
Blockchain Price vs. Quantity Controls

Abdoulaye Ndiaye[0009−0000−7466−6444]

New York University, New York NY 10012, USA
andiaye@stern.nyu.edu

https://sites.google.com/view/abdoulaye-ndiaye

Abstract. Blockchains, the technology underlying cryptocurrencies, face
large fluctuations in user demand. These fluctuations necessitate effec-
tive transaction fee mechanisms to manage service allocation. This paper
models the blockchain designer’s choice between price control and quan-
tity control. We first derive an analytical expression for the advantage of
a minimum fee over a rigid block size limit. When demand uncertainty is
high, price controls are preferred. A large price elasticity of demand for
block space amplifies this advantage. Using these insights, we provide
novel results on the dynamics of optimal transaction fee mechanisms
within a class of simple mechanisms, including that of the Ethereum
blockchain. Further, we study optimal mechanisms that are resistant to
complete value extraction by monopolistic blockchain service providers,
known as validators. Using Ethereum data, we estimate the parameters
of the optimal transaction fee mechanism and offer recommendations for
blockchain designers.

Keywords: Blockchain, Price Controls, Quantity Controls, Transaction
Fee Mechanisms, Cryptocurrencies, Ethereum, Monopolistic Competi-
tion

1 Introduction

Over the past decade, the blockchain industry has experienced remarkable growth,
with the combined market capitalization of all cryptocurrencies reaching a peak
of $3 trillion in 2021. The technology at the heart of these cryptocurrencies —
blockchains — has emerged as a potent tool for facilitating efficient peer-to-peer
transactions. However, the volatile nature of the market has led to significant
fluctuations in demand for blockchain technology services, mirroring the insta-
bility of cryptocurrency prices. As a result, the market capitalization has since
contracted to $1 trillion. In response to these demand uncertainties, blockchain
designers are increasingly employing Transaction Fee Mechanisms (TFMs) to al-
locate the finite block space effectively. The implications of these mechanisms for
the efficiency of blockchain systems underscore the need for rigorous economic
analysis.

In this paper, we model a blockchain—like Bitcoin or Ethereum—as a dis-
tributed computing network where users submit transactions for inclusion by val-
idators. Transactions, representing data that modifies the network’s state (such
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as account balance transfers), are submitted by users with a bid to a publicly
observable pool—known as the mempool—that indicates their willingness to pay
for their transactions to be processed. Validators, using their limited resources,
select a subset of transactions from the mempool to form a block. Each block,
comprising an ordered sequence of transactions and a reference to the previous
block, can be appended to the blockchain in every period. However, technolog-
ical limitations enforce a maximum block size, thereby constraining the supply
of block space.

On the supply side, validators — who provide block space inclusion services
— face uncertainty in their marginal costs. On the demand side, atomistic users
arrive at random and submit their transactions along with their willingness to
pay for these transactions to be included in the next block. Given the paper’s
focus on the aggregate properties of the block space market, we operate under
the assumption that users truthfully bid their valuations. Dominant-strategy
incentive compatibility for all Transaction Fee Mechanisms (TFMs) considered
in this paper is substantiated by the game-theoretic proofs provided by [15] and
[16].

This process forms the micro-foundations of an aggregate user demand curve,
which we study under both stable and unstable market conditions. In the face of
these uncertainties, a blockchain designer opts for either a base fee—an ex-ante
price control—or a block size limit—an ex-ante quantity control. This choice
aims to maximize a welfare function that can encompass concerns for social
welfare, monopolistic validator profits, or an externally set technological target.

The resolution of the blockchain designer’s instrument choice casts [17]’s
“prices vs. quantities” idea in a fresh light. Specifically, when user demand un-
certainty is higher than uncertainty in the validators’ marginal costs, price con-
trols prove more effective than quantity controls. Within my model, we derive an
analytical expression for the relative advantage of price controls over quantity
controls under demand uncertainty and uncertain marginal costs.

Firstly, demand uncertainty favors price controls, as block size adjustments
provide the flexibility necessary to accommodate demand fluctuations. Secondly,
a negative correlation between marginal costs and demand also favors price con-
trols. In such circumstances, quantity changes permit the production of larger
blocks when marginal costs are low, thereby improving efficiency. Thirdly, the
price elasticity of demand—the proportional change in block space demand in re-
sponse to a proportional change in price for the marginal user seeking to include
their transaction in the next block—further amplifies the relative advantage of
price controls over quantity controls. Lastly, in the absence of uncertainty, the
blockchain designer remains indifferent between price and quantity controls.

Building on these insights, we delve into the dynamics of optimal TFMs that
maintain the simplicity of Ethereum’s TFM, the most widely utilized public
blockchain. Such mechanisms iteratively update base fees using information from
the previous base fee and the deviation from the target block size. We refer to
these as Adaptive to a Deterministic Target Transaction Fee Mechanisms (ADT-
TFMs).
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We establish that the optimal ADT-TFM is locally exponential for any
user valuation distribution. Moreover, we prove that its adjustment parame-
ter equates to the inverse price elasticity of demand at the target block size.
Specifically, if the aggregate user demand curve is isoelastic, the optimal ADT-
TFM is globally exponential with a fixed adjustment parameter. This provides
theoretical justifications for a proposed upgrade to Ethereum’s TFM from its
current linear configuration [4].

Subsequently, we proceed to illustrate these results numerically. Estimating
a user demand curve without random variation in the supply curve presents
identification challenges, as it’s difficult to distinguish between a movement along
a fixed demand curve and a shift of the demand curve. To address this, we
analytically show in my atomistic user model that the tail ratio of user valuations
can serve as a proxy for the price elasticity of demand.

Using a random sample of Ethereum blockchain data, we show that the op-
timal adjustment parameter of the ADT-TFM is approximately 8%. At present,
this ratio is fixed at an ad-hoc level of 12.5%, a rate capable of doubling prices
within at least eight blocks.

On September 15, 2022, the Ethereum blockchain underwent an upgrade
that, among other changes, resulted in a deterministic production rate of new
blocks.1 we observe that the adjustment rate was overshooting more prior to the
proof-of-stake upgrade than following it, a finding that aligns with [12].

In addition, we investigate the optimal block size target for a monopolis-
tic validator and offer tight bounds on its size relative to the block size limit.
These bounds provide valuable insights for studies of TFMs involving monop-
olistic validators [13,10], as well as TFMs designed to prevent validators from
monopolizing all surplus [2].

Numerically, we find that if the block size limit is set to accommodate all
user transactions under average demand conditions and to resist total surplus
extraction by validators, then the block size target should be less than e−1 ≈
37% of the block size limit. This bound is tight, as there exist user valuation
distributions that lead to a ratio of the optimal monopolistic target to the block
size limit that is arbitrarily close to this figure.

The block size target for the Ethereum blockchain is not set to align with
the monopolist validator’s target block size; instead, it is established at 50%
of the block size limit. Nonetheless, there are widespread concerns regarding
the potential for validators and other users to exploit their power to extract
value through censoring, swapping, and front-running of mempool transactions,
a practice colloquially referred to as “maximal extractable value” or MEV [6].

The appropriate interpretation of these findings is that any ADT-TFM with
a target block size exceeding 37% of the block size, which aligns with user de-
mand under average demand conditions, would encourage validators to include

1 This upgrade, known as the Merge and finalized at block number 15537393, tran-
sitioned the Ethereum network from proof-of-work to proof-of-stake. The specific
details of the mechanism through which blocks are produced are not relevant to this
analysis.
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their own value-extracting transactions. This action would effectively reduce the
supply available to users and allow validators to extract more surplus.

Lastly, it is important to consider that users (and validators) might value
block space (and marginal costs) in USD or real-world terms as opposed to
the native currency of the blockchain. To accommodate this, we expand the
model to introduce uncertainty in the price of the cryptocurrency in USD or in
real terms. Notably, price controls are restricted to be expressed in units of the
native currency. we show that volatility in the cryptocurrency price reduces the
advantage of price controls over quantity controls.

Blockchain designers require methods that are simple, robust, and princi-
pled for updating the parameters of their TFMs. Inspired by several robustness
checks and quantitative explorations, we suggest potential ways to construct
non-deterministic adaptive TFMs. These could better align with demand under
uncertain conditions and resist commonly observed manipulations.

1.1 Literature Review

This paper contributes to the literature on price versus quantity controls, a
domain pioneered by [17]. The issue of choosing a supply function under uncer-
tainty has been explored in [9]. My approach aligns closely with [14] and [8],
who scrutinize the choice between price and quantity from a firm’s perspective
and its macroeconomic implications. While my work draws inspiration from [17],
it diverges in that it contemplates the planner’s (blockchain designer’s) problem
with a variety of goals, including purely technical objectives seen in practice,
such as block size targets. The conclusions of this analysis are then applied to
the design of TFMs.

The literature on TFMs from a mechanism design perspective is growing.
Notably, [1] examines mechanisms that are immune to designer manipula-
tions—referred to as ”credible mechanisms”—and demonstrates that the well-
known second price auction doesn’t meet this criterion. In the blockchain con-
text, [16] applies this credibility condition to TFMs and establishes that EIP-
1559, Ethereum’s TFM, and its variations are incentive-compatible for users and
adhere to a form of myopic credibility for validators. These findings are further
consolidated by [5]. These papers provide game-theoretic foundations that guar-
antee that the ADT-TFMs we study are incentive-compatible. [7] explores an
alternative aspect of TFMs by investigating posted price mechanisms. This pa-
per takes a complementary approach to this strand of literature. Moreover, it
delves into the dynamics of TFMs, offering insights into their updating rules.

This paper advances the literature that examines the block space market
from a macroscopic viewpoint. The concepts formalized in Section 2 of this
paper build upon and extend the work presented by [3]. Motivated by [10],
[13] investigates the monopolistic market for unlimited block space, a contrast
to this paper which views the block size limit as an exogenous technological
constraint.

Lastly, this paper contributes to studies of the dynamics of EIP-1559, the
Ethereum blockchain’s TFM. [11] delves into the behavior of the dynamic system



Blockchain Price vs. Quantity Controls 5

resulting from the TFM, and [12] uncovers numerous empirical properties that
this paper provides a theoretical explanation for.

Outline: The paper is organized as follows: Section 2 introduces the model and
provides an overview of blockchains and the economic principles of price and
quantity controls. Section 2.1 is tailored for economists or readers unfamiliar with
the workings of most blockchains. Section 3 examines the blockchain designer’s
instrument choices and identifies properties of optimal ADT-TFMs. Section 4
presents the data and numerical analysis. Section 5 extends the baseline model to
accommodate uncertainty in cryptocurrency prices and includes some numerical
robustness exercises. Lastly, Section 6 concludes the paper.

2 Model

2.1 Background

A blockchain, such as Bitcoin or Ethereum, is modeled as a distributed computer
network where users submit transactions to be included in a chain of blocks by
validators. The blockchain maintains a record of the network’s state, such as
account balances. A transaction t represents arbitrary data sent over the network
to alter its state—for instance, to transfer a balance. Users submit transactions
to a publicly observed pool of outstanding transactions (mempool), with a bid
bt, signifying their willingness to pay for transaction processing. Monopolistic
validators, using quantities xi of a finite number of resources i ∈ [[1, N ]] (e.g.,
computation, bandwidth), select a subset of transactions from the mempool to
form a block. A block of size q is an ordered sequence of transactions and a
reference to the previous block. Validators add a block to the blockchain by
a consensus mechanism (such as proof of work or proof of stake), a process
irrelevant to this analysis. Technological constraints impose a maximum block
size qmax, thus limiting the supply of block space.2

Validators: Validators use a bundle of computational resources x ∈ RN
+ priced

at per-unit resource rates px ∈ RN
++ to produce a block of size q ≤ qmax, as given

by

q =

N∑
i=1

pxi
xi (1)

Validators incur a technological cost of C(q) = c(x1, . . . , xN ) when producing a
block. These costs encompass validation operation costs and other costs associ-
ated with accessing and modifying the blockchain’s state. From the blockchain
designer’s viewpoint, costs might also include delays in block propagation due
to large blocks and other societal costs. These costs, denoted by C(q; η), are
subject to uncertainty represented by the distribution η.

2 See [3] for the case of the Ethereum blockchain.
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Users: User transactions populate the mempool according to a stochastic pro-
cess. We posit that users, denoted by j ∈ [0, 1], are atomistic, with arrivals
between two consecutive blocks, Bt, Bt+1, being independently and identically
distributed according to a Poisson process X with a parameter of λqmax, where
λ ∈ R++. For simplicity, we assume users leave the pool if their transaction is
not included in the next block, only to return according to the arrival process.3

Each user j has a valuation vj drawn from a common distribution f with a
cumulative distribution function F , which is continuous and increasing.

Establishing a Demand Curve: Given that the transaction fee mechanisms under
consideration are dominant-strategy incentive-compatible, as demonstrated by
[16], it is reasonable to assume that users bid their true valuations, i.e., bt = vj .
Consequently, for a given minimum bid for transaction inclusion, denoted by p,
the number of users willing to pay the bid is λqmaxF̄ (p), where F̄ (p) = 1−F (p).
The following lemma shows that this model serves as the microfoundation of an
intuitive demand curve for block space, thereby linking demand parameters to
model primitives.

Lemma 1. The aggregate demand for block space can be represented as

p =
(
F̄
)−1

( q

Ψ

)
(2)

where the price elasticity of demand for the marginal user equals the tail ratio

pf(p)

1− F (p)
(3)

.
Specifically, when F is a Pareto distribution with scale pm and shape α, the

aggregate demand for block space is given by

p

pm
=
( q

Ψ

)− 1
ε

(4)

Here p ∈ R+ is the market price, Ψ ≡ λqmax is a demand shifter, and ε = α is
the price elasticity of demand for block space.

Proof. Refer to Appendix A.1 for the proof.

In Section 3, we will assume that the user valuation distribution is Pareto unless
otherwise stated. The assumption of a Pareto distribution is not restrictive. For
a general user valuation distribution, one can calculate the price elasticity of
demand at all points from the tail ratio of the distribution. Using data from the
Ethereum blockchain, we fit a Pareto distribution to the transaction in Section

3 [11] confirms that this assumption does not significantly impact the dynamics of
transaction fees, which are the focus of our analysis. In their research, [13] accounts
for residual demand in the mempool and finds similar dynamics of transaction fees
as [12].
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4. This demand curve will prove useful when considering uncertainty in the user
arrival rate λ, leading to uncertainty in the demand shifter Ψ . When λ > 1, we
encounter a high-demand scenario where not all transactions can be included in
the next block, whereas λ < 1 reflects a low-demand scenario where the block
is not filled to capacity. Given this context and considering the uncertainties
in both the cost C(q; η) and demand Ψ , we explore the conditions under which
a blockchain protocol would find it beneficial to introduce price or quantity
controls.

3 The Blockchain Designer Problem

3.1 Price Controls and The Elasticity of Demand

The analysis conducted by Weitzman (1974) hinges on a Taylor approxima-
tion of the private benefit function and marginal cost. Consequently, it provides
a local result around an equilibrium price-quantity pair, where shocks to de-
mand and validator costs can occur. For analytical tractability, we approach
the blockchain designer’s problem within the framework of a demand-specified
model. This model is governed by equations (1) and (4), featuring uncertainty
in the demand shifter, Ψ , and in the cost to validators, indicated by η.

Blockchain Designer Objective: Given a price p per unit of block space and a
fixed block reward R, the blockchain protocol profits are

Π = R+ E [pq − C(q; η)] . (5)

If the blockchain designer were to maximize the profits of monopolist valida-
tors, they would then maximize equation (5). However, protocol revenue can be,
in part, diverted by the protocol treasury, burned, or rebated to users for incen-
tivization purposes beyond the scope of this paper.4 Therefore, the blockchain de-
signer’s objective balances social welfare and technological considerations while
ensuring validators have enough profit to be willing to provide their validator
services.

We consider the following blockchain designer objective function that cap-
tures these considerations:

V = E [S(q)]
1−β E [pq − C(q; η)]

β
. (6)

In this objective, the parameter β ∈ [0; 1] captures the bargaining power of val-
idators. β = 1 means that the blockchain designer maximizes validator profits,
while β = 0 means that the designer only optimizes for other common consider-
ations captured by the function S(q). Here are a few examples:

Example 1. (Social Welfare) Denote u, the utility of the representative user of
the blockchain. Then:

S(q) = u(q) (7)

4 See [16].
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captures a concern for the utility of users, which may differ and conflict with
validator profits.

Example 2. (Technological Block Size Targets) Suppose the designer has a tar-
get block size, denoted by qtarget, which they aim to achieve. There might be
technical constraints that necessitate reaching this specific block size target.
Consequently, the designer might only be satisfied when q = q , which can be
represented as

S(q) = δ{q − qtarget} (8)

where δ symbolizes the Dirac function, which equals zero everywhere except at
the origin.

However, it might also be plausible for the designer to allow some degree of
deviation from the target block size. In such a case, we can represent this as
S(q) = ℓ{q − qtarget} where ℓ stands for some loss function.

As a specific instance, consider a loss function that behaves as the narrowing
limit of a normal distribution centered at zero, which provides an approximation
to the Dirac function:

S(q) = ϕ

(
q − qtarget

a

)
(9)

Here, ϕ denotes the density of the standard normal distribution, and a is a
parameter that brings the function closer to the Dirac function as it approaches
zero.

Example 3. (Validator Profits) Ignoring the block reward R as it remains con-
stant, we can consider the scenario where the designer aims to maximize the
monopolistic validator’s profit. This can be represented as:

S(q) = 1 (10)

In this case, given a price p per unit of block space, the block size q adjusts to
optimize profit. Furthermore, when the block size limit qmax becomes binding,
the equilibrium price adapts to meet user demand.

Assuming users and smart contract writers optimize resource usage, the cost
to the validator becomes

C(q; px, η) = min
x∈RN

+

c(x1, . . . , xN ; η) (11)

subject to (1). The bundle x can be interpreted as the various resources that
constitute a user transaction, such as bandwidth, computational operations, etc.
Let’s consider that c is homogeneous of degree 1 in x.5 We then have:

C(q; px, η) = Γ (η, px)q (13)

5 A typical example is the ”constant-scale” cost function

c(x1, . . . , xN ; η) = η

N∏
i=1

xεi
i such that

N∑
i=1

εi = 1 (12)
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The expression for the marginal cost Γ is derived in Appendix A.2.

Price Controls: Assuming the block space demand follows the isoelastic demand
curve derived in (4), with a price elasticity of demand ε > 1and that the block
size limit is not binding, the equilibrium block size lies on the demand curve,

i.e., q = Ψ
(

p
pm

)−ε

. The blockchain designer’s problem of settings optimal prices

then becomes:

Vp = max
p∈R+

E

[
S

(
Ψ

(
p

pm

)−ε
)]1−β [

(p− Γ )× Ψ

(
p

pm

)−ε
]β

(14)

Quantity Controls: If the monopolistic validator sets a block size q ≤ qmax, it sells

transaction inclusion at the price that clears markets ex-post: p = pm
(
q
Ψ

)− 1
ε .

Then the blockchain designer’s value of setting the optimal block space is

Vq = max
q∈R+

E [S (q)]
1−β

[(
pm

( q

Ψ

)− 1
ε − Γ

)
× q

]β
(15)

The log-difference between the values of price controls and block space con-
trols can be defined as follows:

∆log = logVp − logVq. (16)

To provide insight into the choice between price and quantity, consider a blockchain
designer objective that accounts for social welfare with utility S(q) = u(q) = qν

for ν > 0 and an arbitrary bargaining power β for validators. The following
proposition establishes the relationship between the relative value of price con-
trols, the price elasticity of demand, and other moments of the shock to demand
and marginal costs.

Proposition 1. Assume that (Ψ, η) follows a joint log-normal distribution. Then,
the relative value of price controls over quantity controls is given by:

∆log =
1

2

((
ν̂ − ν̄

ε

)
σ2
Ψ − 2(εν − β)σΨ,Γ

)
(17)

where ν̄ = (1− β)ν + β and ν̂ = (1− β)ν2 + β

Proof. Refer to Appendix A.2 for the proof.

This equation can be interpreted by setting β = 1, which gives

∆log =
1

2
(ε− 1)

(
1

ε
σ2
Ψ − 2σΨ,Γ

)
(18)

In this case, price-setting is preferable to quantity-setting when (i) demand
volatility is high, and (ii) the covariance between demand and real marginal
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costs is low. Uncertainty in demand favors price controls as block size adjust-
ments can flexibly respond to demand fluctuations. Additionally, a negative cor-
relation between marginal costs and demand favors price controls, as this allows
for the production of larger blocks when marginal costs are low, enhancing effi-
ciency. The price elasticity of demand, which dictates how quickly prices react to
changes, mediates the degree to which the firm values (i) and (ii). A larger price
elasticity of demand favors price controls. In general, these comparative statistics
remain valid as long as demand is relatively elastic, i.e., ε > max{β/ν, ν̄/ν̂}.

Lastly, note that the advantage of price-setting in equation (17) could be
empirically estimated if the elasticity of demand, validators’ uncertainty about
demand, and marginal costs can be measured. This insight will guide us in esti-
mating the appropriate magnitude of the adjustment parameter in a transaction
fee mechanism.

3.2 Optimal Transaction Fee Mechanisms

In this section, we define a family of simple TFMs that include EIP-1559,
Ethereum’s TFM. We study their dynamics, determine the shape and adjust-
ment rate of the optimal mechanism within this family, and provide bounds on
the target block size that align with the incentives of a monopolistic validator.

Definition 1. (ADT-TFM) A transaction fee mechanism is called Adaptive to
a Deterministic Target (ADT) if there exists a deterministic block size, qtarget

(the target), and a deterministic function, f (the adjustment function), such that
the base fee satisfies:

pt+1

pt
= g

(
qt − qtarget

qtarget

)
(19)

Example 4. (EIP-1559) The base fee in EIP-1559 is ADT with linear adjustment
function g(x) = 1 + d× x where the adjustment parameter is d = 1

8 .

Let q∗ denote the optimal quantity control or the block size that a blockchain de-
signer aims to achieve for a specific technological target, S(q) = δ{q−qtarget}. In
this case, q∗ = qtarget. We consider a general demand curve, with price elasticity
of demand ε(qtarget) and uncertainty in demand represented by λ. In this con-
text, a TFM is considered to be robustly optimal if, following a sudden change
or shock in demand, it manages to bring the realized quantity as close as pos-
sible to the targeted level in the worst-case scenario. The following proposition
determines the shape and slope of the optimal ADT-TFM.

Proposition 2. Suppose the demand curve is log-convex, the robustly optimal
ADT-TFM is an exponential function with an adjustment parameter equal to
the inverse price elasticity of demand, d = 1

ε(qtarget) . In other words, g(x) =

exp (d · x) and

pt+1 = pt exp

(
1

ε(qtarget)

qt − qtarget

qtarget

)
(20)
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The intuition of the proof in Appendix A.3 goes as follows. Let f denote the
adjustment function of the optimal TFM and p(qt) represent the price that
matches demand at the block size qt. The base fees then satisfy:

ln pt+1 − ln pt = ln g

qt − qtarget

qtarget
p(qtarget)

p(qt)− p(qtarget)︸ ︷︷ ︸
g(qt)

p(qt)− p(qtarget)

p(qtarget)

 (21)

Near qtarget, we have:

g(qt) −−−−→
qtarget

q′(p(qtarget))p(qtarget)

qtarget
= ε(qtarget) (22)

And if pt+1 maintains the block size near qtarget, then

ln pt+1 − ln pt ∼
p(qt)− p(qtarget)

p(qtarget)
(23)

Let x denote this price growth. From (21), we get

x = ln
(
g
(
ε(qtarget) · x

))
+ o(x) (24)

for all x in the neighborhood of zero.

Solving this functional equality yields g(x) = exp
(

x
ε(qtarget)

)
in the neigh-

borhood of zero. The proof extends this argument with uncertainty in demand
and shows that this function is optimal for the worst-case demand scenario in
demand fluctuations.

In particular, when the elasticity of demand is constant, expression (22) be-
comes an equality everywhere. The adjustment parameter is a constant and
equals the inverse of the price elasticity of demand. Moreover, the adjustment
function takes the form of an exponential function everywhere. Similarly, if we

restrict the adjustment function to be linear or of the form (1 + d)
qt−qtarget

qtarget as
studied by [12], the adjustment rate remains the inverse of the price elasticity of
demand. Now, let’s determine the block size target that aligns with the optimal
target of a monopolistic validator.

Definition 2. (Myopic Miner Incentive Compatibility) A quantity target is My-
opic Miner Incentive Compatible (MMIC), if a myopic miner, by creating no fake
transactions and adhering to the suggested block size target qtarget, maximizes
her profit.

The MMIC definition implies that a miner who aims to maximize her revenue
should be motivated to comply with the proposed quantity target when choosing
her block size ex-ante.
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Proposition 3. Given any isoelastic demand curve, the target block size align-
ing with the monopolist validator’s optimal target block size is expressed as:

qtarget

qmax
=

(
ε

ε− 1

)−ε

E
[
λ

1
ε

]ε
(25)

Notably, if qmax is adjusted to coincide with user demand under average demand
conditions, then:

qtarget

qmax
<

1

e
≈ 37% (26)

Proof. Refer to Appendix A.4 for proof.

4 Numerical Analysis

This section presents a numerical analysis aimed at quantifying the parameters
of optimal ADT-TFMs. The analysis uses Ethereum data due to its widespread
availability, the simplicity of its ADT-TFM, and the global usage of its blockchain.

Data: A random sample of 100,000 blocks, encompassing 16,881,386 transac-
tions, was extracted from the complete set of Ethereum blocks. This sample
spans from the introduction of EIP-1559 at the London hard fork (block num-
ber 12965000, August 5, 2021) to block number 17731768 (July 20, 2023). Ad-
ditional random block subsamples from before and after the Ethereum merge
(block number 15537393, September 15, 2022) were also analyzed.6

The median block in the sample contains 143 transactions. Each block is
associated with a number and a timestamp, the total gas used by all transactions
in the block (equivalent to q in the model), and an array of transactions. Each
transaction includes information on its “gas” unit, gas price, and other metadata.

Methodology: The inference of a demand curve requires random variation in
supply to distinguish between shifts along the demand curve and shifts in the
demand curve itself. Nevertheless, such random variation in supply is rare due
to the programmatically defined rules of blockchains.

Instead, a different strategy, informed by the user demand model presented
in Section 2, is adopted. Lemma 1 shows that for any density f of user valua-

tions, the price elasticity of demand is the tail ratio
pf(p)

1− F (p)
. Specifically, if the

distribution is Pareto, the price elasticity is its Pareto tail coefficient. Knowing
the Pareto tail of the distribution of user valuations allows the determination
of the optimal adjustment parameter from Proposition 2 as the inverse of the
Pareto tail coefficient.

6 The results were consistent when sampling 100,000 blocks before and after the merge
separately.
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In this analysis, transaction gas prices serve as the nearest proxy for user val-
uations, given the available data. A Pareto distribution is fitted to the empirical
distribution of effective transaction gas prices in each randomly selected block
to calculate the optimal adjustment rate. However, this approach is not without
limitations.7 Firstly, gas prices censor user valuations at the lower end of the
distribution due to the base fee. Secondly, pending transactions in the mem-
pool, which carry lower base fees, are not included. Consequently, the estimate
will reflect a heavier tail than the actual user valuation distribution. There-
fore, the estimate of the Pareto tail coefficient is an underestimate, meaning its
inverse—the optimal adjustment rate—will be overestimated. The adjustment
parameters identified here should thus be considered as an upper bound.8 To
address these limitations, several robustness exercises are performed in Section
5, which include restricting the estimation to blocks with a minimum gas price
below a certain threshold (to limit the censoring of low valuations) and to blocks
that are less than full (to limit the censoring of mempool transactions). These
robustness exercises do not alter the primary conclusions of this numerical anal-
ysis.

Results: Given that the exponential shape with an adjustment parameter equal
to the inverse price elasticity of demand in Proposition 2 is local for a general
user valuation distribution, the preferred estimate focuses on blocks with sizes
close to the target. Estimating the Pareto tail for blocks of size within ±5% of the
block size target (over 7252 blocks and 12965717 transactions) yields a Pareto
coefficient of 12.62 and an optimal adjustment rate of 7.92%. This aligns with
[12], who simulate the dynamic system of EIP-1559 and find stability around the
target block size only for adjustment parameters below 8%. Our contribution
clarifies that the adjustment rate encapsulates the economic concept of inverse
price elasticity of demand, which must be measured or approximated on-chain.

5 Extensions and Robustness

This section introduces an extension to the model, accounting for fluctuations
in cryptocurrency prices, and presents some robustness checks for the numerical
estimates. The results suggest that the volatility of cryptocurrency prices may
favor a block size limit over base fees.

5.1 Implications of Cryptocurrency Price Fluctuations

This extension examines the impact of cryptocurrency price volatility on the
choice between price and quantity controls. Let P denote the exchange rate

7 As users demand different amounts of block space, each transaction is weighed by
the gas units it uses to fit the Pareto distribution.

8 Given that the optimal adjustment rate found here is lower than its current value of
12.5%, this upper bound estimate offers valuable insights for the design of Ethereum’s
TFM.
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between 1 USD and the cryptocurrency (equivalently, the inverse of the cryp-
tocurrency price when expressed in dollars). Another way to interpret P is the
exchange rate between 1 unit of consumption goods and the cryptocurrency.
This real model accommodates variations in both the cryptocurrency price and
the value of fiat currency. Users pay transaction fees in the cryptocurrency at a
nominal price p, implying that the dollar value (equiv. real) of these payments

is
p

P
. Meanwhile, Γ represents the dollar (equiv. real) marginal cost.

The following proposition, formulated for simplicity with β = 1 (though sim-
ilar insights apply for other parameters), provides an equivalent to Proposition
1 in this context:

Proposition 4. Suppose (Ψ, η, P ) is jointly log-normal distributed. Then the
relative value of price adjustments over quantity adjustments is:

∆log =
1

2
(ε− 1)

(
1

ε
σ2
Ψ − 2σΨ,Γ − εσ2

P − 2εσP,Γ

)
(27)

In addition to the findings of Proposition 1, the variance of the cryptocurrency
price and the covariance between the cryptocurrency price and the dollar (equiv.
real) marginal cost both decrease the relative advantage of price controls over
quantity controls.

5.2 Numerical Robustness

This section presents the results of supplementary robustness checks to validate
the primary numerical analysis findings. These checks were performed under
various conditions to address potential concerns highlighted in Section 4, such
as the base fee causing censoring of low valuations and the exclusion of pending
mempool transactions. To investigate the consistency of the Pareto tail coeffi-
cient and the optimal adjustment rate, adjustments were made to the selection
of blocks within a size range of qtarget(1± δ%) and different limits to base fees.

Estimations were performed on three samples: full, pre-, and post-merge.
Tables 1, 2, and 3 in Appendix A.5 provide detailed results. The estimated
optimal adjustment rates are consistently lower than the 12.5% adjustment rate
and remain stable under various data partitionings. The estimate is smaller
before than after the merge, as previously found. The adjustment rates decrease
as the window around the target block size widens and the maximum base fee
increases. Ethereum transaction fees are paid in units of gwei, a denomination
of the Ethereum cryptocurrency. The increase in rates as the max base fee limit
becomes more restrictive (blocks with a base fee less than 30 gwei) can only
produce thicker tails due to a restricted range and censoring. Variations based
on δ, the window of the target block size, are quite robust, with an adjustment
rate in the full sample estimation ranging from 7.33% to 8.03% for a more
accommodating max base fee of 200 gwei. Estimates from pre-merge and post-
merge suggest the optimal adjustment rate lies within the 6% to 10% window,
serving as an upper limit.
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6 Conclusion

This paper analyzes the market for user transactions on blockchains, focusing on
the balance between price and quantity controls under uncertainty. We present
a user model that establishes a demand curve for block space, linking demand
parameters to model primitives. The model reveals that the price elasticity of
demand for the marginal user is a simple statistic of the distribution of user
valuations. If the user valuation distribution follows a Pareto distribution, the
aggregate demand for block space takes a simple form.

We explore the welfare implications of price controls in the face of demand
and social cost uncertainty, drawing on ideas proposed by [17]. We also study
the optimal quantity control for a monopolistic miner, showing that volatility
in cryptocurrency prices diminishes the benefits of price controls over quantity
controls.

A key conclusion drawn from the analysis is that optimal Transaction Fee
Mechanisms Adaptive to a Deterministic-Target (ADT-TFM) are exponential
and adjust log prices with a slope equal to the inverse price elasticity of demand.
Numerical analysis suggests that Ethereum’s adjustment parameter might be
above the range of our estimates. In addition, we show that a target block
size exceeding 37% of the block size that matches average user demand would
incentivize validators to include their own value-extracting transactions.

Blockchain designers must adopt simple, robust, and principled methods for
updating TFM parameters. Yet, updating parameters and the “rules of the
game” as we go might not be best for scalability. The consideration of non-
deterministic adjustment rates for TFMs could provide a solution. Preliminary
quantitative explorations using adjustment rates derived from prices and quanti-
ties of the preceding two blocks have shown promising results in reflecting market
conditions during those periods. A more stable and manipulation-resistant ap-
proach could involve calculating an average elasticity over a range of prior blocks.
Alternatively, introducing noise to the target block size, effectively the “supply
curve,” could help infer demand fluctuations under normal conditions. However,
these economists’ dream of ideal experiments must be balanced against the prac-
tical realities of managing a system where hundreds of billions of dollars are at
stake. This conclusive remark underscores the complexity and nuanced nature
of designing effective TFMs for blockchains.
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A Appendix

A.1 Proof of Lemma 1

At a price p, demand for block space is the measure of users willing to pay
p for transaction inclusion, i.e., λqmaxF̄ (p). This yields the demand cure p =(
F̄
)−1

(
q

λqmax

)
. The price elasticity of demand is defined by (negative) the per-

centage change in quantity demanded over the percentage change in price, i.e.,

− dq/q
dp/p . Since from the demand curve

q = λqmaxF̄ (p) (28)

and
dq/dp = −λqmaxf(p) (29)

the demand elasticity is pf(p)
1−F (p) .

When F is a Pareto distribution with scale pm and shape α,

F̄ (p) = Pr(v > p) =

{(
pm

p

)α
for p ≥ pm

1 for p < pm
(30)

So that above the minimum price pm demand is

q = λqmax

(
pm
p

)α

(31)

therefore we obtain

p

pm
=

(
q

λqmax

)− 1
α

(32)

A.2 Proof of Proposition 1

We first find the expression of the marginal cost Γ in (13). The first order
condition is:

ci(x1, . . . , xN ; η) = γpxi
(33)

where γ is the Lagrangian of the constraint (1). Since c is homogeneous of degree
1, we have:

c(x1, . . . , xN ; η) =

N∑
i=1

ci(x1, . . . , xN ; η)xi = γ

N∑
i=1

pxi
xi = γq. (34)

Therefore, Γ = γ. Evaluating at q = 1 yields:

Γ (η, px) = c(x1(1, px, η), . . . , xN (1, px, η); η) (35)
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To prove the proposition, we now take logarithms of the blockchain designer’s
objective and maximize over p and q. The first-order conditions for the price
choice and quantity choice are:

ε(1− β)ν

p∗
+

εβ

p∗
=

βE[Ψ ]
p∗E[Ψ ]− E[ΓΨ ]

(36)

(1− β)ν

q∗
+

β

q∗
=

β/εpm(q∗)−1−1/εE[Ψ1/ε]

pm(q∗)−1/εE[Ψ1/ε]− E[Γ ]
(37)

Denote ν̄ = (1− β)ν + β. Then we obtain,

p∗ =
εν̄

εν̄ − β

E[ΓΨ ]

E[Ψ ]
(38)

q∗ =

(
εν̄

εν̄ − β

1

pm

E[Γ ]

E[Ψ1/ε]

)−ε

(39)

The log value of price controls and quantity controls are then

logVp = −εν̄ log(p∗/pm) + (1− β) log(E[Ψν ]) + β log(p∗E[Ψ ]− E[ΨΓ ]) (40)

logVq = ν̄ log(q∗) + β log(pm(q∗)−1/εE[Ψ1/ε]− E[Γ ]) (41)

Replacing optimal choices with their values in (38) and (39) we get

logVp = −ν̄ log(p∗/pm) + (1− β) log(E[Ψν ]) + β log(
β

εν̄ − β
E[ΨΓ ]) (42)

logVq = ν̄ log(q∗) + β log(
β

εν̄ − β
E[Γ ]) (43)

Simplifying yields:

logVp − logVq = ν̄ε logE[Ψ ] (44)

+(ν̄ε− β)(logE[Γ ]− logE[ΨΓ ])

−εν̄ logE[Ψ1/ε] + (1− β) logE[Ψν ]

For the joint log- (Ψ, Γ ), with mean

µ =

(
µΨ

µΓ

)
And variance-covariance matrix

Σ =

(
σ2
Ψ σΨ,Γ

σΨ,Γ σ2
Γ

)
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We have

logE[Ψ ] = µΨ +
1

2
σ2
Ψ (45)

logE[Γ ]− logE[ΨΓ ] = −µΨ − 1

2
σ2
Ψ − σΨ,Γ (46)

logE[Ψ1/ε] =
1

ε
µΨ + (

1

ε2
)
1

2
σ2
Ψ (47)

logE[Ψν ] = ν(µΨ +
1

2
νσ2

Ψ ) (48)

Putting them together, we get the result

logVp − logVq =
1

2

((
ν̂ − ν̄

ε

)
σ2
Ψ − 2(εν − β)σΨ,Γ

)
(49)

where ν̂ = (1− β)ν2 + β

A.3 Proof of Proposition 2

Let’s start by defining the notion of optimality in this dynamic context. Let qt the

equilibrium quantity at time t. Denote xt =
qt−qtarget

qtarget the percentage deviation

from the target at time t. Denote λ the arrival rate in normal times (i.e. the
expected arrival rate). Consider a shock to the demand curve λ−1

t ≡ λ−1+zt. At
the protocol set price pt, the quantity lies on the demand curve qt = λtq

maxF̄ (pt).
The deviation from target xt can be due to the shock to demand zt or a protocol
price pt that is not properly set so that qt deviates from not the target.

We have the expression pt = F̄−1( qt
qmaxλt

). From the expression of the ADT-
TFMs, we have:

pt+1 = F̄−1(
qtarget(1 + xt)

qmaxλt
)g(d× xt) (50)

Without loss of generality at time t + 1, demand returns to normal so that
λt+1 = λ.

Known Intensity of Demand: Suppose for now that the realization of zt i.e. λt

is known, then the deviation from the target quantity at time t+ 1 is

xt+1 =
F̄
(
F̄−1( q

target(1+xt)
qmaxλt

)g(d× xt)
)

F̄ (ptarget)
− 1. (51)

We can see that by setting

g(d× xt) =
F̄−1( q

target

qmaxλ )

F̄−1( q
target(1+xt)

qmaxλt
)

(52)

We guarantee that The quantity at time t + 1 is at the target. The issue is
that demand λt is uncertain so we look at the function f that performs in the
worst-case scenario.
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Unknown Intensity of Demand: Because demand is uncertain, the adjustment
function can depend on the gap from target xt but not on λt. So we need to
evaluate the deviation that is closest for the worst case value of zt. We have:

ln F̄−1

(
qt+1

qtarget

)
= ln F̄−1(

qtarget(1 + xt)

qmaxλt
)− ln F̄−1(

qtarget

qmaxλ
)+ln g(d×x) (53)

Suppose − ln F̄−1 is concave, then for any xt and zt = λ−1
t − λ−1

ln F̄−1(
qtarget

qmaxλ
)− ln F̄−1(

qtarget(1 + xt)

qmaxλt
) ≥ 1

ε(qtarget)
(xt + zt) (54)

From (53), we have that, ln g(d×x) is the closest approximation of ln F̄−1( q
target

qmaxλ )−
ln F̄−1( q

target(1+xt)
qmaxλt

) that is independent of zt. Therefore, f(d×x) = x/ε(qtarget),i.e.

d = ε(qtarget) and f = exp.

A.4 Proof of Proposition 3

From equation (39), the optimal quantity for a monopolistic miner is for β = 1,

q∗ =

(
ε

ε− 1

1

pm

E[Γ ]

E[Ψ1/ε]

)−ε

(55)

With Ψ = λqmax. Now suppose that the minimum user valuation is greater than
the expected marginal cost pm > E[Γ ]. Then by including her own transactions
up to the block size limit qmax and paying the base fee to herself, the validator
gets a positive value in expectation. Therefore, MMIC requires that pm ≤ E[Γ ],
thus

q∗ ≤ qmax

(
ε− 1

ε

)ε

E[λ1/ε]ε. (56)

By Jensen’s inequality, E[λ1/ε]ε ≤ E[λ]. So the block size limit is set to match
user demand in expectation, then E[λ] = 1, thus

q∗

qmax
≤
(
ε− 1

ε

)ε

. (57)

The right-hand side is an increasing function for ε > 1 with limit e−1
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A.5 Tables

Parameters Outputs Observations

δ max base fee (gwei) shape α adjustment rate d number of blocks

5%

200 12.45 8.03 7189
100 11.83 8.45 6645
60 11.01 9.08 5867
30 9.50 10.53 4130

33%

200 12.77 7.83 43718
100 12.09 8.27 40471
60 11.26 8.88 35649
30 9.48 10.55 25193

87.5%

200 13.64 7.33 78881
100 12.62 7.92 70769
60 11.53 8.67 60141
30 9.50 10.53 41140

Table 1: shape of Pareto fit α and optimal adjustment rate s for the different
maximum gas prices (base fee) in units of gwei and selection of blocks within
size qtarget ± δ%. Full sample estimation.
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Parameters Outputs Observations

δ max base fee (gwei) shape α adjustment rate d number of blocks

5%

200 11.46 8.73 5088
100 11.24 8.89 4962
60 10.84 9.23 4688
30 9.55 10.47 3547

33%

200 11.48 8.71 30029
100 11.29 8.86 29454
60 10.89 9.18 27884
30 9.55 10.47 21288

87.5%

200 11.32 8.83 42042
100 11.15 8.97 41348
60 10.78 9.28 39426
30 9.47 10.56 30890

Table 2: shape of Pareto fit α and optimal adjustment rate s for the different
maximum gas prices (base fee) in units of gwei and selection of blocks within
size qtarget ± δ%. Post-merge sample estimation.

Parameters Outputs Observations

δ max base fee (gwei) shape α adjustment rate d number of blocks

5%

200 14.85 6.73 2101
100 13.57 7.37 1683
60 11.70 8.55 1179
30 9.15 10.93 583

33%

200 15.59 6.41 13689
100 14.22 7.03 11017
60 12.57 7.96 7765
30 9.09 11.01 3905

87.5%

200 16.29 6.14 36839
100 14.69 6.81 29421
60 12.96 7.71 20715
30 9.58 10.44 10250

Table 3: shape of Pareto fit α and optimal adjustment rate s for the different
maximum gas prices (base fee) in units of gwei and selection of blocks within
size qtarget ± δ%. Pre-merge sample estimation.
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