
Foundations of Anonymous Signatures: Formal
Definitions, Simplified Requirements, and a
Construction Based on General Assumptions

Jan Bobolz1, Jesus Diaz2, and Markulf Kohlweiss3

1 University of Edinburgh, UK – jan.bobolz@ed.ac.uk
2 Input Output, Spain – jesus.diazvico@iohk.io

3 University of Edinburgh and Input Output, UK – markulf.kohlweiss@iohk.io

Abstract. In today’s systems, privacy is often at odds with utility: users
that reveal little information about themselves get restricted function-
ality, and service providers mistrust them. In practice, systems tip to
either full anonymity (e.g. Monero), or full utility (e.g. Bitcoin). Well-
known cryptographic primitives for bridging this gap exist: anonymous
credentials (AC) let users disclose a subset of their credentials’ attributes,
revealing to service providers “just what they need”; group signatures
(GS) allow users to authenticate anonymously, to be de-anonymized “just
when deemed necessary”. However, these primitives are hard to deploy.
Current AC and GS variants reach specific points in the privacy-utility
tradeoff, which we point as counter-productive engineering-wise, as it
requires full and error-prone re-engineering to adjust the tradeoff. Also,
so far, GS and AC have been studied separately by theoretical research.
We take the first steps toward unifying and generalizing both domains,
with the goal of bringing their benefits to practice, in a flexible way. We
give a common model capturing their core properties, and use functional
placeholders to subsume intermediate instantiations of the privacy-utility
tradeoff under the same model. To prove its flexibility, we show how
concrete variants of GS, AC (and others, like ring signatures) can be seen
as special cases of our scheme – to which we refer as universal anonymous
signatures (UAS). In practice, this means that instantiations following
our construction can be configured to behave as variant X of a GS scheme,
or as variant Y of an AC scheme, by tweaking a few functions.

1 Introduction

Anonymous signatures aim to strike a balance between the utility of authenticat-
ing identity information and the privacy offered by unlinkability. Exploring differ-
ent privacy-vs-utility tradeoffs has been at the core of well-known cryptographic
primitives for decades. Anonymous credentials (AC) [17] allow users to selectively
disclose attributes to verifiers. Group signatures (GS) [18] let users prove group
membership, preserving anonymity unless an authority de-anonymizes them. Re-
lated schemes, like ring signatures or direct anonymous attestation, share their
goal: preserving privacy while authenticating some useful information.

Utility at authentication time. AC schemes focus on offering utility at the mo-
ment in which a user shows possession of a credential, often enabling selective
attribute disclosure, or arbitrary predicates – e.g. “I am over 18 and from an
EU country.” In contrast, GS schemes create signatures over arbitrary messages
that, in addition, prove the statement “I am a valid member of this group.”

Utility after authentication time. Camenisch et al. [14,11] mention AC schemes
with conditional release of information after authentication – but, to the best
of our knowledge, no formal model is provided, and this type of utility is not
frequent in AC. In contrast, GS schemes emphasize utility after signing time,
typically allowing trusted parties to open signatures for signer identification.

Utility at issuance time. Frequently, the term utility refers to information re-
vealed by signatures or the authentication process, but some AC schemes add
extra semantics to issuance. For instance, some schemes support using previously
obtained credentials to request new ones [11]. In the GS literature, as far as we
know, extended behavior at issuance time has not been considered so far.

Why is this not ideal? Many AC and GS variants with different privacy-vs-utility
tradeoffs exist, covering many use cases. Yet, real world adoption is limited, with
exceptions like Hyperledger Anoncreds [35]. We explore potential reasons:

From a security point of view, while reference models exist such as the foun-
dations of group signatures series [3,4,8], each variant requires a slightly different
model to capture privacy and unforgeability properties that deviate from the es-
tablished tradeoff. That is: whenever we aim for a new privacy-vs-utility tradeoff,
a slightly different security model needs to be created, which is not a trivial task.

Engineering-wise, GS or AC schemes usually seem a good fit for privacy
problems. But often, the privacy-vs-utility tradeoff needed is not exactly what
existing schemes and implementations offer. Then, engineers face a trilemma: (1)
if, luckily, a model and provably secure construction – but no implementation –
exist for the desired tradeoff, they can implement it from scratch; (2) if an im-
plementation for a closely related scheme exists, they can adapt it ad hoc; or (3)
they may be forced to abandon the privacy-enhancing approach, to achieve the
needed utility. (1) and (2) are error-prone and discouraged for production-ready
systems; and (3) is bad for privacy. In another frequent setting, what engineers
are demanded for v1 of their product may differ from what their v2 will need.
While a flexible system may not always offer the most efficient implementation,
it may still be more acceptable than rebuilding the solution from scratch.

Given these concerns, can we create a unified tradeoff-dynamic model span-
ning privacy and security of AC and GS schemes? Is there a generic construction
for such a model, offering engineers flexibility to choose their desired privacy-vs-
utility tradeoff without requiring full reimplementation, redesign, and proof?

1.1 Our contributions

A model with functional placeholders for dynamic privacy-vs-utility tradeoffs
(Section 4). Customization is desirable during credential issuance, authentica-

2

tion, and after authentication. We use functional placeholders to capture possi-
ble tradeoffs, bringing the expressiveness of AC show predicates to issuance and
opening. Modeling this flexibility requires abstracting anonymity, unforgeability,
and non-frameability for issuance and signing. Usually, schemes prove knowledge
of a key pair and credential(s), plus a tradeoff-dependent claim that can be cap-
tured by a function. Yet, capturing security and privacy with dynamic tradeoffs
is harder than with static ones. E.g., in the dynamic case, one can define a func-
tion f such that, for two users with keys upk1, upk2, and credentials crd1, crd2,
y = f(upk1, crd1) = f(upk2, crd2). Thus, user upk1 producing a signature that
opens to y may not be a framing of user upk2. To address it, we use extraction,
and check that the extracted values are consistent with what is expected. We
call the resulting scheme Universal Anonymous Signatures (UAS).

A generic construction (Section 5). We present a generic construction, ΠUAS,
that we prove secure under our UAS model. We use BBS+ [1,10,34], a variant
of CL signatures [15], providing randomizable attribute-based credentials. This
signature scheme has been used before (e.g.[23]) to build Sign-Randomize-Proof
GS schemes [6]. We also draw inspiration from the Sign-Encrypt-Prove approach
to GS schemes [4]: we have the signer encrypt a function of their credential’s
attributes under an opener’s public key and prove its correct computation. For
issuance-time utility, the user proves, during an interactive protocol with the
issuer, that a predefined function of their public key and credentials is acceptable.

Relationships with other schemes (Section 6). We study our UAS model and
ΠUAS construction as a generalization of privacy-preserving signature and au-
thentication schemes. We define several function combinations that instantiate
specific privacy-vs-utility tradeoffs within our UAS framework – which we call
ΠUAS restrictions. We prove that these restrictions imply well-known schemes,
including digital signatures, GS, AC, and ring signatures, under their respective
reference models. While we establish concrete connections for a few schemes, the
space of possible ΠUAS restrictions is extensive. We give a glimpse of these more
advanced connections in the full version [7], where we sketch how to build GS
with message-dependent opening [20], multimodal private signatures [31], and
revocable ACs [12]. Further restrictions can be easily imagined, giving schemes
such as AC with auditability, ring signatures with some sort of linkability, etc.
This allows engineers to adapt privacy-vs-utility tradeoffs by modifying restric-
tion functions, maintaining security and controlling information leakage.

Before presenting our main construction, Section 2 introduces related work
on closely related primitives, and Section 3 summarizes our construction’s main
building blocks. Further details are deferred to the full version [7].

Why do we need flexible privacy-vs-utility tradeoffs? A promising use case for
digital identity is compliance for global decentralized financial infrastructures
(e.g., Zcash or Monero), or in Centrally Banked Digital Currencies [26]. As the
legal frameworks for such systems is still evolving, it is paramount that asset
privacy be configurable [21]. UAS offers a principled way to achieve this.

3

2 Related Work

There are many anonymous signatures (AC, GS, or related) schemes that aim
at achieving a different privacy-vs-utility tradeoff. In GS schemes the focus is on
opening and linkability: [32] makes de-anonymization dependent on messages;
[23] does not allow de-anonymization, but signatures by the same signer are
linkable; in [30] signers are fully identified towards other group members and
linkable for non group members; in [29], signers are de-anonymizable only if
a predicate of their “identity” and the signed message is not satisfied. In AC
schemes, the usual selective disclosure [14] is augmented to revealing arbitrary
predicates on the credentials’ attributes, e.g., in [19], which is the state of the
art in utility at authentication time. Some works consider delegation capabilities
[2,16], or revocation [12]. We now focus on schemes that aim at more flexible
tradeoffs and at general security models that are scheme independent.

Related work on flexible tradeoffs. To the best of our knowledge, our work is
the first to model flexible tradeoffs at all steps of the “credential and signature
lifecycle”. However, some works already pushed towards achieving more flexi-
bility. Benôıt et al. and Nguyen et al. [29,31] introduce the notion of what can
be called “functional opening”. That is, the information that the opener can
learn is a function of the signer’s identity, rather than the identity itself. How-
ever, their notion of “identity” is left abstract, which makes it hard to apply
in real world settings. We give a concrete definition of identity, via credentials
with attributes. Kohlweiss et al. [28] introduces generic functions for utility at
opening time, that allow an auditor to learn a function of the user’s credential
and private information fixed by the auditor in advance.

Related work on general security models. Probably, the most relevant works
towards achieving a common and generic model are those in the “Foundations of
Group Signatures” line [3,4,9], with [27] proposed in parallel to [4]. Before them,
many different models coexisted, each focusing on similar but slightly different
security and privacy properties. In the AC domain no similar foundational line
exists as far as we know, although [13] does a great job in subsuming previous
works and proposing a modular approach towards AC schemes. In some sense,
our goal is similar to these unifying works, but focusing on the achieved privacy-
vs-utility tradeoff. As mentioned, there are currently many variants of both GS
and AC schemes offering similar but slightly different tradeoffs, at the cost of
introducing many similar but slightly different models. Our goal is to avoid that.

3 Preliminaries

Public-Key Encryption has Setup, KG, Enc, and Dec algorithms. Setup(1κ)
produces public parameters par . KG(par) generates a encryption-decryption key
pair (ek , dk), Enc(ek ,m) encrypts message m with ek and outputs ciphertext
c. Dec(dk , c) decrypts ciphertexts using dk to retrieve message m. We rely on
chosen plaintext secure public-key encryption schemes (IND-CPA).

4

Non-Interactive Zero-Knowledge (NIZK). A NIZK scheme [33] for a NP relation
R has three algorithms: SetupR, ProveR, VerifyR. Algorithm SetupR(1κ) pro-
duces the common reference string crs. ProveR(crs, x, w) creates a NIZK proof
π of knowledge of witness w for x such that (w, x) ∈ R. 1/0 ← VerifyR(crs, x,
π) verifies the proof. The properties we build on are completeness, soundness,
zero-knowledgeness, and extractability. We require extractability to hold in the
presence of a simulator (simulation extractability), and zero-knowledge to hold
in the presence of an extractor (extraction zero-knowledge) [25].

Signatures over Blocks of Committed Messages, with proofs. We use schemes
that allow signing blocks of messages, and commitments to blocks of messages,
and which are also compatible with proof systems over the produced signature
and signed (commitments to) messages. An SBCM scheme is as a tuple (Setup,
KG,Blind, Sign, Unblind,Verify). par ← Setup(1κ) produces some public param-
eters. (vk , sk)← KG(par) produces a verification-signing key pair. c← Blind(vk ,
msg ,msg , r) is run by a user to request a signature overmsg∪msg , wheremsg
are revealed to the signer, but msg are signed in committed form. β ← Sign(sk ,
c, π,msg) is run by the signer, to produce a partial signature β over a set of com-
mitted messages msg and set msg . σ ← Unblind(vk , β, c, r,msg ,msg) is run
by the user to complete the signer’s partial signature β. Finally, 1/0← Verify(vk ,
σ,msg ,msg) verifies a signature σ over message vector msg ∪msg . An SBCM
scheme must be unforgeable and blind.

4 Formalizing UAS

In a UAS scheme, users generate their key pair, and optionally advertise their
public key and conditions for issuance in order to become issuers. Openers first
generate their key pairs, and then advertise what information they expect to
learn from signatures. Users may later use their credentials to request new ones,
or to produce a signature. Issuance only succeeds if the user’s credentials (if any)
meet the issuer’s requirements. Signatures may directly output some information
derived from the user’s data. Also, each signature has a selected opener, who can
later learn only the information included by the user. When openers learn their
information, they also prove the correctness of the result, which can be verified
by any interested party. This prevents openers from framing innocent users.

4.1 Syntax

In detail, a UAS scheme is composed of the following PPT algorithms:

Setup(1κ)→ par . Given security parameter 1κ, returns global system parame-
ters par . We assume that par are passed implicitly to all other functions.

KG(par)→ (upk , usk). Given par , a user generates a key pair (upk , usk). An
issuer is a user who defines an issuance function fis. We denote such issuance
keys by ipk = (upk , fis) and isk = (ipk , usk).4

4 The (pk, f) tuple simplifies our notation, while simultaneously guaranteeing that
users can easily inspect the functions picked by issuers and openers. The second

5

OKG(par)→ (preopk , preosk). An opener runs OKG to generate its pre-opener
keys. The opener externally extends the keys with an opening function fop.
We denote such opening keys opk = (preopk , fop) and osk = (opk , preosk).

⟨Obt(upk , usk , ipk ,C ,a), Iss(isk , ipk ,a , yis)⟩ → ⟨C/⊥, R/⊥⟩. Lets a user with
key usk obtain a credential C = (cid ,a , crd , ipk) from an issuer with key
(ipk , isk). cid is a unique identifier for the credential crd , on attribute set a .
The user may employ previously obtained credentials C = {(cid i,a i, crd i,
ipk i)}i∈[n], from which we may omit the ipk i for readability. The yis value
received by the issuer is the claimed output of fis, over the user’s data. Note
that the issuer can reject initiating the protocol if yis is not acceptable. The
user outputs the issued credential C, and the issuer outputs R← (reg , cid),
where reg is the protocol transcript.

Sign(upk , usk , opk ,C ,m, fev)→ (σ, yev). Upon receiving user secret key usk ,
opener public key opk , credentials C , message m and evaluation function
fev, returns signature σ, and a value yev. We use Σ to denote the tuple
(σ, yev).

Verify(opk , ipk , Σ,m, fev)→ 1/0. Checks whether Σ = (σ, yev) is a valid sig-
nature over message m, from a user with credentials issued by issuers with
public keys in ipk , for evaluation function fev and opener key opk .

Open(osk , ipk , Σ,m, fev)→ (yop, π)/⊥. Run by the opener with private key
osk . Receives a signature Σ = (σ, yev) over message m and evaluation func-
tion fev, generated using credentials by issuers with public keys in ipk . If Σ
is valid, the function outputs a value yop, and a proof of correct opening π.

Judge(opk , ipk , yop, π,Σ,m, fev)→ 1/0. Checks if π is a valid opening correct-
ness proof for the value yop, obtained by applying Open to the the signature
Σ = (σ, yev) over message m, and for evaluation function fev.

Issuance, evaluation, and opening functions. These are the functional placehold-
ers modulating the behavior of UAS instantiations. They control the conditions
for issuing credentials, the information revealed alongside signatures, and the
information revealed when opening signatures.

fis : (upk ,a , {(cid i,a i)}i∈[n])→ yis. Chosen by each issuer within a family of
functions Fis, the issuance function defines the conditions required by the
issuer to grant a credential over attributes a , when requested by a user with
public key upk , optionally using a set of n endorsement credentials with
identifiers and attributes given by {(cid i,a i)}i∈[n]. The range of fis is Ris.

fev : (upk , {(cid i,a i)}i∈[n],m)→ yev. Signing evaluation functions (or, simply,
evaluation functions), from a family of functions Fev, can be set on a per-
signature basis. They receive the user public key upk , a set of credential
identifiers and attributes {(cid i,a i)}i∈[n] (where n may be 0), and the mes-
sage to be signed m. fev outputs a value yev from a well defined set Rev.

fop : (upk , {(cid i,a i)}i∈[n],m)→ yop. Chosen by openers from a family of func-
tions Fop. The opening functions define the utility value extractable from

tuple might appear surprising, but it is natural that the secret key in a public key
scheme contains at least the information of the public key, e.g., RSA.

6

signatures. This value is derived from the user’s upk , credentials’ identifiers
and attributes {(cid i,a i)}i∈[n] (n ≥ 0) used for signing, and signed message
m. It outputs a value yop from a well defined set Rop.

For instance, let fis (resp. fev) output the requesting user’s (resp. signer’s)
public key, and fev output always 0. The corresponding Ris and Rop are the set
of all possible user public keys, and Rev is {0}. This combination leads to a ΠUAS

restriction that behaves like a group signature scheme. See Section 6 for details.

Correctness. An UAS scheme is correct if a signature produced by an honest
user, who chooses an honest opener and leverages only credentials obtained from
honest issuers, is accepted by an honest verifier, and any opening proof honestly
computed from such a valid signature is accepted by an honest judge. Moreover,
the yev (resp. yop) value attached to the signature must match the output of fev
(resp. fop) when evaluated on the endorsement credentials, signed message, and
the user’s upk . Similarly, the yis value in the transcripts of all involved credentials
used to produce the signature must match the output of fis when computed from
the requested attributes, user’s upk , and any further endorsement credential
involved in its issuance. Correctness is formalized in the full version [7].

4.2 Security Model

A UAS scheme must satisfy privacy and security properties, both for the issuance
protocol, and for the produced signatures. We introduce them semi-formally
here. The full formalization as experiments Expiss-anon-bUAS,A , Expsig-anon-bUAS,A , Expiss-forgeUAS,A ,

Expsig-forgeUAS,A , and Expframe
UAS,A can be found in the full version.

Issuance anonymity. User obtains credentials by running an interactive ⟨Obt,
Iss⟩ protocol with an issuer. The authorization of the issuing can employ pre-
viously obtained endorsement credentials to prove that the request meets the
issuers requirements—captured by function fis defined by the issuer. We model
via the issuance anonymity property that no information about the endorsement
credentials besides the output of fis is revealed.

Formally, we define a left-or-right game. The adversary repeatedly plays the
issuer in the ⟨Obt, Iss⟩ protocols against one out of two challenges selected by a
random bit b that the adversary needs to guess. Each challenge specifies an hon-
est user and its endorsement credentials. In addition, the adversary can obtain
new (non-challenge) credentials for honest users that can be used as endorsement
credentials, create signatures with the challenge and non-challenge credentials,
open non-challenge signatures, and corrupt users, issuers, and openers at will.
To avoid trivial wins, the adversary cannot mix challenge with non-challenge
credentials when signing, and the output of the fis function when obtaining
challenge credentials and the outputs of fev and fop functions when signing with
challenge credentials need to be the same for both challenge users. To see why
this is needed, consider a simple fis function that outputs the public key of the
user – which trivially allows an adversarial issuer to distinguish ⟨Obt, Iss⟩ runs.

7

Signature anonymity. In UAS, signatures come with signature utility informa-
tion yev, computed by fev, and opener utility information yop computed by fop
and only retrievable by the chosen opener. Signature anonymity captures that
signatures do not leak any more information than specified by these functions.

Formally, we define a left-or-right game. The adversary can add honest and
corrupt users at will, request signatures using arbitrary credentials, and open the
resulting signatures. The adversary is given the capability to repeatedly request
signatures for an opener, an evaluation function fev, a message, and one out
of two challenges selected by a random bit b that the adversary needs to guess.
Each challenge specifies a challenge users and a set of credentials. To avoid trivial
wins, among other simple checks, the yev value output by fev has to be the same
for both challenges. Similarly, if the opener is corrupt, the value output by fop
has to be the same for both challenges. The adversary can open signatures, but
only if they are not challenge ones. This is to avoid trivial wins in which the
opener was not initially corrupt, and thus the fop equality check did not apply.

Issuance unforgeability. Honest issuers in the interactive ⟨Obt, Iss⟩ protocol to
request new credentials specify an issuing policy fis that involves endorsement
credential attributes and identifiers (if any), the requesting user’s public key, and
the requested attributes. Issuance unforgeability captures that fis must be met,
and that the endorsement credentials (if any) have been legitimately obtained.

In a nutshell, the adversary can corrupt users, issuers, and openers, obtain
credentials on behalf of honest or corrupt users, and produce signatures leverag-
ing any of these credentials. Eventually, the adversary has to output a credential
identifier, which must belong to a credential issued by an honest issuer. The
adversary wins if the yis value claimed by the user as an input to Iss does not
match the expected output from fis, or if there is a mismatch in the endorsement
credentials’ attributes or the associated user public key. Note that we require
that the credential identifier output by the adversary corresponds to a credential
produced by an honest issuer. While we have access to the issuance transcript,
we cannot otherwise assume that we know the identifiers of the adversary’s en-
dorsement credentials, their attributes, or user public keys needed for evaluating
fis and running the required tests. Thus, we resort to extraction: the issuance
transcript must allow for the extraction of these otherwise private values.

Note that the issuance unforgeability requirements apply recursively to en-
dorsement credentials. To see this consider adversaries that perform the same
oracle queries but output the credential identifiers of endorsement credentials.
This excludes construction that allows the use of fraudulently obtained creden-
tials when honestly obtaining a new credential.

Signature unforgeability. Signatures carry two types of utility: yev, produced by
computing fev, and revealed alongside the signature; and yop, produced by com-
puting fop, and learned by the chosen opener. No adversary should be capable
of producing a signature that is accepted by Verify, yet contains wrong yev and
yop values. To check this, we let the adversary add corrupt users, issuers, and
openers, obtain credentials on behalf of any existing user and issuer, produce

8

signatures by honest users, as well as open any signature. The adversary is chal-
lenged to produce a signature, and wins if the signature is accepted by Verify,
yet the yev value associated to it is wrong ; or if an honest opener cannot produce
a proof that is accepted by Judge, or for which the associated yop value is wrong.
The adversary also wins if any of the credentials used to produce the signature
was fraudulently obtained. We define wrong by recomputing the fev and fop
functions: as in issuance unforgeability, we extract the necessary inputs from the
adversary’s signature forgery. We also extract from the issuance transcripts of
honestly issued endorsement credentials to check that they were correctly issued.

Figure Fig. 1 explains the need for both issuance and signature unforgeability.

Fig. 1. Credential chain segments covered by each unforgeability property. Issuance
unforgeability prevents forged credentials at any point, but is agnostic to signatures.
Signature unforgeability prevents last-layer credential forgeries, and signature forgeries.
E.g., only issuance unforgeability detects if the credential in red is a forgery.

Non-frameability. While the unforgeability properties capture the security ex-
pectations of verifiers and openers, non-frameability captures what expectations
honest users can still have even when both issuers and openers are corrupt.
Concretely, note that in the unforgeability properties, we open using the official
opening algorithm. In contrast, in non-frameability the adversary has to produce
both a valid signature and valid opening and proof. It wins if this signature was
not produced via some of the oracles, if the signature and opening proof are
valid, yet the output yop values is wrong, or if the upk associated to the signa-
ture belongs to an honest user. This protects honest users from being framed,
either by their upk being used to compute yop or by yop being made up in the
first place. Again, we make use of extraction techniques to recover all the needed
information for attesting correct computation fop, and to learn the signer’s upk .

5 ΠUAS: A Generic UAS Construction

We give a generic construction of a UAS scheme from generic building blocks.
We use three NP relations: Ris, Rev, and Rop, described next. These relations
include verifying correct computation of the fis, fev and fop functions.

Ris: For NIZK proofs at issuance time. Requires users to prove knowledge of
their (usk , upk) pair, and the requested credential is bound to usk . It also

9

requires any endorsement credential to be a valid credential (signed by some
issuer) and bound to usk , and enforces the corresponding fis policy.

Rev: For NIZK proofs at signing time. Ensures that signatures encode the cor-
rect signature evaluation (computed via fev) and opening values (computed
via fop), and all the involved credentials are bound to the same usk .

Rop: For NIZK proofs at opening time. Ensures that the utility information
revealed by the opener, via the Open algorithm, is correct.

Ris =

(fis, c, cid ,a , ipk , {ipk i}i∈[n], yis), (upk , usk , {(cid i,a i, crd i)}i∈[n], r) :

(upk , usk) ∈ [KG(par)] ∧
c = SBCM.Blind(ipk , usk , (cid ,a), r) ∧
fis(upk ,a , {(cid i,a i)}i∈[n]) = yis ∧

∀i ∈ [n] : SBCM.Verify(ipk i, crd i, usk , (cid i,a i)) = 1

Rev =

(m, fev, yev, fop, cop, {ipk i}i∈[n], ek), (upk , usk , {(cid i,a i, crd i)}i∈[n], yop, r) :

(upk , usk) ∈ [KG(par)] ∧ cop = E.Enc(ek , yop; r) ∧
yev = fev(upk , {(cid i,a i)}i∈[n],m) ∧
yop = fop(upk , {(cid i,a i)}i∈[n],m) ∧

∀i ∈ [n] : SBCM.Verify(ipk i, crd i, usk , (cid i,a i)) = 1

Rop =

(ek , c, yop), (dk) :

(ek , dk) ∈ [OKG(par , ·)] ∧
yop = E.Dec(dk , c)

Fig. 2. Specification of the NP relations used in ΠUAS. R = {x,w : predicate(x,w)},
where x is the public statement and w is the prover’s secret witness.

We build ΠUAS as defined in Fig. 3 and Fig. 4. Briefly, Setup computes the
public parameters for SBCM, Enc, and the three NIZK systems. KG generates
an SBCM user key pair, and OKG an Enc key pair (ek , dk). If a user wishes to
upgrade itself to an issuer, it sets (ipk = (upk , fis), isk = (ipk , usk)) for its chosen
fis. Similarly, an opener can upgrade (ek , dk) into (opk = (ek , fop), osk = (opk ,
dk)) by advertising fop in a reliable manner, defining the utility it will accept to
extract from signatures. In the ⟨Obt, Iss⟩ protocol, the user computes fis over the
requested attributes, upk , and the endorsement credentials and runs an SBCM
blind signature protocol with the issuer, augmented with NIZK.ProveRis . In Sign,
the user computes fev and fop over the message, attributes, and upk , encrypts

yop with the chosen opk , and proves correct computation via NIZK.ProveRev .
Verify simply verifies the NIZK. In Open, if Verify accepts the signature, the
opener decrypts cop to get yop, and outputs it along with a proof obtained via

NIZK.ProveRop . Judge verifies both the signature and the opening proof.

5.1 Correctness and Security of ΠUAS

Correctness is by inspection of the honest algorithms. The uniqueness of creden-
tials for honestly issued and obtained credential identifiers is a sub-property of

10

Setup(1κ)

parSBCM ← SBCM.Setup(1κ)

parE ← E.Setup(1κ)

crs is ← NIZK.SetupRis(1κ)

crsev ← NIZK.SetupRev (1κ)

crsop ← NIZK.SetupRop(1κ)

return par = (parSBCM, parE,

crs is, crsev, crsop)

KG(par)

(parSBCM, ·, ·, ·, ·)← par

(vk , sk)← SBCM.KG(parSBCM)

upk ← (par , vk)

usk ← sk

return (upk , usk)

OKG(par)

(·, parE, ·, ·, ·)← par

(ek , dk)← E.KG(parE)

preopk ← ek

preosk ← dk

return (preopk , preosk)

Sign(upk , usk , opk , ({(cid i,a i, crd i, ipk i)}i∈[n]),m, fev)

yev ← fev(upk , {(cid i,a i)}i∈[n],m)

(ek , fop)← opk

yop ← fop(upk , {(cid i,a i)}i∈[n],m)

cop ← E.Enc(ek , yop; r)

πev ← NIZK.ProveRev (crsev,

(m, fev, yev, fop, cop, {ipk i}i∈[n], ek),

(upk , usk , {(cid i,a i, crd i)}i∈[n], yop, r))

return Σ = (σ = (πev, cop), yev)

Verify(opk , ipk = {ipk i}i∈[n], Σ,m, fev)

(πev, cop), yev)← Σ

(ek , fop)← opk

return NIZK.VerifyRev (crsev, πev,

(m, fev, yev, fop, cop, {ipk i}i∈[n], ek)

)

Open(osk , ipk , Σ,m, fev)

(opk , preosk = dk)← osk ; (ek , ·)← opk

if Verify(opk , ipk , Σ,m, fev) = 0 : return ⊥
((πev, cop), yev)← Σ

yop ← E.Dec(dk , cop)

πop ← NIZK.ProveRop(crsop, (ek , c, yop), (dk))

return (yop, πop)

Judge(opk , yop, πop, Σ,m)

if Verify(opk , ipk , Σ,m, fev) = 0 : return 0

((·, cop), ·)← Σ; (ek , ·)← opk

return NIZK.VerifyRop(crsop, πop, (ek , c, yop))

Fig. 3. ΠUAS algorithms 1/2: everything except issuing.

correctness. We observe that both parties contribute uniformly random nonces
to this identifier. We give theorems and intuition, but defer formal definitions
and proofs to the full version [7].

Theorem 1 (Issuance anonymity of ΠUAS). If the SBCM scheme is blind-
ing, the NIZK system is zero-knowledge and simulation-extractable, and the
public-key encryption scheme is correct and IND-CPA secure, then ΠUAS sat-
isfies issuance anonymity.

Theorem 2 (Signature anonymity of ΠUAS). If the NIZK system is zero-
knowledge and simulation extractable, and the public-key encryption scheme is
correct and IND-CPA secure, then ΠUAS satisfies signature anonymity.

For the two anonymity properties, we perform game hops until we obtain a
game independent of bit b. For this, we simulate the NIZK proofs and replace
the encryption of yop with an encryption of 0. This is justified by IND-CPA
security. Notably simulation extraction is needed to simulate decryption. For
issuing anonymity we additionally assign all challenge credentials to the same
virtual user. This is justified by the blinding property of the SBCM scheme.

11

Obt(upk , usk , ipk , {(cid i,a i, crd i)}i∈[n],a) Iss(isk , {ipk i}i∈[n],a , yis)

cid I
cid I ←$AS

cidU ←$AS

cid ← (cid I, cidU)

y′
is = fis(upk ,a , {(cid i,a i)}i∈[n])

r ← ΓSBCM

c← SBCM.Blind(ipk , usk , (cid ,a), r)

π ← NIZK.ProveRis(crs is,

(fis, c, cid ,a , ipk , {ipk i}i∈[n], y
′
is),

(upk , usk , {(cid i,a i, crd i)}i∈[n], r)) (cidU, c, π)

cid ← (cid I, cidU)

b← NIZK.Verify(crs is, π,

(fis, c, cid ,a , ipk , {ipk i}i∈[n], yis))

if b = 0 : return ⊥

β β ← SBCM.Sign(isk , c, (cid ,a))

reg = (({ipk i}i∈[n],a , yis),

cid I, (cidU, c, π), β)

return R = (reg , cid)

σ ← SBCM.Unblind(ipk , β, c, r, usk , (cid ,a))

if SBCM.Verify(ipk , σ, usk , (cid ,a)) = 0 :

return ⊥
return (cid ,a , crd = σ, ipk)

Fig. 4. ΠUAS algorithms 2/2: issuing protocol. AS is an assumed attribute space.

Theorem 3 (Issuance unforgeability of ΠUAS). If the NIZK scheme is
extraction zero-knowledge and simulation extractable, and the SBCM scheme is
correct, unforgeable, and has deterministically derived public keys, then ΠUAS

satisfies issuance unforgeability.

Theorem 4 (Signature unforgeability of ΠUAS). If the underlying NIZK
scheme is complete, extraction zero-knowledge and simulation extractable, the
public key encryption scheme is correct, and the SBCM scheme is correct, un-
forgeable, and has deterministically derived public keys, then ΠUAS satisfies sign-
ing unforgeability.

Theorem 5 (Non-frameability of ΠUAS). If the NIZK system is extrac-
tion zero-knowledge and simulation extractable and the SBCM scheme is correct,
blind, and unforgeable, then ΠUAS satisfies non-frameability.

The three unforgeability and non-frameability proofs share the intuition: Us-
ing simulation, we ensure via a series of game hops that we reach a game where
we can embed an SBCM unforgeability challenge. This requires that the SBCM

12

secret key is only used in operations that can be simulated using SBCM challenge
oracles. Then, if the adversary wins the UAS game, we leverage its output to
break SBCM unforgeability. Here, the main complexity is in alternating extrac-
tion and simulation: as our initial games already extract, we rely on extraction
zero-knowledge NIZKs. Moreover, we need to ensure that we only extract from
non-simulated proofs (and never attempt extraction of simulated ones).

6 Building Related Schemes from UAS

ΠUAS restrictions. Given a generic UAS construction, ΠUAS, we can restrict the
achieved privacy-vs-utility tradeoff by requiring it to use concrete fa

is, f
b
ev and

f c
op functions. We refer to the result as the (fa

is, f
b
ev, f

c
op)-ΠUAS restriction. Note

that security of ΠUAS implies security of its restrictions.
To showcase the generality of UAS, we briefly describe concrete ΠUAS restric-

tions that instantiate vanilla digital signatures, group signatures, anonymous
credentials, and ring signatures, using the functions defined in Fig. 5. Fig. 6
graphically depicts these connections. The instantiations based on our ΠUAS

generic construction are probably not the most efficient approach to build the
corresponding related scheme. Still, we see it as an initial feasibility result, from
which to build more efficient instantiations – perhaps relying on alternative UAS
constructions for more restricted but still expressive enough function classes. We
defer security models and proofs to the full version [7].

Issuance functions Signature evaluation functions

Open functions

f upk
is (upk , ·, ·) := return upk f upk

ev (upk , ·, ·) := return upk

f 0
ev(·, ·, ·) := return 0

fd
ev(·, (·,a), ·) := return (attr i)i∈d

f ring
ev (upk , ·, ·) := if upk ∈ ring : return 1

else return 0

f 0
op(·, ·, ·) := return 0

f upk
op (upk , ·, ·) := return upk

Fig. 5. Functions for the ΠUAS restrictions described next. “·” denotes ignored argu-
ments. f a is a function named “a”; fa is a function parameterized with a.

UAS

DS [24] (Section 6.1)

GS [4] (Section 6.2)

AC [22] (Section 6.3)

RS [5] (Section 6.4)

(·, f upk
ev , f 0

op)-ΠUAS

(f upk
is , f 0

ev, f
upk
op)-ΠUAS

(f upk
is , fd

ev, f
0
op)-ΠUAS

(·, f ring
ev , f 0

op)-ΠUAS

Fig. 6. ΠUAS-restrictions instantiating related schemes.

6.1 Digital Signatures

As a warm up, we show that a (·, fupk
ev , f0

op)-ΠUAS restriction realizes a conven-
tional digital signatures satisfying EUF-CMA security [24]. No issuance function

13

is required, as users do not need credentials to sign. The evaluation function
outputs the signer’s public key, and any opening function works – the output is
ignored. A possible optimization would be using the empty string as ciphertext
for constant functions (e.g. f0

op) and skip verifiable encryption. Concretely, we

create Πds
UAS from ΠUAS, where public parameters par are passed implicitly:

Setup(1κ) par ′ ← ΠUAS.Setup(1
κ); (preopk , preosk)← ΠUAS.OKG(par);

opk ← (preopk , f0
op); osk ← (opk , preosk); return par = (par ′, opk).

KG(1κ) return (upk , usk)← ΠUAS.KG(par ′).

Sign(usk ,m) (σ, yev)← ΠUAS.Sign(upk , usk , opk , ∅,m, fupk
ev);

return σ. //yev =upk

Verify(upk ,m, σ) return ΠUAS.Verify(opk , ∅, Σ = (σ, upk),m, f
upk
ev).

//Since f upk
ev outputs the signer’s upk , we know that σ is bound to the owner of upk .

6.2 Group Signatures

We show that a (f
upk
is , f0

ev, f
upk
op)-ΠUAS restriction is a secure group signature

scheme in a definition in the spirit of [4]. First, the fupk
is function outputs the

upk of the requesting user, allowing the issuer to detect a user requesting multiple
credentials – note that, in vanilla group signatures, there is a single issuer and
a single membership certificate per user. Thus, linkable issuance is the expected
behavior. The evaluation function f0

ev outputs a constant value. Finally, the
opening function fupk

op outputs the signer’s upk , allowing the opener to identify
the signer of any group signature. Concretely, we create Πgs

UAS from ΠUAS as
follows:

KG(1κ) par ← ΠUAS.Setup(1
κ)//implicit; (preopk , preosk) ← ΠUAS.OKG(par);

opk ← (preopk , fupk
op); osk ← (opk , preosk); (ipk ′, isk ′)← ΠUAS.KG(par);

ipk ← (ipk ′, f
upk
is); isk ← (ipk , isk ′); return (gpk = (ipk , opk), isk , osk).

UKG(1κ) return (upk , usk)← ΠUAS.KG(par).

⟨Obt(usk , ipk), Iss((isk , opk), upk)⟩
⟨C,R⟩←ΠUAS.⟨Obt(upk , usk , ipk , ∅, ∅), Iss(isk , ∅, ∅, yis=upk)⟩.
return ⟨(usk , C), R⟩ //The credential is locally augmented with the user’s secret

key.

Sign(gpk , (usk , C),m) (ipk , opk) ← gpk ; (σ, yev) ← ΠUAS.Sign(upk , usk , opk , C,

m, f0
ev); return σ //yev = 0 is the constant output of f 0

ev.

Verify(gpk , σ,m) (ipk , opk)← gpk ; return ΠUAS.Verify(opk , ipk , (σ, 0),m, f0
ev).

Open(gpk=(ipk , opk), osk , σ,m) return ΠUAS.Open(osk , ipk , σ, 0,m, f0
ev).

Judge(gpk=(ipk , opk), π, upk , σ,m) return ΠUAS.Judge(opk , upk , π, (σ, 0),m).

6.3 Anonymous Credentials

We show how to build AC systems from UAS signatures. For concreteness, we
use a (fupk

is , fd
ev, f

0
op)-ΠUAS restriction which suffices for the AC scheme of Fuchs-

bauer et al. [22] which does not have issuance anonymity and supports selective

14

disclosure of attributes. Thus, our issuance function returns the user’s public key
as for GS and the evaluation function reveals the chosen subset of attributes.

To match the syntax of the target scheme, we implement a simple challenge
response protocol via UAS signing. The evaluation function fd

ev returns subset
D = (attr i)i∈d of the attributes. The open function f0

op reveals nothing.

IssKeyGen(1κ) par ′ ← ΠUAS.Setup(1
κ); (preopk , preosk) ← ΠUAS.OKG(par ′);

opk ← (preopk , f0
op); osk ← (opk , preosk); (ipk ′, isk ′)← ΠUAS.KG(par ′);

par ← (par ′, opk) //kept implicit ; return (ipk=(ipk ′, f
upk
is)), isk=(ipk , isk ′)).

UserKeyGen(1κ) return (upk , usk)← ΠUAS.KG(par ′).

⟨Obt(usk , ipk ,a), Iss(isk , upk ,a)⟩
⟨CUAS, R⟩←ΠUAS.⟨Obt(upk , usk , ipk ,C=∅,a), Iss(isk , ipk=∅,a , yis=upk)⟩.
return ⟨C=(usk , CUAS), if R ̸= ⊥ : ⊤⟩//Local translation of protocol outputs.

Show(ipk ,a ,d , C=(usk , CUAS)),Verify(ipk ,d , D)⟩
V: send r ← {0, 1}κ to S
S: send (σ, yev) = Σ ← ΠUAS.Sign(upk , usk , opk , CUAS, r, f

d
ev) to V

V: return yev = D ∧ΠUAS.Verify(opk , ipk , Σ, r, fd
ev)

6.4 Ring Signatures

We use a (·, f ring
ev , f0

op)-ΠUAS restriction to build a ring signature scheme, Πring
UAS .

For signing, signers compute a f ring
ev function, where ring = {upk i}i∈[n] is an

arbitrary set of public keys. This function returns 1 if the signer’s upk ∈ ring ,
and 0 otherwise. A ring signature is a ΠUAS signature evaluated on such a f ring

ev

function – which does not require any credential. The construction is as follows:

Setup(1κ) par ′ ← ΠUAS.Setup(1
κ); (preopk , preosk)← ΠUAS.OKG(par);

opk ← (preopk , f0
op); osk ← (opk , preosk); return par = (par ′, opk).

//We assume that the setup is trusted to compute the correct opk .

KG(1κ) return (pk , sk)← ΠUAS.KG(par ′).

Sign(usk , ring ,m) (σ, yev) ← ΠUAS.Sign(upk , usk , opk , ∅,m, f ring
ev); return σ

//yev = (upk ∈ ring) .
Verify(ring ,m, σ) return ΠUAS.Verify(opk , ∅, Σ = (σ, yev = 1),m, f ring

ev).

//Since f ring
ev outputs 1 we know that the signer is in the ring.

Note that the issuance function is never used, as no credential takes part
in the signing process, so we simply ignore it. The same does not apply to the
open function, though. Even if no actual Open function is exposed by the ring
signature construction, a malicious party could try to open a signature. Thus,
we need to fix it to a function that does not leak information, like f0

op.

7 Conclusion and Future Work

We present a general model and construction for anonymous signatures, allowing
for different privacy-vs-utility trade-offs. The flexibility of our model stems from

15

functional placeholders that modulate the utility information learned by issuers,
verifiers, and openers at credential issuance and authentication time, as well
as after authentication. To showcase its generality, we show how to securely
instantiate well-known schemes using our construction.

A further natural generalization of our model would allow for issuers and
openers to adjust their functions dynamically, or to allow for multiple openers
for the same signature. A practical concern are optimized implementations of
ΠUAS restrictions and optimized constructions for restricted function classes.
For example, the instantiation in the full version [7], based on BBS+, ElGamal,
and basic sigma proofs, is well suited (and efficient) for cases that need selective
disclosure. However, it falls short (or would be inefficient) for others.

References

1. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -taa. In: Security and Cryp-
tography for Networks, 5th International Conference, SCN 2006, Maiori, Italy,
September 6-8, 2006, Proceedings. pp. 111–125 (2006)

2. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi,
S. (ed.) Advances in Cryptology - CRYPTO 2009, 29th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Pro-
ceedings. Lecture Notes in Computer Science, vol. 5677, pp. 108–125. Springer
(2009). https://doi.org/10.1007/978-3-642-03356-8 7, https://doi.org/10.1007/
978-3-642-03356-8_7

3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: EUROCRYPT 2003, Proceedings. pp. 614–629 (2003)

4. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dy-
namic groups. In: CT-RSA 2005, Proceedings. pp. 136–153 (2005)

5. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and
constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) Theory
of Cryptography, Third Theory of Cryptography Conference, TCC 2006, New
York, NY, USA, March 4-7, 2006, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 3876, pp. 60–79. Springer (2006). https://doi.org/10.1007/11681878 4,
https://doi.org/10.1007/11681878_4

6. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via
group signatures without encryption. In: Security and Cryptography for Networks,
7th International Conference, SCN 2010, Amalfi, Italy, September 13-15, 2010.
Proceedings. pp. 381–398 (2010)

7. Bobolz, J., Diaz, J., Kohlweiss, M.: Foundations of anonymous signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. Cryptology ePrint Archive, Paper 2024/042 (2024), https://eprint.iacr.
org/2024/042, https://eprint.iacr.org/2024/042

8. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A., Schneider, S.A. (eds.) Ap-
plied Cryptography and Network Security - 14th International Conference, ACNS
2016, Guildford, UK, June 19-22, 2016. Proceedings. Lecture Notes in Computer
Science, vol. 9696, pp. 117–136. Springer (2016). https://doi.org/10.1007/978-3-
319-39555-5 7, https://doi.org/10.1007/978-3-319-39555-5_7

16

https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11681878_4
https://eprint.iacr.org/2024/042
https://eprint.iacr.org/2024/042
https://eprint.iacr.org/2024/042
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-39555-5_7

9. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short ac-
countable ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl,
E.R. (eds.) Computer Security - ESORICS 2015 - 20th European Sympo-
sium on Research in Computer Security, Vienna, Austria, September 21-25,
2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9326, pp.
243–265. Springer (2015). https://doi.org/10.1007/978-3-319-24174-6 13, https:
//doi.org/10.1007/978-3-319-24174-6_13

10. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong
diffie hellman assumption revisited. In: TRUST 2016, Proceedings. pp. 1–20 (2016)

11. Camenisch, J., Dubovitskaya, M., Lehmann, A., Neven, G., Paquin, C., Preiss,
F.: Concepts and languages for privacy-preserving attribute-based authentica-
tion. In: Fischer-Hübner, S., de Leeuw, E., Mitchell, C.J. (eds.) Policies and
Research in Identity Management - Third IFIP WG 11.6 Working Confer-
ence, IDMAN 2013, London, UK, April 8-9, 2013. Proceedings. IFIP Advances
in Information and Communication Technology, vol. 396, pp. 34–52. Springer
(2013). https://doi.org/10.1007/978-3-642-37282-7 4, https://doi.org/10.1007/
978-3-642-37282-7_4

12. Camenisch, J., Kohlweiss, M., Soriente, C.: Solving revocation with efficient up-
date of anonymous credentials. In: Garay, J.A., Prisco, R.D. (eds.) Security and
Cryptography for Networks, 7th International Conference, SCN 2010, Amalfi,
Italy, September 13-15, 2010. Proceedings. Lecture Notes in Computer Science,
vol. 6280, pp. 454–471. Springer (2010). https://doi.org/10.1007/978-3-642-15317-
4 28, https://doi.org/10.1007/978-3-642-15317-4_28

13. Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pedersen,
M.Ø.: Formal treatment of privacy-enhancing credential systems. In: SAC 2015,
Revised Selected Papers. pp. 3–24 (2015)

14. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: EUROCRYPT 2001,
Proceeding. pp. 93–118 (2001)

15. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) Security in Communication Networks,
Third International Conference, SCN 2002, Amalfi, Italy, September 11-13, 2002.
Revised Papers. Lecture Notes in Computer Science, vol. 2576, pp. 268–289.
Springer (2002). https://doi.org/10.1007/3-540-36413-7 20, https://doi.org/10.
1007/3-540-36413-7_20

16. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures:
New definitions and delegatable anonymous credentials. In: IEEE 27th Computer
Security Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July, 2014. pp.
199–213. IEEE Computer Society (2014). https://doi.org/10.1109/CSF.2014.22,
https://doi.org/10.1109/CSF.2014.22

17. Chaum, D.: Security without identification: Transaction systems to
make big brother obsolete. Commun. ACM 28(10), 1030–1044 (1985).
https://doi.org/10.1145/4372.4373, https://doi.org/10.1145/4372.4373

18. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
’91, Proceedings. pp. 257–265. Springer (1991)

19. Deuber, D., Maffei, M., Malavolta, G., Rabkin, M., Schröder, D., Simkin,
M.: Functional credentials. Proc. Priv. Enhancing Technol. 2018(2), 64–
84 (2018). https://doi.org/10.1515/popets-2018-0013, https://doi.org/10.1515/
popets-2018-0013

17

https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-642-37282-7_4
https://doi.org/10.1007/978-3-642-37282-7_4
https://doi.org/10.1007/978-3-642-37282-7_4
https://doi.org/10.1007/978-3-642-15317-4_28
https://doi.org/10.1007/978-3-642-15317-4_28
https://doi.org/10.1007/978-3-642-15317-4_28
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1109/CSF.2014.22
https://doi.org/10.1109/CSF.2014.22
https://doi.org/10.1145/4372.4373
https://doi.org/10.1145/4372.4373
https://doi.org/10.1515/popets-2018-0013
https://doi.org/10.1515/popets-2018-0013
https://doi.org/10.1515/popets-2018-0013

20. Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Ohara, K., Omote, K., Sakai,
Y.: Group signatures with message-dependent opening: Formal definitions and
constructions. Secur. Commun. Networks 2019, 4872403:1–4872403:36 (2019).
https://doi.org/10.1155/2019/4872403, https://doi.org/10.1155/2019/4872403

21. Espresso Systems: Configurable Asset Privacy. https://github.com/

EspressoSystems/cap/blob/main/cap-specification.pdf (2022)

22. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. J. Cryptol. 32(2),
498–546 (2019). https://doi.org/10.1007/s00145-018-9281-4, https://doi.org/

10.1007/s00145-018-9281-4

23. Garms, L., Lehmann, A.: Group signatures with selective linkability. In: PKC 2019,
Proceedings. pp. 190–220 (2019)

24. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988).
https://doi.org/10.1137/0217017, https://doi.org/10.1137/0217017

25. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. J. Cryptol.
27(3), 506–543 (2014). https://doi.org/10.1007/s00145-013-9152-y, https://doi.
org/10.1007/s00145-013-9152-y

26. Kiayias, A., Kohlweiss, M., Sarencheh, A.: Peredi: Privacy-enhanced, regulated
and distributed central bank digital currencies. In: Yin, H., Stavrou, A., Cremers,
C., Shi, E. (eds.) Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-
11, 2022. pp. 1739–1752. ACM (2022). https://doi.org/10.1145/3548606.3560707,
https://doi.org/10.1145/3548606.3560707

27. Kiayias, A., Yung, M.: Secure scalable group signature with dynamic
joins and separable authorities. Int. J. Secur. Networks 1(1/2), 24–45
(2006). https://doi.org/10.1504/IJSN.2006.010821, https://doi.org/10.1504/

IJSN.2006.010821

28. Kohlweiss, M., Lysyanskaya, A., Nguyen, A.: Privacy-preserving blueprints.
In: Hazay, C., Stam, M. (eds.) Advances in Cryptology - EUROCRYPT
2023 - 42nd Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Pro-
ceedings, Part II. Lecture Notes in Computer Science, vol. 14005, pp. 594–
625. Springer (2023). https://doi.org/10.1007/978-3-031-30617-4 20, https://

doi.org/10.1007/978-3-031-30617-4_20

29. Libert, B., Nguyen, K., Peters, T., Yung, M.: Bifurcated signatures: Fold-
ing the accountability vs. anonymity dilemma into a single private signing
scheme. In: Canteaut, A., Standaert, F. (eds.) Advances in Cryptology - EURO-
CRYPT 2021 - 40th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 12698, pp.
521–552. Springer (2021). https://doi.org/10.1007/978-3-030-77883-5 18, https:
//doi.org/10.1007/978-3-030-77883-5_18

30. Manulis, M., Sadeghi, A., Schwenk, J.: Linkable democratic group signatures. In:
Information Security Practice and Experience, Second International Conference,
ISPEC 2006, Hangzhou, China, April 11-14, 2006, Proceedings. pp. 187–201 (2006)

31. Nguyen, K., Guo, F., Susilo, W., Yang, G.: Multimodal private signatures. Cryp-
tology ePrint Archive, Paper 2022/1008 (2022), https://eprint.iacr.org/2022/
1008, https://eprint.iacr.org/2022/1008

18

https://doi.org/10.1155/2019/4872403
https://doi.org/10.1155/2019/4872403
https://github.com/EspressoSystems/cap/blob/main/cap-specification.pdf
https://github.com/EspressoSystems/cap/blob/main/cap-specification.pdf
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1137/0217017
https://doi.org/10.1137/0217017
https://doi.org/10.1007/s00145-013-9152-y
https://doi.org/10.1007/s00145-013-9152-y
https://doi.org/10.1007/s00145-013-9152-y
https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1504/IJSN.2006.010821
https://doi.org/10.1504/IJSN.2006.010821
https://doi.org/10.1504/IJSN.2006.010821
https://doi.org/10.1007/978-3-031-30617-4_20
https://doi.org/10.1007/978-3-031-30617-4_20
https://doi.org/10.1007/978-3-031-30617-4_20
https://doi.org/10.1007/978-3-030-77883-5_18
https://doi.org/10.1007/978-3-030-77883-5_18
https://doi.org/10.1007/978-3-030-77883-5_18
https://eprint.iacr.org/2022/1008
https://eprint.iacr.org/2022/1008
https://eprint.iacr.org/2022/1008

32. Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group sig-
natures with message-dependent opening. In: Abdalla, M., Lange, T. (eds.) Pairing-
Based Cryptography - Pairing 2012 - 5th International Conference, Cologne, Ger-
many, May 16-18, 2012, Revised Selected Papers. Lecture Notes in Computer Sci-
ence, vol. 7708, pp. 270–294. Springer (2012). https://doi.org/10.1007/978-3-642-
36334-4 18, https://doi.org/10.1007/978-3-642-36334-4_18

33. Santis, A.D., Crescenzo, G.D., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) Advances in Cryptology - CRYPTO
2001, 21st Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 19-23, 2001, Proceedings. Lecture Notes in Computer Science,
vol. 2139, pp. 566–598. Springer (2001). https://doi.org/10.1007/3-540-44647-8 33,
https://doi.org/10.1007/3-540-44647-8_33

34. Tessaro, S., Zhu, C.: Revisiting BBS signatures. In: Hazay, C., Stam, M. (eds.)
Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Lyon, France,
April 23-27, 2023, Proceedings, Part V. Lecture Notes in Computer Science,
vol. 14008, pp. 691–721. Springer (2023). https://doi.org/10.1007/978-3-031-30589-
4 24, https://doi.org/10.1007/978-3-031-30589-4_24

35. WG, A.: Hyperledger anoncreds. https://www.hyperledger.org/use/anoncreds
(May 2023)

19

https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/978-3-642-36334-4_18
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/978-3-031-30589-4_24
https://doi.org/10.1007/978-3-031-30589-4_24
https://doi.org/10.1007/978-3-031-30589-4_24
https://www.hyperledger.org/use/anoncreds

	Introduction
	Our contributions

	Related Work
	Preliminaries
	Formalizing UAS
	Syntax
	Security Model

	UAS: A Generic UAS Construction
	Correctness and Security of UAS

	Building Related Schemes from UAS
	Digital Signatures
	Group Signatures
	Anonymous Credentials
	Ring Signatures

	Conclusion and Future Work

