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Abstract. Considerable work explores blockchain privacy notions. Yet,
it usually employs entirely different models and notations, complicating
potential comparisons. In this work, we use the Transaction Directed
Acyclic Graph (TDAG) and extend it to capture blockchain privacy no-
tions (PDAG). We give consistent definitions for untraceability and un-
linkability. Moreover, we specify conditions on a blockchain system to
achieve each aforementioned privacy notion. Thus, we can compare the
two most prominent privacy-preserving blockchains – Monero and Zcash,
in terms of privacy guarantees. Finally, we unify linking heuristics from
the literature with our graph notation and review a good portion of
research on blockchain privacy.
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1 Introduction

Public blockchains are inherently transparent and most cryptocurrencies fail
to meet even the basic privacy standards. For instance, each transaction con-
ducted on the two most prominent blockchains, Bitcoin and Ethereum, fully
disclose senders, recipients and exchanged amount. Furthermore, identities are
quite thinly protected behind pseudonymous addresses, which can easily be com-
promised by various mechanisms [5, 6, 22, 40]. Once they are, restoring privacy
becomes a challenging and expensive endeavor.

Many techniques, add-on solutions, or recommended behaviors exist to in-
crease the base level of privacy. One such behavior is first for users to own multi-
ple addresses and second to change them frequently. Yet, such a technique implies
that users’ wealth is scattered over several addresses. At some point, if a user
wants to operate multiple of her addresses to conduct a single transaction, such

⋆⋆ The main part of the work was conducted while the author was at the University of
Bern.
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a pattern is noticeable [2, 28, 33]. This linking is based on the assumption that
multiple coins spent together have the same ownership. However, it is possible
for various parties to combine their coins and send them to whomever they wish.
This is the base principle of the Bitcoin add-on privacy solution Coinjoin [26].
A more sophisticated mechanism exists in smart-contract-enabled blockchains
such as Ethereum with Tornado Cash [36] and related mechanisms. They also
allow different users to mix their cryptocurrency together to obscure the origin
of the funds. Yet, in that scenario, individuals deposit their coins and receive
a note allowing them to withdraw their funds later. Thanks to zero-knowledge
proofs, the link between deposits and withdrawals is not revealed, while pre-
venting users from withdrawing funds twice. Unfortunately, the opt-in nature
of these tools does not increase the default privacy of the underlying chains.
Moreover, there exist multiple ways to decrease the unlinkability properties of
add-on privacy tools, as shown by several studies [18, 43]. This is also possible
because, in such blockchains, no inherent mechanisms exist to hide the origin of
transactions. Thus, chain analysis can easily be conducted to trace coins back
to their origin.

Privacy-preserving blockchains address this issue by hiding the sender of
transactions and providing confidentiality for the amounts transferred. For ex-
ample, Zcash builds a so-called shielded pool where transactions are anonymized
via zero-knowledge proofs [4]. In contrast, Monero expands on the CryptoNote
protocol to hide the source of transactions with ring signatures [39]. Zcash and
Monero are thus privacy-preserving cryptocurrencies, and they have attracted a
lot of attention from the public and from research. However, despite extensive
studies, some questions remain open about privacy in blockchain.

– How do the different privacy mechanisms and tools compare?
– What are the relevant structures in a blockchain and the ledger that either

protect privacy or break it?
– How do different shapes of privacy manifest themselves in a cryptocurrency

using a blockchain?

This work provides an answer to those questions by defining two main privacy
notions, untraceability and unlinkability, using a formal model of the blockchain
transaction structure. For that, we build upon a pre-existing model, the “Trans-
action Directed Acyclic Graph” (TDAG) defined by Cachin et al. [7], and devise
the Privacy-preserving transaction DAG (PDAG) to capture additional prop-
erties such as the hiding of the transaction’s source. This model allows us to
contribute to the field in several aspects.

– We provide definitions for untraceability and unlinkability, and thus lift the
ambiguity between those terms.

– Also, we give a structural view over blockchain privacy.
– Furthermore, we give conditions on a system for achieving each notion.
– This allows us to compare the different blockchain systems in terms of privacy

guarantees.
– Finally, thanks to our notation, we can unify analysis patterns found in the

literature that are usually used to link related addresses.
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We first recall the building blocks of the TDAG and present the PDAG in Sec-
tion 2. Section 3 tackles the definition of untraceability and unlinkability using
PDAG’s elements. In Appendix A and in the full version of the paper [45], we
apply our models to add-on privacy solutions, Coinjoin and Tornado Cash, and
two privacy-preserving blockchains, namely Monero and Zcash.

2 Privacy-Preserving Transaction Directed Acyclic
Graph

This section introduces the Privacy-Preserving Transaction Directed Acyclic
Graph (PDAG). This model is based upon the Transaction Directed Acyclic
Graph (TDAG) described by Cachin et al. [7]. We therefore start by presenting
the TDAG, give motivations for a privacy-preserving version, and finally define
the PDAG.

2.1 Background: Transaction Directed Acyclic Graph

A Transaction Directed Acyclic Graph (TDAG) [7] is a graph G = (V, E) with
two types of vertices, namely states S and witnesses W, such that V = S ∪̇W.
The edges, in turn, represent transitions between states and witnesses. In other
words, edges E represent transactional relations between states and witnesses.
Edges are partitioned into three different types: consuming, observing, and pro-
ducing edges, denoted respectively by, EC , EO, and EP .

– States (⃝). A state s ∈ S is the first type of vertex, denoting the output
state of a transaction. It refers to an individual asset on the blockchain,
a digital coin, a coin controlled by a particular address, or the state of a
smart contract. A state is the result of a transaction and can transition
to other states through subsequent transactions. The full context of the
blockchain consists of all states that exist at a given time. A unique genesis
state, represents the initial state of the blockchain network. There is only
one genesis state, since the blockchain can only be bootstrapped once.

– Witnesses (2). A witness w ∈ W is the second kind of vertex, representing
any data in a transaction for it to be valid according to the blockchain
validation rules. Every blockchain transaction contains exactly one witness.

– Consuming edges (⃝ 2). A consuming edge e ∈ EC connects a state s to
a witness w and expresses that s is consumed by the transaction involving w.
A state can be consumed at most once. After this, no other transaction may
consume s. A state that is consumed has been “updated” or “overwritten”
by the transaction.

– Producing edges (2 ⃝). A producing edge e ∈ EP connects a witness w
to a state s and expresses that s is created by the transaction corresponding
to w.

– Observing edges (⃝ 2). An observing edge e ∈ EO connects a state s
to a witness w and expresses that s enters into a transaction represented by
w, but that it stays available to another transaction for consumption.
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Those elements constitute the building blocks of a TDAG G, and note that G is
bipartite. Additionally, every transaction in a TDAG G = (V, E) is a subgraph
denoted by Tw = (S ′ ∪̇ {w} , E ′) composed of a subset of vertices V ′ = S ′ ∪̇ {w} ⊆
V, a subset of edges E ′ ⊆ E , a single witness w, a set of input states SI ⊆ S ′ and
a set of output states SO ⊆ S ′, such that

– Every input state in SI is a source (has indegree zero);
– Every output state in SO is a sink (has outdegree zero);
– V ′ = SI ∪̇ SO ∪̇ {w} ⊆ V;
– Every edge e in E ′ is either a consuming edge eC , or an observing edge eO

and links some input state si ∈ SI to w, or it is a producing edge and links
w to some output state sO ∈ SO.

In Figure 1, we depict an example of a transaction Tw. A possible interpretation
of Tw is an asset transfer from three states s0, s1, s2 to two different states s3, s4.
The input states of Tw are being consumed, while the output states are being
produced. The produced states are now available for consumption by subsequent
transactions. Regarding multiple transactions, the transaction graph must follow

s0

s1

s2

w s3

s4

Fig. 1. Illustration of a transaction Tw = (V ′, E ′), where V ′ = {s0, s1, s2, w, s3, s4} and
E ′ = {(s0, w), (s1, w), (s2, w), (w, s3), (w, s4)}. The input states {s0, s1, s2} are con-
sumed, whereas the output states {s3, s4} are produced.

certain rules and have a well-defined structure. The graph starts with the genesis
state sg. Regular states are produced exactly once and are consumed at most
once. There are otherwise no restrictions on the number of observing edges.
This construction allows the TDAG to represent UTXO-based (e.g., Bitcoin),
account-based blockchains (e.g., Ethereum), and possibly others. However, we
argue in the next subsection that the TDAG lacks certain elements to represent
privacy-preserving blockchains (e.g., Monero and Zcash).

2.2 Privacy-Preserving Transactions

This section motivates and defines building blocks to introduce additional com-
ponents for the TDAG to represent privacy-preserving blockchains. We moti-
vate these additions in regard to conflict-freedom. Cachin et al. [7] give conflict-
freedom conditions to a TDAG. Conflicts in a blockchain underlying a cryptocur-
rency occur in case of double-spending. Such a situation arises if the same unique
asset is spent more than once. In UTXO-based blockchains, the system tracks
unspent transaction outputs (UTXO) to determine which transactions may be
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spent. On privacy-preserving chains, the UTXO set is built differently so as not
to disclose any information to its users. For example, in Monero, each transac-
tion generates a unique “key image”, and key images used more than once are
rejected by the blockchain [21]. A transaction is, therefore, valid if a key image
does not conflict with an existing one. Zcash’s shielded equivalent of a UTXO is
a “commitment” [17]. A node can, in turn, spend a commitment by revealing a
“nullifier”.

Masking. In a TDAG, conflict-freedom holds when every state is produced and
consumed at most once, i.e., coins cannot be spent twice, nor can they be dupli-
cated. Now, the same rule applies to privacy-preserving blockchains. Yet, state
consumption (coin spending) is not directly visible to the network beyond the
sender and receiver. Say, for example, that Alice mixes her input with ten other
decoy inputs using a cryptographic mechanism for her to remain anonymous.
The edges from these ten decoys are observing edges, since we do not alter
them, but only read them. However, Alice’s spent coins are effectively consumed
but appear only as being observed for non-involved parties. This introduces a
new type of edges, masking edges EM .

– Masking edges (⃝ 2). A masking edge e ∈ EM connects a state to a
witness and is a consuming edge that hides behind cryptographic mecha-
nisms. More precisely, it appears as an observing edge to nodes aside from
the author, but is a consuming edge. As its name suggests, it masks its actual
behavior. It otherwise follows the same rules as consuming edges.

Moreover, such addition brings ambiguity towards observing edges, since an
outside observer may not distinguish an observing edge from a masking one.
We thus call ambiguous edges the union of observing and masking edges, i.e.,
EO ∪̇ EM .

Nullifiers. Privacy-preserving blockchains also output additional components at
each transaction. These components allow constructing a cryptographic map-
ping with unspent transactions. This serves to prevent double-spending while
hiding the source of a transaction. To be more general, hidden behaviors in the
blockchain require users to output a specific value as a nullifier. In addition, the
exact same behavior must produce the same value. Therefore, this redundancy
is visible if users try to benefit from the same asset or service multiple times.
The blockchain validation rules will thus forbid one such transaction since two
values collide. This implies that each transaction must verify that the new values
do not conflict with pre-existing ones. In turn, the total set of generated values
cannot be discarded at any point, since it must be read for each transaction to
prevent conflicts. We therefore introduce this additional type of state that can
only be observed or produced. Depending on the implementation, this compo-
nent may have different names, e.g., key images for Monero, nullifiers for Zcash,
or withdrawal commitments for Tornado Cash [36]. We thus introduce a new
type of vertex that we call (without loss of generality) nullifiers N .



6 F.-X. Wicht et al.

– Nullifiers (3). A nullifier n ∈ N is a state that encapsulates cryptographic
commitments which prevent users from benefiting from the same asset or
service multiple times. It may only be produced and observed, but not con-
sumed.

Those two additions lead us to call this model the nullifier-based one, as opposed
to the “UTXO-based” or “account-based” model. We formalize the different com-
ponents in the next subsection.

2.3 Privacy-Preserving Transaction DAG

We here define our model, the Privacy-preserving Transaction DAG (PDAG).
We begin by formally specifying the PDAG and its elements, and next define a
transaction in a PDAG. We use the notation E ⊆ X × Y to denote a relation E
between X and Y . Also, the expression (x, y) ∈ E can be written as xEy, and
we define the set xE⋆ as {y : xEy}, and write its cardinality as |xE⋆|. We speak
of the closed neighborhood of a vertex v to mention any adjacent vertex to v,
including v itself, and denote it by N [v].

Definition 1 (PDAG). A Privacy-preserving Transactional DAG (PDAG) is
a directed unweighted graph G = (V, E), where V = S ∪̇N ∪̇W are the vertices
and E = EC ∪̇ EM ∪̇ EO ∪̇ EP are the edges, where vertices and edges are each par-
titioned into respective sets. The sets S, N , W, EC , EM , EO, EP constitute the
components of G. The set S denotes the states and contains a special state sg
called genesis. The nullifiers N are states that encapsulate cryptographic commit-
ments. The set W denotes the witnesses. Edges are partitioned into four subsets,
where EC , EM , EO ⊆ S×W and EP ⊆ W×S. It satisfies the following conditions:

1. sg does not have any producing or observing edges, and it has a single con-
suming edge: |⋆EP sg| = 0 ∧ |sgEP ⋆| = 0 ∧ ∃!w ∈ W : sgECw.

2. Every state, except for the genesis state, has exactly one producing edge:
∀s ∈ S \ {sg} ∃!w ∈ W : wEP s.

3. Every state, except for the genesis state, may have multiple successors, but
at most one among them is connected with a consuming or masking edge:
∀s ∈ S : |sEC ⋆ ∪̇ sEM⋆| ≤ 1.

4. Nullifiers n ∈ N have no consuming edges and no masking edges: ∀n ∈
N |nEC⋆| = 0 ∧ |nEM⋆| = 0.

5. G is weakly connected.
6. G has no cycles.

Note that for each witness w, there is a corresponding transaction t. We thus
define a transaction accordingly. We use the notation x ≺ y to say that x comes
before y in the topological order of the graph, and call x a predecessor of y.

Definition 2 (Transaction in a PDAG). Given a PDAG G = (S ∪̇N ∪̇W, E)
and a witness w ∈ W, the transaction with witness w is the unique subgraph
Tw = (S ′ ∪̇ N ′ ∪̇ {w} , E ′) ⊂ G, where
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– S ′ is the set of states connected to w: S = {s ∈ S : sECw ∨ sEMw ∨ sEOw ∨
wEP s};

– N ′ is the subset of all nullifiers produced by predecessors and the ones pro-
duced by Tw: N ′ = {w′ ∈ W, n ∈ N : (w′EPn ∧ w′ ≺ w) ∧ wEPn};

– w ∈ W is the witness of the transaction; and
– E ′ are the edges with both endpoints in S ′ ∪̇ {w}.

Furthermore, a transaction may be the one of multiple types, depending on the
number of its inputs and outputs:

– SISO. Single-input, single-output transactions consist of one consuming (or
masking) edge that connects an input state to a witness w and of a producing
edge that links w to an output state.

– SIMO. Single-input, and multiple-output transactions possess producing
edges from w to multiple output states.

– MISO. Multi-input, single-output transactions have a set of multiple con-
suming (or masking) and observing edges.

– MIMO. Multi-input, multi-output transactions contain multiple consuming
(or masking) and observing edges, as well as multiple producing edges.

One special transaction, the initialization transaction, consists of a consuming
edge linking the genesis state and a set of producing edges. The next section
provides a minimal example that presents different types of transactions.

2.4 Example

We here assume a hypothesized privacy-preserving blockchain that uses an ab-
stract cryptographic mechanism to hide the source of each transaction. This
mechanism takes any previously produced state as decoy to the real input. For
simplicity, we assume this blockchain does not incur fees for its transactions,
and that the first transaction consists of a coin minting process. Each trans-
action outputs nullifiers to prevent double-spending. Assets are held by public
keys (addresses) and to transfer said asset, one needs to prove knowledge of the
private key with a signature.

In Figure 2, we depict the PDAG of a sample execution of such blockchain.
The first transaction Tw0 consists of the minting of coins to the address of the
miner (s0). The second transaction Tw1 represents the transfer from s0 to four
different addresses: s1, s2, s3, s4. This transaction links s0 to w1 with a masking
edge, but does not include any decoy inputs. The witness w1 verifies the validity
of the signature and of the produced nullifier n0. The third transaction Tw2

uses
three decoy inputs s2, s3, s4 to transfer assets from s1 to three different addresses:
s5, s6, s7. These decoy keys are linked to w2 with observing edges, since they are
only read (and not consumed) by the transaction. The witness w2 verifies the
signature and the conflict-freedom between the previously generated nullifier
(n0) and the newly produced one (n1). The last transaction Tw3

merges coins
from two different addresses (s4, s7) to a single one (s8). Transaction Tw3

takes
five decoy addresses as inputs, s1, s2, s3, s5, s6, which are linked with observing
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edges. The verification of the signatures and the conflict-freedom between the
previous nullifiers (n0, n1) and the new one (n2, n3) take place at the witness
w3.

sg w0 s0 w1 s2

s1

n0

s3

s4

w2 s5

s7

s6

n1

w3 n2

s8

n3

Fig. 2. Illustration of a PDAG with four transactions: Tw0 , Tw1 , Tw2 , and Tw3 . Each
transaction Ti is the closed neighborhood subgraph NG [wi] ⊂ G.

3 Privacy Notions

This section formalizes two privacy notions in blockchain systems with respect
to the PDAG, namely untraceability and unlinkability. We first describe the
adversarial model, and secondly formalize the different privacy notions.

3.1 Adversarial Model

We use Π to denote the analyzed blockchain system and A for an adversary. We
assume idealized cryptographic primitives and a computationally-unbounded A.
However, we assume that the adversary’s focus lies on the transaction layer,
and that A operates passively, solely observing the transactions to compromise
the privacy guarantees of Π. To establish the concepts of untraceability and
unlinkability, we adopt the notion of anonymity sets, as introduced by Chaum [8].
Specifically, we refer to untraceability sets and unlinkability sets, respectively,
which we define and quantify based on the PDAG.

3.2 Untraceability

Untraceability is commonly understood in the blockchain transaction layer as
the property that for each transaction, all possible senders are equiprobable
[39, 24, 32, 46, 17]. In other fields of computer science, this notion is sometimes
addressed as sender anonymity [37]. According to the PDAG, a sender is an
input state linked to a witness with a consuming or with a masking edge. In
turn, a sender gets a degree of untraceability if the witness of a transaction has
no consuming edge, and if the number of ambiguous edges is greater than one.
Otherwise, the sender of the transaction is visible or, readily guessable. We call
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such a transaction trivially traceable. The input states of a transaction linked
with ambiguous edges, thus form the untraceability set of the transaction, and
any member of this set is equiprobable to be consumed. For A, it is a matter
of lifting the ambiguity behind these edges and to guess which of the states is
in fact consumed. We adopt a combinatorial view of this problem and model
it as a bipartite graph. This approach is similar to the study of anonymous
communications introduced by Edman et al. [11] and later refined by Gierlichs et
al. [14]. Given a PDAG G = (S ∪̇W ∪̇N , E), one can transform it into another
bipartite graph G∗ = (S∗ ∪̇W∗, E∗) by pruning vertices and edges. We only
include in G∗, witnesses of regular transactions that exchange assets between
addresses, and thus exclude mining, minting or any ordering transactions, and
also consider input states to these witnesses with their corresponding edges, i.e.,

– W∗ = {w∗ ∈ W | w∗ is a regular transaction } ⊆ W,
– S∗ = {s∗ ∈ S | (s∗, w∗) ∈ S ×W∗} ⊆ S, and
– E∗ = S∗ ×W∗ ⊆ S ×W.

One such bipartite graph composed of three transactions is presented in Figure 3
with S∗ on the left and W∗ on the right. Each transaction T ∗

wi
is the closed

neighborhood NG∗ [wi] with 1 ≤ i ≤ 2. If we consider the single transactions

s1

s2

s3

w1

w2

w3

s1

s2

s3

w1

w2

w3

Fig. 3. Three transactions T ∗
w1

, T ∗
w2

, and T ∗
w3

have a total of three input states s1, s2
and s3. On the left is the graph that represents the ground-truth with masking edges,
and on the right, the view of the adversary. The masking edges highlight the maximum
matching that A must guess.

T ∗
w1

, T ∗
w2

, and T ∗
w3

, the traceability sets are {s1, s2}, {s1, s2}, and {s1, s2, s3},
respectively. The senders of transactions are untraceable among two for w1 and
w2, and among three for w3. Furthermore, the masking edges form a maximum
matching over the two sets of vertices. In this example, the matching is also
perfect since each vertex is covered by the matching. However, this is not neces-
sarily the case, since non-consumed states may also be part of the untraceability
set. In addition, this maximum matching is usually not unique. In Figure 3,
we find two different maximum matchings: M1 = {(s1, w1), (s2, w2), (s3, w3)}
and M2 = {(s1, w2), (s2, w1), (s3, w3)}. Only M1 highlights the actual senders
of transactions in this case. If this matching was unique, an adversary could
trivially know each source of transactions irrespective of the incoming degree of
their witness. It indeed follows from the graph structure that each witness con-
sumes at least one state, and hence that the state consumption is represented
by a maximum matching. Therefore, one way of reducing the untraceability set
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is to only consider states linked with edges part of a maximum matching. This
method has recently been studied by Vijayakumaran [42] and Egger et al. [12]
to perform graph-based deanonymization on the CryptoNote protocol. They use
the union of maximum matchings known as the Dulmage-Mendelsohn core [10]
to prune edges from the bipartite graph and thus to compromise the untrace-
ability of transactions. We here adapt the definition of the core of a bipartite
graph G∗ to our notation.

Definition 3 (Core [10]). The core of a bipartite graph G∗ = (S∗ ∪̇W∗, E∗),
denoted by core (G∗) = (S∗ ∪̇W∗, E ′), is a subgraph of G∗ where E ′ ⊆ E∗ is the
union of all maximum matchings of G∗.

As highlighted by previous research [42, 12], if the bipartite graph is not equal
to its core, then a reduction of the traceability set is possible. In the ex-
ample of Figure 3, computing the core, results in the strict subset of edges
{(s1, w1), (s2, w2), (s3, w3), (s1, w2), (s2, w1)}. In this case, the witness w3 has
only one remaining edge and is thus completely traceable. To formalize our
definition of untraceability, we therefore only consider the traceability set of a
transaction after reduction of the graph. This leads us to the definition of k-
untraceability for a transaction, where k is the cardinality of the traceability
set.

Definition 4 (k-untraceable transaction). Let T ∗
w = (S ′ ∪̇N ′ ∪̇ {w} , E) be

a transaction such that E = E ′
O ∪̇ E ′

M and T ∗
w ⊆ core (G∗). We say that T ∗

w is
k-untraceable if and only if the set of ambiguous edges, E ′

O ∪̇ E ′
M , has cardinality

k with k ≥ 2.

When an adversary A observes a PDAG, the best strategy to identify the source
of a transaction is to first consider the trivially traceable transactions. If no such
transaction exists, the second-best strategy for A, without further knowledge, is
to guess uniformly at random over the edges of transactions with the smallest
untraceability set.

In this view, the untraceability guarantees of the PDAG are given by the
weakest transaction, i.e., the transactions with the least untraceability guaran-
tees. A PDAG does not provide untraceability if any of its transaction is trace-
able. Otherwise the PDAG’s untraceability set is tied to the smallest untrace-
ability set of its transactions. Consequently, for a PDAG to be k-untraceable, all
its transactions must at least be k-untraceable.

Definition 5 (k-untraceable PDAG). A PDAG G with the corresponding
bipartite graph G∗ is k-untraceable if and only if all transactions T ∗

W in the core
of G∗ are at least k-untraceable.

3.3 Unlinkability

Whereas untraceability addresses the relation between input states and wit-
nesses, unlinkability is a notion that focuses on the complete set of states in the
graph. Unlinkability refers to the inability of the adversary to link two different
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states or transactions together [2]. Now, if the adversary can link two states,
she can also link transactions involving those states. We consequently focus on
a more concise definition of unlinkability: for any two states, it is impossible to
sufficiently distinguish whether they are related or not. This definition directly
echoes the terminology of unlinkability of Pfitzmann and Hansen [37]. We here
define a link relation to abstract the notion of linking.

Definition 6 (Link relation). The link relation L is an equivalence relation
on the states S, that is, any two states si, sj ∈ S are linked whenever siLsj.
We write [s]L the equivalence class of S by L, to which s belongs, i.e., [s]L :=
{si ∈ S : sLsi}.
Although blockchains function differently, the main concept of unlinkability is
the same for various systems. It consists of the adversary trying to link states
by grouping them into those that are related. Some states may easily be linked
together as they hold the same address, which typically identifies asset holders
in blockchains. We therefore introduce the address relation as a refinement of
the link relation.

Definition 7 (Address relation). The address relation A is a refinement of
the link relation L on the states S, that is, any two states si, sj ∈ S hold the
same address whenever siAsj. We write [s]A the equivalence class of S by A, to
which s belongs, i.e., [s]A := {si ∈ S : sAsi}.
However, users are encouraged to use different addresses to break the relation
between several transactions. In this case, the linking is no longer trivial, and to
our knowledge, there exists no systematic way of tying states together. Research
on this subject uses heuristics to associate related states together. Those heuris-
tics are mostly patterns within or across transactions, based on some evidence
of shared ownership, that lead to believe that some states may be related [19].
Similarly, we model an adversary that uses an inferred link relation L̃ in her
endeavor of compromising unlinkability. The adversary may use a very coarse
relation that assumes that any two states are linked, or she may use finer rela-
tions such as heuristics presented in the literature or a machine-learning-based
classifier. We represent here a few heuristics as an inferred linking relation L̃,
and say that a subgraph G′ ⊆ G is vulnerable to L̃, if said relation applies to G′.

The most studied heuristic is certainly the multi-input heuristic, which as-
sumes that multiple addresses part of a single transaction are linked [33]. We
express this heuristic as a linking relation:

∀si, sj ∈ ⋆ECw : siL̃sj . (1)

Another well-studied heuristic addresses the use of a change-address: when a
user sends coins, she might use a newly generated address (change-address) to
receive the amount surplus. If a state with a new address is part of an output
set of size two, one can assume that such state is linked to at least one input
state of the same transaction:

∃si ∈ wEPSO,∃sj ∈ ⋆ECw : |SO| = 2 ∧ ∀s ∈ S : si /∈ [s]A =⇒ siL̃sj . (2)
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Note that this condition has different variations in the literature. The above
version is stronger with |SO| = 2 than with |SO| ≥ 2, but the latter is usually
more precise. Since the linking relations are expressed under logical statements,
we can combine them to express more complex relations. For example, the multi-
input heuristic, and the change-address relation can be combined to express that
the state with change-address is linked to every input states:

∃si ∈ wEPSO,∀sj ∈ ⋆ECw : |SO| = 2 ∧ ∀s ∈ S : si /∈ [s]A =⇒ siL̃sj . (3)

In Appendix A and in the full version of the paper [45], we translate around
ten heuristics from the literature into inferred linking relations. We model here
an adversary that exploits linking relations of the graph to find the different
states that belong together. The equivalence class of a state s identified by the
adversary is the set [s]L̃, and we argue here that the dichotomy between [s]L
and [s]L̃ is a source of unlinkability.

As an example, consider transaction Tw in Figure 4. We assume here that all
states have a different address, that s2 and s3 are linked to s4, and s1 is linked
to neither s2, s3, nor s4. If an adversary exploits relation (1) to identify the
states linked together, she will obtain {s1, s2, s3} . In this scenario, s2 and s3 are
accurately associated, but s1 is wrongfully linked to s2 and s3. Although linking
s2 and s3 together reduces unlinkability, assigning s1 to the same equivalence
class has the opposite effect. The unlinkability set is therefore decreasing with any
addition of a linked state into the correct equivalence class, but increasing with
additions of unlinked states. In the scenario of Figure 4, s1 is singly unlinkable
among three and s2, s3 are both unlinkable among three, according to linking
relation (1). The best situation for a state s in terms of unlinkability is clearly

s1

s2

s3

w s4

Fig. 4. Example of a transaction Tw = (V ′, E ′) with a set of vertices V ′ =
{s1, s2, s3, w, s4} and a set of edges E ′ = {(s1, w), (s2, w), (s3, w), (w, s4)}.

to be singly unlinkable in the wrong equivalence class, i.e., s ∈ [s′]L̃ \ [s′]L with
s′ ̸= s. Conversely, the worst case scenario is when the equivalence class built by
the adversary, [s]L̃, accurately reflects the linking between states, i.e., [s]L̃ ⊆ [s]L.

Between those two edge cases, s still has some degree of unlinkability. This
degree is directly related to the difference between the equivalence classes [s]L̃
and [s]L. In Figure 5, we depict this situation, in which the outer, striped area
represents the unlinked states. In contrast, the inner, gray area represents the
set of states accurately linked by L̃. This set, de facto, contains the equivalent
class [s]A, since A is a refinement of L and states with the same address are
trivially linkable for A. Yet, the size of [s]L̃ \ [s]L is not quite representative of
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[s]L̃

[s]L ∩ [s]L̃ [s]A

Fig. 5. Illustration of the unlinkability problem: the striped area represents the degree
of unlinkability for state s and the gray area is the set of accurately linked states, which
contains the set of states with the same address.

the degree of unlinkability of s. As an example, consider the two cases where:

1. |[s]L̃| = 3 and |[s]L̃ ∩ [s]L| = 2 and
2. |[s]L̃| = 100 and |[s]L̃ ∩ [s]L| = 99.

In both cases, the cardinality of the set difference is 1. However, in the first case,
an adversary has a chance of

(2
2

)
/
(3
2

)
= 1

3 of guessing a linked pair, whereas in
the second case, this chance is increased to

(99
2

)
/
(100

2

) ≈ 0.98. Reciprocally, un-
linkability is the ratio of pairs a state s can mix into. We define the unlinkability
score accordingly.

Definition 8 (Unlinkability score). The unlinkability score u of a state s
according to an inferred linking relation L̃ is the ratio of the number of unlinked
pairs to all possible pairs, i.e., u =

(|[s]
L̃

\[s]L|
2

)
/
(|[s]

L̃
|

2

).
The unlinkability score u ranges from 0 to 1, where 0 denotes linkable states,
and 1 represents singly-unlinkable states. We define u-unlinkability for a state
with u > 0.

Definition 9 (u-unlinkable state). A state s of a PDAG G is u-unlinkable
according to an inferred linking relation L̃ if and only if exploiting said relation
on G, results in an equivalence class [s]L̃ with an unlinkability score u > 0.

When observing a PDAG, the first best strategy for A is to link states with the
same address together, i.e., L̃ = A. In this case, for any state s, [s]L̃ is subset of
[s]L, and thus the unlinkability score of all states s′ ∈ [s]L̃ is 0. If [s]A = {s}, the
adversary must rely on non-trivial inferred linking relations L̃. These relations
may nonetheless yield an unlinkability score of 0 depending on their accuracy
and the topology of the PDAG. For instance, in the example of Figure 4, if s1 is
linked to s2 and s3, applying relation (1), would result in an unlinkability score of
0. Consequently, even if the second strategy is not preferable over the second, the
second one may still jeopardize unlinkability completely. PDAG’s unlinkability
is thus tied to the smallest unlinkability score. We here define unlinkability for
a PDAG according to its least unlinkable state.

Definition 10 (u-unlinkable PDAG). A PDAG G is u-unlinkable according
to an inferred linking relation L̃ if and only if all states in S are at least u-
unlinkable according to L̃.

As said before, inferred relation L̃ directly refers to heuristics from the literature,
and the level of unlinkability of states and ultimately, the one of the PDAG is
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tied to the accuracy of this inference. However, one could imagine exploiting the
different heuristics by involving unlinked states in a transaction vulnerable to
L̃. This is, in a way, the principle of Coinjoin that counteracts the multi-input
heuristic assumption, but we could also leverage the other heuristics and increase
privacy up to their unlinkability score. In a way, the maximum unlinkability score
of an inferred relation L̃ can be interpreted as the maximal extractable privacy
(MEP). In Appendix A and in the full version of the paper [45], we apply our
definitions to various systems and measure their privacy guarantees. Meanwhile,
we propose some extensions to our model in the following section.

4 Extensions

During the course of this paper, we adopted a deterministic view to describe and
formalize the different privacy notions. Yet, the probabilistic standpoint might
offer more flexibility and be more potent in reflecting extra information that
the adversary gets from other sources (e.g., analysis from other layers, leaked
databases or other attacks). Furthermore, it is probably more akin to capture
machine learning-based models from the literature [32, 31, 20]. We here give a
few leads to adapt our analysis to a probabilistic one by addressing each notion
separately.

Untraceability. In Section 3, we describe the untraceability problem using a
bipartite graph G∗ = (S∗ ∪̇W∗, E∗). As part of the extension to a probabilistic
model, we could assign weights to E∗. Let ω : E∗ → [0, 1] ⊆ R be a map that
assigns a real number between 0 and 1 to each edge. The weight ω(e) of edge
e = (s, w) represents the probability that the underlying state s is consumed
in the transaction involving witness w. This means that the sum of weights for
edges of a single witness sums up to 1. The adversary is therefore able to assign
a probability distribution based on some information (e.g., time or value-based
correlations) or an inference of a machine learning model. A can then output a
guess according to the weights of the edges.

Unlinkability. Although the inferred linking relation L̃ can already abstract a
probabilistic classifier, we may go further by modifying this relation into a fuzzy
relation µ such that µ : S × S → [0, 1] ⊆ R. This relation gives a membership
indicator between two states si and sj , where 0 means that si and sj are not
related whereas 1 means they are. This would allow one state s to belong to two
distinct clusters or to measure uncertainty in the clustering output.

5 Related Work

Regarding untraceability, Möser et al. [32] conduct an empirical analysis in the
Monero blockchain. They identify two phenomena that jeopardize the untrace-
ability guarantees of Monero. Möser [32] notice that 0-mixin transactions not
only imply full traceability of such users, but also pose a privacy risk for other
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users that include poorly mixed outputs as mixins in subsequent transactions.
Fortunately, since October 2018, the mixins input number is set globally to
eleven [29], consequently alleviating this issue. Yet, Möser et al. [32] make a
second observation regarding the sampling distribution of mixins inputs. The
distribution of the sampling algorithm to choose the different mixins does not
match the distribution of the coins spent in the transaction. The sampling distri-
bution is uniform over the set of available transaction outputs, irrespective of the
age of coins, whereas new coins are more likely to be spent directly. Old mixin
coins can thus be considered decoys, reducing the true spender’s anonymity set.
Following this study, the Monero community also addressed this issue with a
better sampling algorithm [13].

As for unlinkability, various works devise empirical behavioral patterns in
transactions – called heuristics – to link addresses together. Nakamoto [33] de-
scribes the most widely studied heuristic in the original Bitcoin white paper.
This heuristic allows linking to the same entity, multiple addresses used as input
to the same transaction [33]. Studies find it to be relatively accurate [2] and able
to reveal hidden clusters of addresses [28]. The Coinjoin mechanism mitigates
the threat posed by this heuristic by having different users join their coins into
a single transaction to blur the links between several of their addresses. Yet,
Goldfeder et al. [15] devise a counter-heuristic to detect such a technique by
considering multi-input-multi-output transactions as part of a Coinjoin mixing.
Victor [41] devises heuristics for specific patterns in the Ethereum and Wang et
al. [43] for cases where users utilize mixers to break links between their trans-
actions. Finally, Kappos et al. [19] expose heuristics specifically for Zcash. Our
work is also close to any literature review of deanonymization heuristics such
as the systematization of knowledge of [9]. Furthermore, Meiklejohn and Or-
landi [27] devise a metric similar to the unlinkability score for Coinjoin. We yet
believe our framework and metric to be more generally applicable to any scheme
and adversarial classifier.

Concerning graph-based analysis of privacy, Ober et al. [35] conduct an em-
pirical study of crucial properties of the Bitcoin transaction graph, such as un-
linkability and coin dormancy. They use the multi-input heuristic mentioned
above to merge addresses that belong to the same entity. As a result, they
discover an impressive amount of public keys that belong together while only
considering a small subset of the full blockchain history. Androulaki et al. [2]
carry out a similar study through a simulator that mimics the user of Bitcoin
within a university. In this setting, the results of the heuristics can be compared
to the ground truth. It turns out that almost 40% of user profiles can be re-
covered even though recommended privacy measures are applied. Also, Atzei et
al. [3] develop a model to formally prove the fulfillment of some properties in
the Bitcoin blockchain [3]. Conversely, Amarasinghe et al. [1] employ a common,
universal framework to characterize the various aspects of anonymity provided
by different blockchain implementations [1].

Finally, our work is also related to research on privacy notions in anony-
mous communication networks. Kuhn et al. [23] provide an in-depth analysis on
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the matter [23]. They study privacy notions in anonymous communication and
their relations and devise a formal hierarchy to classify each of these properties.
Moreover, Henry et al. [16] aim at formalizing anonymous blacklisting systems.

6 Conclusion

This work has tackled the definition of two main blockchain privacy notions:
untraceability and unlinkability. To do so, we first extended the TDAG [7] to
capture privacy-preserving blockchains (PDAG) and, secondly, gave consistent
definitions to these notions according to PDAG’s elements. This allowed us to
model and compare blockchain implementations and unify literature results in
Appendix A. During the course of this work, we also have discovered that the
PDAG gives intuitive definitions to each notion and proposes a way to reason
about them.
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A Applications

In this section, we analyze four existing add-on privacy solutions and privacy-
preserving blockchains using the privacy notions in the PDAG model.

A.1 Add-on Privacy Solutions

The two most prominent blockchains, Bitcoin and Ethereum, do not provide in-
herent privacy features. Users are therefore encouraged to regularly change their
address to break the link between several of their transactions. However, in this
case, users’ wealth is scattered among multiple addresses. If users want to con-
duct transactions that exceed the amount held at one address, they need to merge
multiple of their addresses into a single transaction. Yet, as discussed in the un-
linkability subsection, this pattern is noticeable. Merging transactions are easily
identified and input states are deemed to be related. We here present two add-
on privacy solutions that mitigate this issue: Coinjoin and Tornado Cash. These
two mechanisms allows for breaking the link between several transactions. Yet,
transactions using these techniques still reveal the state consumption. Hence, ac-
cording to our definitions, these two privacy-enhancing solutions do not provide
untraceability, but only unlinkability.

Coinjoin Background. Coinjoin [26] is a mixing protocol that allows multiple
users to merge their coins into a single transaction. In order to enhance unlink-
ability, U users agree on a standardized output size and collectively contribute
inputs totaling at least that size. The resulting transaction would consist of U
outputs, each of the agreed-upon size, and potentially U additional change out-
puts if some users provided inputs exceeding the target. All participants would
sign the transaction, and the transaction can be conducted. In fine, the goal of
this protocol is to escape the multi-input heuristic presented in subsection 3.3.

Execution. Consider the transaction Tw depicted on Figure 6. This transaction
transfers funds of three different users: u1, u2, and u3. User u1 sends coins from
her two addresses, s0, s1, to s7, and gets the rest amount in a change-address,
s8. Analogously, the second user, u2, merges two addresses, s2 and s3, to a single
address, s9. Finally, u3 transfers funds from three addresses, s4, s5, and s6, to
address s10, and receives the surplus to s11. The witness w holds the verification
for the seven input signatures. In this case, if A uses the multi-input heuristic,
she will get an equivalence class of {s1, s2, s3, s4, s5, s6}, and the unlinkability
scores will be u1 = u2 = u3 = u4 = 10

21 and u5 = u6 = 6
21 .

Privacy guarantees. According to our definitions, Coinjoin does not provide un-
traceability guarantees. However, a single Coinjoin transaction under the multi-
input heuristic provides unlinkability within the bound of the number of inputs
and users’ contributions.
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s0 s1 s2 s3 s4 s5 s6

w

s7 s8 s9 s10 s11

Fig. 6. An illustration of a Coinjoin transaction, Tw, that merges funds from seven
addresses (s0 to s6) to five different ones (s7 to s11).

Lemma 1 (Coinjoin unlinkability). A Coinjoin transaction Tw = SIwSO

containing at least two disjoint equivalence classes by L, from which U is the
largest and u the smallest, provides unlinkability score within the range of[(|SI |−|U|

2

)/(|SI |
2

)
, (|SI |−|u|

2

)/(|SI |
2

)] under the multi-input relation L̃.

Proof. The equivalence class by the multi-input relation L̃ is [s]L̃ = SI , for all
s ∈ SI . We have at least two disjoint equivalence classes [s1]L ⊆ [s1]L̃ and
[s2]L ⊆ [s2]L̃. Without loss of generality, we assume that |[s1]L| ≤ |[si]L| and
that |[s2]L| ≥ |[si]L| for all si ∈ SI . The score u1 = (|SI |−|U|

2

)/(|SI |
2

) is there-
fore the smallest since U is the largest equivalence class. Additionally, the score
u2 = (|SI |−|u|

2

)/(|SI |
2

) is the largest since u is the smallest equivalence class. Con-
sequently, the unlinkability score lies within the range [u1, u2].

Tornado Cash Background. Tornado Cash is a zero-knowledge proof (ZKP)
mixer [44, 25, 36] that runs on smart-contract-enabled blockchains such as
Ethereum. A ZKP-mixer is a smart contract that supports the mixing service of
a fixed amount of coins. Users deposit coins in the mixer and receive a deposit
note. At a later point, users can withdraw their coins by proving knowledge of
the deposit note. The withdrawal is done in a zero-knowledge fashion to conceal
any link between depositors and withdrawers.

Execution. Figure 7 shows three transactions that involve Tornado Cash: Tw0 ,
Tw1

and Tw2
. We assume a topological order of w0 ≺ w1 ≺ w2. First, Tw1

represents the deposit of coins from an address (sd0
). The smart contract (st0)

records the deposit note as a new entry (s′t0). The depositor also needs to pay a
fee (sf0) for invoking the smart contract. The witness w0 holds the verification
of the signature for the smart contract invocation. In this example, we assume
that multiple deposits analogous to t0(w0) take place. The second transaction
Tw1

represents an address (sw1
) that invokes the smart contract (st1) to with-

draw some previous deposit (s′w1
). Again, this operation incurs a fee (sf1). Also,

this transaction generates a withdrawal commitment (n1), preventing the with-
drawal of the same deposit. Finally, the third transaction Tw2 represents the
first withdrawal that comes after withdrawal Tw1 . In this case, an address (sw2)
executes the smart contract (st2) to withdraw a deposit (t2(w2)). A fee (sf2) is
collected. The previously generated withdrawal commitment (n1) is read by the
smart contract for any conflict. The updated list of commitments (n2) is then
generated.
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st0

sd0 w0 s′d0

sf0

s′t0 st1

sw1 w1 s′w1
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Fig. 7. Illustration of three transactions Tw0 , Tw1 , Tw2 involving Tornado Cash. The
leftmost graph, Tw0 , represents a deposit. The center graph, Tw1 , is an example of a
first withdrawal, while the rightmost depicts a subsequent withdrawal to Tw1 .

Privacy guarantees. Similarly to Coinjoin, Tornado Cash does not provide un-
traceability, but unlinkability. However, the ZKP-mixer does not consist of a sin-
gle transaction, but of multiple, seemingly unrelated, deposits and withdrawals.
Wang et al. [43] devise several heuristics as a way to link the different states
involved in deposits and withdrawals. The first heuristic they describe is the ad-
dress reuse, when both depositor and withdrawer use the same address. In this
case, the adversary uses the refinement of the linking relation A to link deposi-
tors to withdrawers. This results in an unlinkability score of 0, since [s]A ⊆ [s]L,
for all s ∈ S.

A second heuristic, Wang et al. describe, is the reuse of the deposit address
to pay the withdrawal fees. Let F be the transactional relation between a state s
and a witness w, such that, s pays the fee of transaction involving w, whenever
sFw. We express this second heuristic according to an inferred linking relation
L̃, and denote wd the witness involved in the deposit and ww in the withdrawal:

∀si ∈ ⋆ECwd, sj , sf ∈ ⋆ECww : sfFww ∧ sfAsi =⇒ sjL̃sf ∧ sfLsi. (4)

This heuristic identifies three different states among which two with the same
address are linked.

Lemma 2. Any state involved in a Tornado Cash transaction Tw vulnerable to
inferred relation L̃ in (4) is either linkable or has an unlinkability score of 2

3 for
state s /∈ [s′]A for all s′ ∈ Tw, s

′ ̸= s.

Proof. Say we have three states involved in transaction Tw: sd, sf , and sw. Trans-
action Tw is vulnerable to inferred relation L̃ described in (4), and thus sfAsd. If
sw ∈ [sd]L, then all states are linkable. Otherwise, sw has an unlinkability score
of

((3
2

)
−

(2
2

))
/
(3
2

)
= 2

3 .

A third heuristic involving Tornado Cash is when the withdrawal and the deposit
addresses are involved in a subsequent transaction. In this case, one can assume
that both addresses are linked:

∀si ∈ ⋆ECwd, sj ∈ ⋆ECww ⊆ Tw : si, sj ∈ Tl ≻ Tw =⇒ siL̃sj . (5)

Lemma 3. Any state involved in a Tornado Cash transaction Tw vulnerable to
inferred relation L̃ in (5) is either linkable or has an unlinkability score of 1.
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Proof. Take the two states si and sj involved transaction Tw. If si ∈ [sj ]L,
then all states are linkable. Otherwise, both states have an unlinkability score of(2
2

)
/
(2
2

)
= 1.

Wang et al. [43] give a fourth heuristic where an address splits its funds into
three different addresses, before them depositing into the mixer. This pattern
leads to inferring a link between all four addresses:

∀si ∈ ⋆ECSO, sj ∈ ⋆ECwd : |SO| = 3 ∧ sj ∈ SO =⇒ siL̃sj . (6)

Lemma 4. Any state s involved in a Tornado Cash transaction Tw vulnerable
to inferred relation L̃ in (6) has an unlinkability score of u = 12−l(l−1)

12 , with
l = | [s]L ∩ [s]L̃ |.

Proof. Say we have four identified states: s1, s2, s3, and s4. The equivalence
class by L̃ over Tw is [s]L̃ = {s1, s2, s3, s4}, for all s ∈ Tw. We thus have a score
u =

((4
2

)
−

(l
2

))
/
(4
2

)
= 12−l(l−1))

12 , with l = | [s]L ∩ [s]L̃ |.

Finally, we can also infer a link between two addresses if one deposits into the
same set of mixers as the other withdraws from [43]:

∀si ∈ ⋆ECwd1
, sj ∈ ⋆ECwd2

, sk ∈ ⋆ECww1
, sl ∈ ⋆ECww2

:

siAsj ∧ skAsl =⇒ siL̃sk.
(7)

Lemma 5. Any state s involved in a Tornado Cash transaction Tw vulnerable
to inferred relation L̃ in (7) is either linkable or has an unlinkability score of
u =

((2l
2

)
−

(l
2

))
/
(2l

l

), with l = | [s]L ∩ [s]L̃ |.

Proof. Say we have two equivalence classes: the deposit states [s1]A and the
withdrawer states [s2]A. If [s1]A ⊆ [s]L and [s2]A ⊆ [s]L, for all states s ∈ Tw,
then all states are linkable. Otherwise, we have two disjoint equivalence classes
by L in [s]L̃ of size l, and the score for each s ∈ Tw is u =

((2l
2

)
−

(l
2

))
/
(2l

l

).
A.2 Monero

Background. Monero is a privacy-preserving blockchain that follows the UTXO
model. Much like Bitcoin, each transaction transfers some inputs into some out-
puts. Each output is assigned to a public key and, to spend it, one must sign
a message with the corresponding private key, thus proving ownership of the
output. While Bitcoin discloses the source of transactions, Monero hides this in-
formation with a ring signature [38]. This mechanism is composed of a signature
and a set of public keys. The signature is valid if it was produced using the pri-
vate key of one of the corresponding public keys, without revealing which one of
them. Since originators of transactions are hidden, additional components must
also be implemented to prevent double-spending. In Monero, for each output
spent, one has to produce a key image with the private key of the output. Any
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attempt to spend the same output twice will produce the same key image, ex-
posing the attempted double-spending. In addition, Monero generates one-time
addresses for each output. Any output in the Monero blockchain has therefore a
distinct address. Finally, since 2017, Monero has further strengthened its privacy
properties by introducing ring confidential transactions (RingCTs) [34] to ensure
that the transacted amount is not disclosed.

Sample execution. Figure 8 shows the PDAG of a Monero execution with four
transactions. First, Tw1 represents the transfer of the mining reward to a user u
that successfully mined the first block (s1). Second, Tw2 is a transaction in which
u transfers some of her coins (s1) to another address (s4). The transaction fee is
modeled as another state (s2) and the remainder of u’s coins are transferred to
another address (s3). In that case, w2 represents the validation of the signature
of s1, and the key images produced are encapsulated in a nullifier (n1). The third
transaction Tw3 represents the transfer of coins held by an address (s3) to two
different ones (s6, s7). Again, a fee (s5) is incurred. The witness w3 represents
the verification of the signature from s3 and of the conflict-freedom with the key
image in n1. A nullifier, n2, consists of the previous key image as well as the
newly produced one. Finally, the mining transaction Tw4

takes place with the
transfer of the fees (s2, s5) and the mining reward to the miner (s8).

sg w1 s1 w2

s3

n1

s2

s4

w3

s5

s6

n2

s7

w4 s8

Fig. 8. Illustration of a PDAG G that depicts a Monero execution of four transactions:
Tw1 , Tw2 , Tw3 and Tw4 . Each transaction Ti is the closed neighborhood subgraph
NG [wi] ⊂ G.

Privacy guarantees. As highlighted above, Monero has built-in untraceability
mechanism with ring signature. Since version 0.18.0.0 Fluorine Fermi of the
Monero protocol, the ring size is set to 16 [30].

Lemma 6. Consider a PDAG G modeling a Monero execution since version
0.18.0.0. If the corresponding bipartite graph G∗ is equal to its core, then G is
16-untraceable.

Proof. By contradiction, assume that G is k-untraceable with k < 16. That
means that there exists a witness w in G∗, with k ambiguous edges. Since the
ring signature of Monero protocol version 0.18.0.0 uses 16 inputs, there exists
a graph decomposition that reduces the number of edges of w to k. Yet, that
contradicts the assumption that G∗ = core (G∗).
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Regarding unlinkability, Monero uses one-time addresses so that any two
states in the PDAG are not part of the same equivalence class by A. Monero has
yet been vulnerable to multiple heuristics over the years, many of which have
become obsolete thanks to incremental updates of the core protocol. As far as
our knowledge goes, the multi-output heuristic formulated by Kumar et al. [24]
remains the only one relevant at the time of writing. This heuristic relies on
the assumption that when two outputs from a single transaction are observed
together in distinct input rings of another transaction, it indicates that these
two outputs are related. Let R be an equivalence relation on the states S that
denotes whether two states si, sj ∈ S are part of the same ring, whenever siRsj .
We write [s]R the equivalence class of S by R, to which s belongs. We express
this heuristic as an inferred linking relation L̃:

∀si, sj ∈ w1EPSO : si, sj ∈ SIEOw2 ∧ si /∈ [sj ]R =⇒ siL̃sj (8)

Lemma 7. Any state s involved in a subgraph G′ vulnerable to inferred relation
L̃ in (8) has an unlinkability score of (((SO∩SI)\[s]R)\[s]L

2

)/((SO∩SI)\[s]R
2

).
Proof. The inferred relation L̃ in (8) gives us an equivalence class [s]L̃ of all the
output states S taken as input to a subsequent transaction SI while omitting
the ones in the same ring, thus (SI ∩ SO) \ [s]R. The unlinkability score is thus
as follows: (((SO∩SI)\[s]R)\[s]L

2

)/((SO∩SI)\[s]R
2

).
A.3 Zcash

Background. Zcash behaves similarly to Bitcoin, but with the added feature
of providing enhanced privacy for its users. To address this, Zcash implements
a shielded pool, which is a blockchain subset in which senders, recipients, and
the transferred amounts are all hidden. ZK-SNARK is used by the coin sender
to prove knowledge of the secret key of this coin, without revealing which coin
is actually spent. The source of a transaction is therefore obfuscated within the
whole set of shielded coins. Furthermore, a valid transaction ensures that coins
cannot be spent twice by generating nullifiers. The sender also conceals the
recipient by using key-private asymmetric encryption on the recipient address.
In turn, the recipient scans the blockchain for coins that belong to her. Finally,
since Zcash possesses both a transparent pool, in which addresses begin with t,
and a shielded pool with privacy features, in which addresses are prefixed with z,
the blockchain supports four different types of transactions: t-to-t, t-to-z, z-to-z
and z-to-t.

Sample execution. In Figure 9, we show five transactions part of a Zcash ex-
ecution. The gray area highlights the shielded pool. The first transaction Tw0

is the pre-mine, minting all available coins into an address containing unmined
coins (s0). The second transaction Tw1

represents the transfer of some unmined
coins (s0) to the Zcash address of a user u who successfully mined the first block
(s1). The remaining unmined coins are left in a distinct state (s2). Subsequent
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transactions take place in the shielded pool. The third transaction Tw2
has user

u send her coins to two shielded addresses (s3, s4). The witness w2 represents
the verification of the signature of the spender (s1). A fee (s5) is also incurred in
that case. The next transaction Tw3 transfers coins from a shielded address (s3)
to another one (s6), minus a fee (s7). The witness w3 holds the verification for
the zero-knowledge proof. All the shielded addresses are part of this transaction
(s3, s4) since no information is leaked on the sender. Furthermore, a nullifier (n1)
is produced by the transaction to prevent double-spending. The fifth transaction
Tw4 represents the transfer from one shielded address (s6) to another shielded
address (s10) and to two transparent one (s8, s10). A fee (s9) is again collected.
The verification of the zero-knowledge proof and the conflict-freedom takes place
at the witness w4. It takes the previous nullifier n1 and produces a new one n2;
the first being included in the latter.

sg w0 s0 w1 s1

s2

w2 s4

s3

s5

w3 s6

s7

n1

w4 s8

s10

s9

n2

Fig. 9. Illustration of a PDAG G that depicts a Zcash execution of five transactions:
Tw0 , Tw1 , Tw2 , Tw3 and Tw4 . Each transaction Ti is the closed neighborhood subgraph
NG [wi] ⊂ G. The gray area represents the shielded pool of the Zcash blockchain.

Privacy guarantees. Zcash’s transparent pool does not provide any untraceability
guarantees. However, the shielded pool has inherent mechanisms that promote
untraceability. In contrast to Monero, the untraceability set of each transaction
is implicit, and it consists of any previously produced states.

Lemma 8. If the PDAG G modeling a Zcash execution of the shielded pool with
the corresponding bipartite graph G∗ is equal to its core, then G is p-untraceable,
with p = min (|{s | s ≺ w,∀w ∈ W}|) .

Proof. By contradiction, assume that G is k-untraceable, with k < p. That
means that there exists a transaction Tw, with k < p incoming ambiguous edges,
i.e., with strictly fewer states taken as inputs than preceding states. However,
Zcash shielded pool does not leak any information on the sender, and the possible
senders are therefore the set of previously produced states. That means, that
there exists a graph decomposition that reduces the number of edges of w to k.
Yet, that contradicts the assumption that G∗ = core (G∗).

Regarding unlinkability, Zcash’s shielded pool suffers mainly from the in-
teractions with the transparent pool. Kappos et al. [19] devise heuristics that



26 F.-X. Wicht et al.

leverage patterns in these interactions. They identify round-trip transactions
where a unique amount enters the pool and leaves it soon after. We denote by
wtz a transaction from t to z, and wzt from z to t. We represent the notion of
time by a number t of transactions. We also define an equivalence relation Va on
S, that denotes whether two sets of states Si,Sj ∈ S hold the same amount a,
whenever SiVaSj . This gives us the following inferred relation L̃:

∀si ∈ SIECwtz, sj ∈ wztEPSO,∃!a :

SIVaSO ∧ |{w | si ≺ w ≺ sj , w ∈ W}| ≤ t =⇒ siL̃sj
(9)

Lemma 9. Any state s involved in a transaction Tw = SIwSO vulnerable to
inferred relation L̃ in (9) has an unlinkability score of u = (|SI∪SO\[s]L|

2

)/(|SI∪SO|
2

).
Proof. We have that [s]L̃ is the set SI ∪ SO, for all s ∈ SI ∪ SO. Therefore the
unlinkability score of any state s is u = (|SI∪SO\[s]L|

2

)/(|SI∪SO|
2

).
Furthermore, Kappos et al. [19] identify the retribution of mining pools towards
their miners. If a transaction from the shielded pool to the transparent pool
has many outputs states, one of which belongs to a known mining pool, all the
states are from a mining pool. Let M be a refinement of the linking relation on
the states S that denotes whether two states si, sj ∈ S are miners, whenever
siMsj . We write [s]M the equivalence class of S by M , to which s belongs. Also,
the threshold to the number of output is set to 100 by Kappos et al., here we
generalize it to n. We express this heuristic as an inferred linking relation L̃:

∀si, sj ∈ wz−tEPSO : si ∈ [s]M ∧ |SO| > 100 =⇒ siL̃sj (10)

Lemma 10. Any state s /∈ [s′]M involved in a transaction Tw vulnerable to
inferred relation L̃ in (10) has an unlinkability score of 1, for all s′ ∈ S.

Proof. If s is not in [s′]M for all s′ ∈ S, then [s′]M ∩ [s]L = ∅, since M is a
refinement of L. Therefore, the score of s is (|[s′]M |

2

)/(|[s′]M |
2

)
= 1.


