the Okamoto identification [36].
This one-time signature scheme has a verification key of three G1 elements and
a signature of two Zp element. In total, a signature of our scheme includes 16 G1

elements, 6 G2 elements, and 15 Zp elements. This requires in total 16 kilobits
for one signature if we use a BLS12-381 curve.

F Fiat-Shamir Transformation with Simulation
Extractability

In our generic construction, we need a simulation extractable NIZK. Here, we
explain how we generically obtain a simulation extractable NIZK by the Fiat-
Shamir transformation.

We first define a syntax of Σ protocols with recoverable commitment, which
will be then transformed into a simulation extractable NIZK. A Σ protocol
with recoverable commitment for an NP relation R is defined by the following
algorithms.

Σ.Setup(1n)→ crs. The setup algorithm, given a security parameter 1n, outputs
a common reference string crs.

Σ.Com(crs,X,W)→ (αunrec, αrec, state). The commitment algorithm, given a com-
mon reference string crs, a statement X, and a W, outputs a commitment
(αunrec, αrec) and state information state.

74 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

Σ.Chal(crs,X)→ β. The challenge algorithm, given a common reference string
crs and a statement X, outputs a challenge β.

Σ.Resp(crs,X,W, β, state)→ γ. The response algorithm, given a common refer-
ence string crs, a statement X, a witness W, a challenge β, and state infor-
mation state, outputs a response γ.

Σ.Verify(crs,X, αunrec, β, γ). The verification algorithm, given a common refer-
ence string crs, a statement X, the unrecoverable part of a commitment
αunrec, a challenge β, and a response γ, outputs a recovered commitment
αrec or a rejection symbol ⊥.

We require a Σ protocol to be correct, honest-verifier zero-knowledge, spe-
cially sound, and high min-entropy commitments.

Definition F.1 (Correctness). A Σ protocol Σ satisfies correctness if for all
n ∈ N and all (X,W) ∈ R, we have

Pr

crs← Σ.Setup(1n),

(αunrec, αrec, state)← Σ.Com(crs,X,W),
β ← Σ.Chal(crs,X),

γ ← Σ.Resp(crs,X,W, β, state),
ᾱrec ← Σ.Verify(crs,X, αunrec, β, γ)

: αrec = ᾱrec 6= ⊥

 = 1.

Definition F.2 (Honest-verifier zero-knowledge). A Σ protocol Σ satisfies
honest-verifier zero-knowledge if there is simulator algorithms Σ.Setup and Σ.Sim
satisfying that for all PPT adversary A, it holds that∣∣∣∣∣∣Pr

 crs← Σ.Setup(1n),
b← AOprf (crs)

: b = 1

− Pr

 (crs, td)← Σ.SimSetup(1n),
b← AOsim(1n),

: b = 1

∣∣∣∣∣∣ = negl(n)

where the oracles are defined as follows.

Oprf . Given a pair (X,W) ∈ R, this oracle computes (αunrec, αrec, state) ←
Σ.Com(crs,X,W), β ← Σ.Chal(crs,X), and γ ← Σ.Resp(crs,X,W, β, state)
and returns (αunrec, αrec, β, γ). If (X,W) 6∈ R, the oracle returns ⊥.

Osim. Given a pair (X,W) ∈ R, this oracle computes (αunrec, αrec, β, γ) ←
Σ.Sim(td,X) and returns (αunrec, αrec, β, γ). If (X,W) 6∈ R, the oracle re-
turns ⊥.

Definition F.3 (Special soundness). A Σ protocol Σ is specially sound, if
there exists an extractor Σ.Ext satisfying that for any common reference string
crs, any statement X, and any related transcripts (αunrec, αrec, β, γ) and (αunrec,
αrec, β

′, γ′), if it holds that Σ.Verify(crs, αunrec, β, γ) = αrec 6= ⊥, Σ.Verify(crs,
αunrec, β

′, γ′) = αrec 6= ⊥, and β 6= β′, then the output w ← Σ.Ext(crs,X, αunrec,
αrec, β, γ, β

′, γ′) satisfies that (X,W) ∈ R.

Definition F.4 (High min-entropy of commitments). Let Σ is a Σ pro-
tocol. We define µ(crs,X,W) = maxᾱ Pr[(αunrec, αrec, –) ← Σ.Com(crs,X,W) :
ᾱ = (αunrec, αrec)] and ε(n) = min(crs,X,W)(− log2 µ(crs,X,W)). The Σ protocol
Σ has high min-entropy of commitments if ε(n) is super-logarithmic.

ARS with Revocation, Revisited 75

A Σ protocol with recoverable commitment is transformed to a simulation
extractable NIZK in the random oracle model. We use a strongly unforgeable
one-time signature scheme (SIG.KG, SIG.Sign, SIG.Ver).

NIZK.Setup(1n). On input a security parameter 1n, set crs ← Σ.Setup(1n) and
output crs.

NIZK.Prove(crs, lbl,X,W). Compute (αunrec, αrec, state)← Σ.Com(crs,X,W) and
generate a key pair (vkot, skot)← SIG.KG(1n). Compute β ← H(crs,X, lbl, vkot,
αunrec, αrec), γ ← Σ.Resp(crs,X,W, β, state), and σot ← SIG.Sign(skot, γ).
Output π ← (vkot, αunrec, β, γ, σot).

NIZK.Verify(crs, lbl,X, π). Parse (vkot, αunrec, β, γ, σot) ← π. Compute ᾱrec ←
Σ.Verify(crs,X, αunrec, β, γ) and check that ᾱrec 6= ⊥, β = H(crs,X, lbl, vkot,
αunrec, ᾱrec), and SIG.Ver(vkot, γ, σot) = 1. If all the checks pass, output 1.
Otherwise, output 0.

We prove that the above NIZK is zero-knowledge and simulation extractable.

Theorem F.1 (Zero-knowledge). If the underlying Σ protocol Σ is honest-
verifier zero-knowledge and has high min-entropy commitments, then the trans-
formed NIZK NIZK is zero-knowledge, that is, there are a set of simulators
(NIZK.SimSetup,NIZK.SimRO,NIZK.SimPrf) satisfying that for all PPT distin-
guisher A, it holds that

|Pr[crs← Σ.Setup(1n) : AH,P(crs)→ 1]

− Pr[(crs, stateRO)← NIZK.SimSetup(1n) : AONIZK.SimRO,ONIZK.SimPrf (crs)→ 1]|
= negl(n)

where the oracles are defined as follows.

H. This is a random oracle.
P. This oracle, given a pair (X,W) ∈ R, computes (αunrec, αrec, state)← Σ.Com

(crs,X,W), β ← Σ.Chal(crs,X), and γ ← Σ.Resp(crs,X,W, β, state), and re-
turns (αunrec, αrec, β, γ). If (X,W) 6∈ R, this oracle returns ⊥.

ONIZK.SimRO. This oracle, given a random oracle query q, computes (h, stateRO)←
NIZK.SimRO(q, stateRO), and returns h.

ONIZK.SimPrf . This oracle, given a pair (X,W) ∈ R, computes ((αunrec, αrec, β,
γ), stateRO) ← NIZK.SimPrf(X, stateRO) and returns (αunrec, αrec, β, γ). If
(X,W) 6∈ R, this oracle returns ⊥.

Proof. We construct a set of simulators as follows.
The simulator NIZK.SimSetup(1n) runs (crs, td)← Σ.SimSetup(1n) and store

td and an empty hash list in stateRO. Then NIZK.SimSetup outputs (crs,
mathsfstateRO.

The NIZK.SimRO, given a random oracle query q, uses the hash list stored in
stateRO to responds to the query. Namely, if the hash value of q is stored in the
hash list, NIZK.SimRO responds with this hash value. Otherwise, NIZK.SimRO
samples a fresh hash value β, store (q, β) in the hash list. Finally NIZK.SimRO
outputs (β, stateRO) where stateRO is the updated state information.

76 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

The simulator NIZK.SimPrf, given a statement X and a label lbl, uses the
trapdoor td stored in stateRO and simulates a transcript (αunrec, αrec, β, γ) ←
Σ.Sim(td,X). Then NIZK.SimPrf generates a key pair of the one-time signature
scheme (vkot, skot)← SIG.KG(1n). After that, NIZK.SimPrf updates the hash list
stored in stateRO by programming the random oracle as β = H(crs,X, lbl, vkot,
αunrec, ᾱrec) and generates a signature σot ← SIG.Sign(skot, γ). If the hash list
already contain an entry for (crs,X, lbl, vkot, αunrec, ᾱrec), NIZK.SimPrf outputs
(⊥, stateRO). Otherwise, it outputs ((αunrec, αrec, β, γ), stateRO).

This completes the description of the simulators.
To prove that NIZK is zero-knowledge with these simulators, we define the

following games.

Game0. The real game in the definition of the zero-knowledge property.
Game1. In this game, the oracle P samples a transcript (αunrec, αrec, β, γ) hon-

estly and checks if (crs,X, lbl, vkot, αunrec, ᾱrec) is already queried to the ran-
dom oracle. If it is already queried, the oracle P returns ⊥. Otherwise, P
returns the honestly generated proof.

Game2. In this game, a common reference string crs is sampled by running
(crs, td)← Σ.SimSetup(1n). Furthermore, the oracle P samples a transcript
by running (αunrec, αrec, β, γ)← Σ.Sim(td,X).

We claim that the adjacent games are indistinguishable. Let Ti be the event
that the adversary A outputs 1.

We claim that |Pr[T0] − Pr[T1]| = negl(n). This is because the Σ protocol
has high min-entropy commitments and thus A is unable to guess the freshly
sampled transcripts (αunrec, αrec, β, γ).

We claim that |Pr[T1] − Pr[T2]| = negl(n). This is due to the honest-verifier
zero-knowledge property of the underlying Σ protocol.

To show this, we construct a reduction B attacking the zero-knowledge prop-
erty of the Σ protocol. Let q be the number of proof queries which A makes
during the experiment. Then, given a common reference string crs, B internally
runs A, simulating Game1 or Game2, with the exception that transcripts for sim-
ulating the oracle P are queried to B’s own proof oracle. If A outputs b ∈ {0, 1},
then B outputs b.

This completes the definition of B. Clearly, if B is given access to the real
proof oracle, B simulates Game1. Similarly, if B is given access to the simulated
proof oracle, B simulates Game2. Then, |Pr[T1]−Pr[T2]| is equal to B’s advantage
in distinguishing real or simulated proofs. Thus this difference is negligible.

Finally, the game Game2 is identical to the simulation game in the definition
of zero-knowledge with the above simulators. Therefore, the above construction
of simulators provides the zero-knowledge property.

Theorem F.2 (Simulation extractability). If the underlying Σ protocol Σ is
specially sound and the underlying signature scheme SIG is strongly unforgeable
against chosen-message attacks, then the NIZK NIZK is simulation extractable
with respect to the simulators (NIZK.SimSetup,NIZK.SimRO,NIZK.SimPrf) de-
fined in Theorem F.1 and with extraction error ν = Q/ν + negl(n) where Q is

ARS with Revocation, Revisited 77

the number of hash queries made by A and negl(n) is a negligible function de-
termined only by SIG, that is, for any PPT A, there is an PPT extractor that
satisfies the following. Let

acc = Pr

(crs, td)← NIZK.SimSetup(1n),

ρ← {0, 1}poly(n),
(X∗, lbl∗, π∗)← AORO,Oprf (crs; ρ)

: (X∗, lbl∗, π∗) ∈ Tprf ∧ NIZK.Verify(crs, lbl∗,X∗, π∗) = 1

frk = Pr

(crs, td)← NIZK.SimSetup(1n),

ρ← {0, 1}poly(n),
(X∗, lbl∗, π∗)← AORO,Oprf (crs; ρ)
W∗ ← EA(crs,X∗, π∗, ρ, TRO, Tprf)

: (X∗, lbl∗, π∗) 6∈ Tprf ∧ NIZK.Verify(crs, lbl∗,X∗, π∗) = 1 ∧ (X∗, π∗) ∈ R

where the oracles ORO and Oprf and the lists TRO and Tprf are defined as follows.

ORO. The oracle ORO, given a query q, returns h where (h, stateRO) ← NIZK.
SimRO(q, stateRO).

Oprf . The oracle Oprf , given a query X, returns π where (π, stateRO) ← NIZK.
SimPrf(X, lbl, stateRO).

TRO. This is the set of the pairs of the queries to ORO and their responses.
Tprf . This is the set of the pairs of the queries to Oprf and their responses.

Then there exists a constant d > 0 and a polynomial p satisfying that whenever
acc ≥ ν, we have ext ≥ (acc− ν)d/p.

Proof. Let A be an PPT adversary that outputs a proof.
Given A, we construct an another PPT algorithm A′ as follows. This algo-

rithm A′ is given as input a common reference string crs, a list of hash values
(β1, . . . , βQ), and a random tape ρ. Given this input, A′ splits ρ into two ran-
dom tapes into ρA and ρA′ , and runs A(crs; ρA). When A issues a hash query,
A′ consumes one element from (β1, . . . , βQ) and returns it to A. When A issues
a proof query, A′ use ρA′ as randomness to simulate a proof as in NIZK.SimPrf
in Theorem F.1. When A terminates with (X∗, lbl∗, (vk∗ot, α

∗
unrec, β

∗, γ∗, σ∗
ot)),

A′ searches for the random oracle query (crs,X∗, lbl∗, vk∗ot, α
∗
unrec, ᾱrec) where

ᾱ∗
rec ← Σ.Verify(crs,X∗, α∗

unrec, β
∗, γ∗) in the hash list. If such an entry is found,

A′ lets J be the index such that hJ was consumed to respond to this hash query.
If such an index is found, A′ outputs (J, (hJ ,X

∗,Σ∗
unrec,Σ

∗
rec, β

∗, γ∗)). If no such
an index is found, A′ outputs (0,⊥).

This completes the construction of A′. Let acc be the probability in the
theorem, Eacc be the event of that probability, and Eidx be the event that the
index J is found. Then we have the following equality:

acc = Pr[Eacc] = Pr[Eacc ∧ Eidx] + Pr[Eacc ∧ ¬Eidx].

We claim that Pr[Eacc ∧ ¬Eidx] is negligible, assuming that SIG is strongly
unforgeable against chosen-message attack.

78 Ryuya Hayashi, Shuichi Katsumata, and Yusuke Sakai

Lemma F.1. If SIG is strongly unforgeable against chosen-message attacks, we
have that Pr[Eacc ∧ ¬Eidx] is negligible.

Proof. To this end, we construct a reduction B that attacks the strong unforge-
ability of SIG. The construction of B is as follows. Given vkot, B internally runs
A and simulates the oracles as in A does with the following exceptions. Firstly,
B chooses an index k ← {1, . . . , Qprf} randomly where Qprf is the number of
the proof queries that A makes. Secondly, for the k-th proof query, B uses vkot,
which is given as input to B and obtains σot by querying B’s own signing ora-
cle. Finally, when A terminates with output (X∗, lbl∗, (vk∗ot, α

∗
unrec, β

∗, γ∗, σ∗
ot)),

B outputs (γ∗, σ∗
ot).

This completes the construction of B. We claim that whenever Eacc ∧ ¬Eidx

occurs, B succeeds in forging a one-time signature with high probability. We
claim that vk∗ot = vkot with probability 1/Qprf . Since an index J is not found,
the hash value H(crs,X∗, lbl∗, vk∗ot, α

∗
unrec, ᾱrec) was programmed when respond-

ing to an proof query. Since B chooses randomly where it uses vkot from all the
proof queries, it holds that vk∗ot = vkot with probability 1/Qprf . Then we claim
that the output of B is a legitimate forgery of SIG. Remind that the output of A is
different from any of the statement-label-proof triples which are A’s proof query
and its response. In other words, let (X, lbl, (vkot, αunrec, β, γ, σot)) be the query
and its response such that the random oracleH(crs,X∗, lbl∗, vk∗ot, α

∗
unrec, ᾱrec) was

programmed when responding to this query. Then, since the inputs to H in the
proof query and A’s output are the same, we have (X∗, lbl∗, vk∗ot, α

∗
unrec, ᾱ

∗
rec) =

(X, lbl, vkot, αunrec, ᾱrec). Thus, we have that β
∗ = H(crs,X∗, lbl∗, vk∗ot, α

∗
unrec, ᾱ

∗
rec) =

H(crs,X, lbl, vkot, αunrec, ᾱrec) = β. Due to the winning condition, we have that
(X∗, lbl∗, (vk∗ot, α

∗
unrec, β

∗, γ∗, σ∗
ot)) 6= (X, lbl, (vkot, αunrec, β, γ, σot)). Therefore, we

have that (γ∗, σ∗
ot) 6= (γ, σot). Since the latter pair is B’s signing query and its

response, B succeeds in forging a one-time signature.

Now we have A′ that outputs (J, –) with J ≥ 1 with probability acc −
Pr[Eacc∧¬Eind] = acc−negl(n). Applying the general forking lemma to this A′,
we have a rewinding algorithm FA′ , that outputs (1, –, –) with probability greater
than (acc− negl(n))((acc− negl(n))/Q− 1/h). If FA′ outputs (1, (hJ ,X

∗,Σ∗
unrec,

Σ∗
rec, β

∗, γ∗), (h′J ,X
∗∗,Σ∗∗

unrec,Σ
∗∗
rec, β

∗∗, γ∗∗)), due to the construction, we have
that Σ.Verify(crs,X∗, α∗

unrec, β
∗, γ∗) = Σ.Verify(crs,X∗∗, α∗∗

unrec, β
∗∗, γ∗∗) 6= ⊥ and

that X∗ = X∗∗ and α∗ = α∗∗. Therefore, due to the special soundness of Σ, we
can extract a witness by running W← Σ.Ext(crs,X∗, α∗

unrec, ᾱ
∗
rec, β

∗, γ∗, β∗∗, γ∗∗)
where ᾱ∗ ← Σ.Verify(crs,X∗, α∗

unrec, β
∗, γ∗).

Now if we let h be the size of the domain of the challenges of Σ, we have that

ext ≥ (acc− negl(n))

(
acc− negl(n)

Q
− 1

h

)
=

1

Q

(
(acc− negl(n))2 − (acc− negl(n))

Q

h

)
.

Due to the theorem’s assumption, we have that acc − Q/h − negl(n) ≥ 0. This
implies that (acc− negl(n)) · (Q/h)− (Q/h)2 ≥ 0. Therefore,

ARS with Revocation, Revisited 79

1

Q

(
(acc− negl(n))2 − (acc− negl(n))

Q

h

)
≥ 1

Q

(
(acc− negl(n))2 − 2(acc− negl(n))

Q

h
+

(
Q

h

)2
)

=
1

Q

(
acc− negl(n)− Q

h

)2

.

This concludes the proof.

