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Abstract. Private information retrieval (PIR) protocols allow clients
to access database entries without revealing the queried indices. They
have many real-world applications, including privately querying patent-,
compromised credential-, and contact databases. While existing PIR
protocols that have been implemented perform reasonably well in practice,
they all have suboptimal asymptotic complexities.
A line of work has explored so-called doubly-efficient PIR (DEPIR), which
refers to single-server PIR protocols with optimal asymptotic complexities.
Recently, Lin, Mook, and Wichs (STOC 2023) presented the first protocol
that completely satisfies the DEPIR constraints and can be rigorously
proven secure. Unfortunately, their proposal is purely theoretical in nature.
It is even speculated that such protocols are completely impractical, and
hence no implementation of any DEPIR protocol exists.
In this work, we challenge this assumption. We propose several opti-
mizations for the protocol of Lin, Mook, and Wichs that improve both
asymptotic and concrete running times, as well as storage requirements,
by orders of magnitude. Furthermore, we implement the resulting pro-
tocol and show that for batch queries it can outperform state-of-the-art
protocols.

1 Introduction

Private information retrieval (PIR) refers to a subclass of multi-party computation
protocols that allow clients to access database entries on a server without revealing
the identity of the requested indices. A naive approach to realize PIR would
be to have the client download the whole database, but in practice we are
interested in protocols that have communication cost sublinear in the database
size N . PIR has numerous real-world applications, for example, in anonymous
communication [AS16; MOT+11], location privacy [FKP15; KSS08], querying
patent databases [Aso04], compromised credential checking [GHPS22], and mobile
contact discovery [KRS+19; HSW23; DRRT18].

PIR protocols can be classified into single-server and multi-server schemes.
Multi-server schemes like [BFG06; BIKO12; BI01; BIKR02; Yek08; Efr09; DG16;
GI14] tend to be more efficient and can provide information theoretic security
guarantees. However, they inherently rely on non-collusion assumptions between
servers, which are often unclear how to implement in practice.



Table 1. Overview of single-server PIR protocols, comparing originally proposed (“clas-
sical”) with state-of-the-art (“SOTA”) protocols with optimal asymptotic cost.

Scheme Offline (client-ind.) Offline (client-dependent) Online ExamplesComp. Storage Comp. Comm. Hint size Comp. Comm.

Stateless PIR
Classical Õ(N) Õ(N) - - - Õ(N) Õ(

√
N) [MBFK16; ACLS18]

SOTA Õ(N) Õ(N) - - - Õ(N) Õ(1) [MCR21]
Stateful PIR

Classical Õ(N) Õ(N) Õ(N) Õ(N) Õ(
√

N) Õ(
√

N) Õ(
√

N) [CHK22; ZPSZ24]
SOTA Õ(N) Õ(N) Õ(N) Õ(

√
N) Õ(

√
N) Õ(

√
N) Õ(1) [ZLTS23; LP22]

DEPIR Õ(N) Õ(N) - - - Õ(1) Õ(1) [LMW23]

As proven in [BIM00], a fundamental issue with single-server PIR schemes
is that, without preprocessing, the server computation has to be linear in the
database size N . Intuitively, this should be clear: if the server does not “touch”
an element of the database, it would learn that it was not requested. This has
motivated variants of PIR that include an offline phase in which clients interact
with the server to compute and store “hints” locally, as originally proposed
by [CHK22]. Using these hints, they can then perform PIR queries in sublinear
time and communication. A long list of work has explored this approach and
introduced many tradeoffs between offline and online cost, and progressively
gained better practical performance. Generally speaking, schemes like [CK20;
CHK22; ZPSZ24] achieve a client-dependent offline phase of cost O(N) that
then supports O(

√
N) queries, where each query can be performed in O(

√
N)

computational and communication complexity. Another class of schemes [MCR21;
PPY18; DPC23; HHC+23] still has linear asymptotic server computation com-
plexity, but very competitive practical running times. On the other hand, there
are some schemes [ZLTS23; LP22] that achieve O(polylog(N)) communication
and O(

√
N) computation, again with O(N) preprocessing complexity. This is

unavoidable, as otherwise one could perform offline and online phase together,
and get a standard stateless PIR protocol with computational complexity o(N).

Doubly-efficient PIR. So far, we presented the landscape of practical and
implemented single-server PIR protocols (cf. Table 1). The work of [BIM00]
introduced the notion of (unkeyed) doubly-efficient PIR (DEPIR), which avoids
client-dependent preprocessing altogether and still provides polylogarithmic
online complexities. DEPIR schemes circumvent the impossibility result with
client-independent preprocessing, which then only has to be performed once for
all clients. However, no construction was presented in [BIM00].

The first DEPIR constructions appeared in [CHR17; BIPW17]. However,
their database preprocessing step still depends on a client’s key (called public-key
DEPIR). An additional problem with these protocols is that either they require
this key to be kept from the server [CHR17] (and if any client is compromised,
all security is lost); or they require non-standard hardness assumptions like ideal
obfuscation, which would have to be heuristically instantiated with indistinguisha-



bility obfuscation [BIPW17]. Because of this, these works must be considered
entirely theoretical, and it seems impossible to give any practical instantiations.

A breakthrough was achieved by Lin, Mook, and Wichs [LMW23], who
constructed general unkeyed DEPIR from the standard Ring-LWE assumption.
Their main tools are BV-style homomorphic encryption (HE) [BV11] and a data
structure that can evaluate polynomials in polylogarithmic time w.r.t. their degree,
as discovered earlier by [KU11]. Nevertheless, the protocol of [LMW23] is still
a theoretical tool and, as with previous work, the heavy-weight building blocks
used make the concrete performance worse than the asymptotically suboptimal
protocols above. For example, the authors of [ZPSZ24] state that “within the
limits of known techniques, we are still very far from making these cryptographic
primitives practical (or even implementable)!”.

Our contributions. Since we believe that DEPIR is the future, we try to
quantify the “very far” in the above statement. In particular, we consider:

How far is doubly-efficient PIR from being practical?

We approach this question by trying to implement the protocol of [LMW23].
As pointed out in previous works, a naive implementation would require an
astronomical amount of server-side storage: we estimate it to be at least 1078

elements (a few bytes each) for a database size of N ≈ 220. As a first step, we
propose a less naive implementation, which requires server-side storage of at
least 3.0 · 1019 elements. While much lower, it is clearly still impractical.

We therefore introduce a number of optimizations that significantly improve
both the asymptotic and concrete running times as well as the required storage.
Compared to the “less naive” implementation, we reduce the storage by more than
three orders of magnitude and the running time by almost two orders of magnitude.
For this, we exploit the ciphertext ring decomposition of the HE scheme under
suitable parameters. Moreover, we manage to improve the storage cost by a further
three orders of magnitude by choosing a different polynomial to represent the
database. Overall, our implementation must store fewer than 5.3 · 1011 elements
on the server and perform 2.5 · 1012 queries to these entries in order to answer a
single query. Additionally, we use efficient techniques (Fourier transforms and
simple modular arithmetic § 6) to efficiently perform all involved computations,
to the point where basically all the runtime is spent on storage access.

Our results certainly debunk the second part of the statement, namely that DE-
PIR is not “even implementable” [ZPSZ24]. More concretely, our implementation
of the optimized protocol in Rust4 runs on commodity hardware within minutes,
though for very small database sizes where N ≈ 213. For larger database sizes,
we find that the main issue is increasing server storage requirements that soon
exceed any practically available amount of memory. We conclude that DEPIR is
not yet practical for large database sizes.

However, there is one particular setting where our protocol can compare to,
and even outperform, the state of the art. In BV-style homomorphic encryption,
a suitable choice of parameters induces a “slot-structure” on the plaintext space,
4 Available on the GitHub repository.

https://github.com/FeanorTheElf/depir-impl


which allows single-instruction-multiple-data (SIMD) parallelism. This allows us
to encode up to 216 indices within one query, such that PIR will be performed
for each of them. When amortizing costs over all queries, our implementation
can compare to unbatched state-of-the-art protocols like [ACLS18; MCR21] in
terms of runtime, and outperforms them in terms of communication. Compared
to schemes with client-dependent preprocessing like [ZPSZ24], our running times
are still inferior, but this is in exchange for superior communication cost.

It is possible to improve on the naive batching of standard PIR protocols, by
using coding techniques like batch codes [IKOS04]. However, these techniques do
not apply to the client-dependent preprocessing step, and only improve compu-
tational cost (with a very small impact on communication). More importantly,
in our case the improvements by batching are not a fundamental property of
the PIR scheme, but a result from the fact that the used HE scheme has an
incredibly large plaintext space. Hence, we believe that considering amortized
costs gives a more accurate impression of the potential of DEPIR.

2 Preliminaries

Notation. We denote the quotient ring Z/qZ by Zq, and the coset of an ele-
ment a ∈ Z in Zq by a. A map that will be used many times in this work is
the shortest-lift map liftq : Zq → Z that maps each element x ∈ Zq to its unique
representative in {−⌊(q − 1)/2⌋, . . . , ⌈(q − 1)/2⌉}.

We also sometimes apply this function to elements in a quotient Rq = R/qR,
where R is an order in a number field. As before, liftq maps each element x ∈ Rq

to one of its shortest representatives in R. Note that for the rings that we
consider in this work, this is equivalent to applying liftq on each coefficient in a
representation of the element w.r.t. the canonical basis.

Next, we denote uniform sampling of elements S from a set by $← S (used
in algorithms). Finally, we denote the ℓ∞-norm over all coefficients of a polyno-
mial f ∈ Z[T1, ..., Tm] by ∥f∥∞.

Homomorphic Encryption. Homomorphic encryption (HE) refers to the
family of encryption schemes that allow performing computations on encrypted
data without decrypting it. Traditionally, this is achieved by endowing the
plaintext and ciphertext spaces with arithmetic structure.

Definition 2.1 (Somewhat homomorphic encryption). A symmetric en-
cryption scheme (Gen, Enc(m, sk), Dec(ct, sk)) is called somewhat homomorphic
encryption (SHE), if the plaintext space P is a ring and there is an additional
operation Eval(f, ct1, ..., ctk) that outputs a ciphertext encrypting f(x1, ..., xk)
where xi = Dec(cti, sk) for all “allowed” polynomials f ∈ P [T1, ..., Tm].

Since most HE constructions are built from Ring-LWE [LPR10; SSTX09], the
ciphertexts are noisy, and this noise grows during homomorphic operations. If
the noise grows too large, then decryption will fail. This leads to the restriction
of “allowed” polynomials f . An SHE scheme that supports all polynomials f



is called fully homomorphic encryption (FHE) [Gen09]. While it is trivial to
build PIR from FHE, classical HE-based PIR schemes [MBFK16; ACLS18;
MCR21] are built from SHE for performance reasons.

3 Related Work

The two most important techniques for constructing PIR schemes are HE and
the hint sets of [CK20]. We now introduce both, and mention other research
related to DEPIR. An overview of state-of-the-art PIR schemes is given in § 1.

HE-based PIR. The guiding principle of HE-based PIR is to avoid ciphertext-
ciphertext multiplications, as they are expensive, both in terms of performance
and noise growth. Instead, most schemes [MBFK16; ACLS18; MCR21], and also
hint-based PIR schemes like SimplePIR [HHC+23], arrange the server database
entries in form of a matrix A ∈ Fk×l

p with N = kl. A client who wants to query
the (u, v)-th entry of A now encrypts each component of the v-th unit vector ev

to get (ctj)j . The server can then compute the “external” matrix-vector product
A(ctj)j = (ct′

i)i, i.e., ct′
i =

∑l
j=1 MulPlain(Aij , ctj). The client then finds the

desired entry by decrypting ct′
u.

In the earliest work [MBFK16], k was chosen to be 1, with the caveat that
the client’s query is of size O(N). Later work [ACLS18] focused on compressing
the client’s query, and [MCR21] introduced a very small number of repetitions of
the matrix-multiplication step. The problem with these repetitions is that during
later steps, the “database” is the output of the previous step, hence the entries
of the matrix are ciphertexts. Thus, ciphertext-ciphertext multiplications are
required. However, keeping the number of repetitions very low can decrease the
reply size further without blowing up the parameters too much.

Hint-based PIR. Many PIR schemes that perform client-dependent pre-
processing to compute and store hints [CK20; CHK22; ZLTS23; LP22; ZPSZ24]
are fundamentally based on [CK20]. This work proposed a nice approach based
on O(

√
N) hint sets of size O(

√
N) that is very natural in a two-server setting,

but can also be used as another approach to construct single-server PIR schemes
with client-dependent preprocessing. However, after preprocessing, the client has
to store one hint for each set, hence requires O(

√
N) client-side storage.

Other related notions. The setting of DEPIR is similar to that of oblivi-
ous RAM (ORAM) [Gol87]. The main difference is that in ORAM, there is a single
client who reads and writes to the database. As opposed to DEPIR, practical
implementations for ORAM exist [SDS+18; SS13; SSS12; BMP11; DMN11].

Used tools. Apart from the fundamental polynomial preprocessing techniques
from [KU11], we also use some techniques that have been developed for improv-
ing HE schemes. In particular, this includes fast algorithms for the residue number
system [HPS19; BEHZ16] and Fourier decomposition techniques [GHS12].



Algorithm 1: High-level overview of the DEPIR scheme.

Preprocessing

1 “Split” each index i into “parts” i1, ..., im (cf. § 6).
2 Interpolate the points (i1, ..., im, DB[i]) into a polynomial fDB ∈ Z[T1, ..., Tm]
3 Compute the evaluation datastructure D for fDB as shown in § 4.1.

Client Server

4 Split the input i into i1, ..., im

5 Encrypt each ij as ctj = Enc(ij)
6 Send (ct1, ..., ctm)
7 Compute ct′ = fDB(ct1, ..., ctm) using D
8 Send ct′

9 return Dec(ct′)

4 The DEPIR Construction of [LMW23]

The basic idea of [LMW23] is to use a naive HE-based PIR protocol in which the
client encrypts the desired index with an HE scheme and the server formulates
the database lookup as an arithmetic circuit that it can then evaluate on the
encrypted index. This protocol already has very low communication cost for a
fixed security parameter, being just polylogarithmic in N . However, it requires
the server-side homomorphic evaluation of a polynomial with N monomials,
which usually takes time Ω(N). There are also other more practical obstacles,
e.g., the noise growth caused by evaluating a high-degree polynomial (which we
mitigate by using multivariate polynomials, cf. § 6).

The groundbreaking idea of [LMW23] is to speed up the homomorphic eval-
uation by using preprocessing. The first main ingredient is the datastructure
from [KU11] that encodes a multivariate polynomial f ∈ Z[T1, ..., Tm] with N
monomials and then allows computing evaluations of f in time O(polylog(N)).
However, this is not directly applicable to standard HE schemes, as their homo-
morphic operations cannot be (efficiently) expressed as polynomial evaluations.
Hence, the notion of algebraic (somewhat) homomorphic encryption (ASHE)
is needed as a second main ingredient. ASHE refers to an HE scheme whose
homomorphic (arithmetic) operations are the same arithmetic operations over
ciphertexts, which are also assumed to form a ring. Combining these leads
to Algorithm 1.

4.1 Preprocessing polynomials

First, we present the datastructure of [KU11]. For the remainder of this section,
let f ∈ Z[T1, ..., Tm] be a polynomial of individual degree ≤ d in each variable.

The most naive way of providing such a datastructure for fast polynomial
evaluations would be to create a table of all tuples (x, f(x)) for all points x =
(x1, ..., xm) over a finite ring R. If #R is very small, this might already be sufficient.



Algorithm 2: Datastructure query, using one step of reduction.
Input: Point x = (x1, ..., xm) ∈ Zm

q ;
Tables tabi containing all tuples (z, f(z)) ∈ Zm+1

pi
, where p1, ..., pr are

primes with
∏

pi ≥ 2N∥f∥∞(q/2)dm.
Output: f(x)

1 Compute x̂ = (liftq(x1), ..., liftq(xm)) ∈ Zm

2 for i ∈ {1, ..., r} do
3 Compute x(i) ← x̂ mod pi

4 Query precomputations f(x(i)) := tab[x(i)]
5 end
6 return liftp1···pr (InvCRT(f(x(1)), ..., f(x(r)))) mod q

However, as we are interested in larger rings R, we want the datastructure size
to be poly(N, log #R) or, even better, poly(N, log log #R).

The case R = Zq. For now, assume that R = Zq. If q is a highly smooth
number, it is easy to reuse the above technique together with the CRT. In
particular, if q = p1 · · · pr, we have Zq

∼= Zp1 × · · · × Zpr
and hence, it suffices to

store r tables, each containing all the tuples (x, f(x)) for x ∈ Zm
pi

.
The fascinating idea of [KU11] is now that for any q, we can find a surjection

ϕlift : Zp1···pr
↠ Zq, x 7→ liftp1···pr

(x),

where lift(·) refers to the shortest lift function. This map is “sufficiently ho-
momorphic”, i.e., homomorphic on small values that do not cause a “wrap
around” modulo p1 · · · pr. Now one can evaluate f(x1, ..., xm) for xi ∈ Zq via
ϕlift(f(liftp1(x1), ..., liftpr

(xm))) = f(x1, ..., xm). For ϕlift to be sufficiently homo-
morphic, we require that p1 · · · pr ≥ 2 max|xi|≤q/2 |f(x1, ..., xr)|, as this prevents
a wrap around p1 · · · pr. For simplicity, we will work instead with the stronger
bound p1 · · · pr ≥ N∥f∥∞(q/2)dm. Choosing p1, ..., pr to be the smallest r primes
for a sufficiently large r, [KU11] derive from the prime number theorem (PNT)
that the database size is poly(d, m, log q)m. This is displayed in Algorithm 2.

However, there is no reason to stop here. [KU11] repeats the procedure, which
reduces each evaluation of f in Zpi to r′

i evaluations of f in Zp′
ij

, as shown
in Algorithm 3. This results in a storage size depency on #R of only log log #R,
at the cost of a higher running time, bounded by r ·maxi r′

i. As we will see, this
is a runtime change from linear in d to quadratic in d. We could continue and
reduce the dependency on #R while increasing runtime, but performing two
steps of reduction is sufficient for both [LMW23] and our work.

The general case. This approach does not require special properties of Z
and can be generalized to other settings. In § D, we show how to do so in
the case of number fields. However, as we later show how we can improve
performance while avoiding going beyond Z (cf. § 6), we omit the details here.
We just remark that [LMW23] explicitly built a “sufficiently homomorphic” map
ZQ ↠ Zq[X, Y ]/(F (X), G(Y )) for some very large Q and monic polynomials F
and G, which suffices to show the following.



Algorithm 3: Datastructure query, using two steps of reduction.
Input: Point x = (x1, ..., xm) ∈ Zm

q ;
Tables tabi containing all tuples (z, f(z)) ∈ Zm+1

pi
, where p1, ..., pr

“sufficiently many” primes (see Proposition 5.1 for the required r);
List of “second-level” primes p′

1, ..., p′
r′ with sufficiently large r′

Output: f(x)
1 Compute x̂ = (liftq(x1), ..., liftq(xm)) ∈ Zm

2 Set i← 1 and current← 1
3 while current ≤ 2N∥f∥∞(q/2)dm do
4 Compute x(i) ← x̂ mod p′

i

5 Call Algorithm 2 with x(i) and tab1, ..., tabr to get the output f(x(i))
6 Update i← i + 1 and current← current · p′

i

7 end
8 return liftp′

1···p′
i−1

(InvCRT(f(x(1)), ..., f(x(i−1)))) mod q

Theorem 4.1 ([LMW23, Thm. 2.1], [KU11, Thm. 5.1]). Let F , G be monic
polynomials and R the quotient Zq[X, Y ]/(F (X), G(Y )). Let f ∈ R[T1, ..., Tm] be
a polynomial of individual degree < d in every variable. Then there is an algorithm
that, given f , computes a datastructure of size poly(m, d, log #R)(dm log log #R)m

in the same time. Using that datastructure, we can then compute f(x1, ..., xm) in
time poly(d, m, log #R).

4.2 Algebraic Somewhat Homomorphic Encryption

As mentioned before, these techniques do not apply to standard FHE schemes
like BGV/BFV [BGV11; FV12], CKKS [CKKS17], or GSW [GSW13], as their
homomorphic operations are not polynomial evaluations. Therefore, we need a
new encryption scheme whose operations are. The authors of [LMW23] call such
schemes algebraic somewhat homomorphic encryption (ASHE) schemes.

Definition 4.2 (ASHE). A somewhat homomorphic encryption (SHE) scheme
given by algorithms (KeyGen, Enc, Dec, Eval) is called algebraic or ASHE, if in
addition to the plaintext ring P also the ciphertext space C is a ring and we have
Eval(f, ct1, ..., ctr) = f(ct1, ..., ctr) for all allowed polynomials f .

Constructing ASHE. It remains to actually construct an ASHE scheme
from the Ring-LWE assumption. As in [LMW23], we use the SHE scheme [BV11].
It is parameterized by a plaintext modulus t, a ciphertext modulus Q, a cyclotomic
ring R = Z[X]/(Xn +1) with n a power of two, and a narrow error distribution χ
on R. A ciphertext is a polynomial ct(Y ) ∈ RQ[Y ] and encrypts a message m ∈ Rt

if liftQ(ct(sk)) ≡ m mod t. Summarized, we get the following.



Plaintext ring P := Rt = Zt[X]/(Xn + 1)
Ciphertext ring C := RQ[Y ] = ZQ[X, Y ]/(Xn + 1)
KeyGen() Output s where s

$← RQ

Enc(s, m) Output −as + te + liftt(m) + aY where a
$← RQ, e← χ

Dec(s, ct) Output liftq(ct(s)) mod t

Since the scheme is an ASHE scheme, Eval is just polynomial evaluation in
the ciphertext ring C. We remark that we can easily make it a finite ring by
taking the quotient modulo a monic polynomial G(Y ) of sufficient degree, i.e.,
using C ′ := RQ[Y ]/(G(Y )). The degree of G must be larger than the number of
supported ciphertext-ciphertext multiplications, but this is not very large, as the
noise term te grows multiplicatively with each ciphertext-ciphertext multiplication.

Theorem 4.3 ([LMW23, Thm. 3.2]). The above scheme is a secure ASHE
scheme under the Ring-LWE assumption for the chosen parameters n, q, χ.

5 Precise Performance Estimates

We believe that for designing and evaluating this work, it is very useful to have
precise formulas for estimating the performance on concrete parameters. While
the behavior of Algorithm 2 and Algorithm 3 can be simulated, this gives much
less intuition on the asymptotic growth. Unfortunately, the previous asymptotic
calculations as presented in Theorem 4.1 do not capture constants, and thus are
not sufficient for this purpose. Hence, in this section, we derive suitable formulas.
We denote by D the total degree of f so that N ≤

(
D+m

m

)
≤ Dm.

Our approach is to estimate all metrics using a precise asymptotic analy-
sis, depending only on a term o(1), and then assume for concrete parameters
that o(1) = 0. The main result is the following theorem, whose proof is based
on the PNT. Since the proof is technical and largely irrelevant for this work, we
defer it to the appendix § A.

Proposition 5.1. Assume that f ∈ Z[X1, ..., Xm] with degtotal(f) ≤ D and N
monomials. Assume further that m ≤ log(N) ≤ D and ∥f∥∞ ∈ o(qD). Then the
required number of primes r for Algorithm 2 resp. Algorithm 3 is

1 + o(1)
C1

D log q resp. 1 + o(1)
C2

(log ∥f∥∞ + D log D + D log log q)

This implies that in the one-step case (Algorithm 2), the required storage is
(1+o(1))m

(m+1)C1
Dm+1 log(q)m+1 and the runtime consists of 1+o(1)

C1
D log q random stor-

age accesses.
In the two-step case (Algorithm 3), we get a storage size of (1+o(1))m

(m+1)C2
(log(∥f∥∞)m+1+

Dm+1 log(D log q)m+1) and a runtime of 1+o(1)
C1C2

(D2 log qC1 + D log q log ∥f∥∞)
random storage accesses.



Here, C1 and C2 are C1 = log D + log log q and C2 = log(log ∥f∥∞ +
D log D + D log log q) which are asymptotically only polylogarithmic in D, log q
and log ∥f∥∞.

To demonstrate that these asymptotic expressions also give a good estimate
for concrete parameters, we plot a comparison in Fig. 1. We believe the correlation
is good enough to measure the impact of our optimizations.
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Fig. 1. Comparison of model and actual performance characteristics, assuming q = 220,
∥f∥∞ = q/2, and N =

(
D+m

m

)
for Algorithm 2 (left) and Algorithm 3 (right). As the

required storage size also depends on the number of variables m of the polynomial, we
include plots for different values of m. Actual performance was computed with a SAGE
script using the smallest possible values for r.

6 Optimizations and Tradeoffs

In this section, we introduce several optimizations that we combine in Algorithm 4
given in § C. We illustrate the improvement of these optimizations over the original
work [LMW23] in Table 2. We also discuss tradeoffs and the choices made in our
implementation, which is exactly Algorithm 4 up to some technical, low-impact
optimizations.

Recall that the ciphertext ring is R = ZQ[X, Y ]/(Xn + 1, G(Y )), where Q
is the ciphertext modulus, n a power of two, and G an additional monomial of
degree > D = degtotal(f). The plaintext ring is then P = Zt[X]/(Xn + 1).



Table 2. Performance characteristics after different optimizations, using the estimates
given by Proposition 5.1. In particular, we consider the number of entries of the prepro-
cessed database (directly correlating to storage size) and the number of read queries to
that database that are required to answer a single PIR query. The improvement column
gives a lower bound for the improvement factor compared to the “no optimization” case.
Parameters are chosen as N ≈ 220, Q ≈ 21000, and n = 216.

Optimization m Queries Entries Improvement
Queries Size

One step (i.e. Algorithm 2)
None [LMW23] 5 > 6.9 · 1011 > 3.3 · 1078 1 1

+ Fourier decomposition 5 4.2 · 1010 3.4 · 1018 16.4 1.0 · 1060

+ total degree interpolation 5 1.1 · 1010 4.4 · 1016 62.7 7.5 · 1061

4 3.1 · 1010 7.5 · 1014 22.3 4.3 · 1063

Two steps (i.e. Algorithm 3)
None (Natural variant of [LMW23]) 5 > 2.1 · 1014 > 3.0 · 1019 1 1

+ Fourier decomposition 5 3.8 · 1012 9.1 · 1015 55.3 3.3 · 103

+ total degree interpolation 5 5.0 · 1011 7.6 · 1013 420.0 3.9 · 105

4 2.5 · 1012 5.3 · 1011 84.0 5.7 · 107

Concrete performance of the base case. In the original work [LMW23],
the approach was to first use “sufficiently homomorphic” maps

ZQ′′ ↠ ZQ′ [X]/(F (X)) ↠ ZQ[X, Y ]/(F (X), G(Y )) = R

given in each case by y 7→
∑

aiX
i, where liftQ′′(y) =

∑
aiB

i. This requires
that B is larger than any coefficients can get, i.e., greater than 2(Q/2)D+1δD−1

R

resp. 2(Q′/2)D+1δD−1
Z[X]/(F ), where δR is the ring expansion factor.

We will show next how to avoid these maps altogether, and hence are satisfied
with the following crude estimates instead of a lengthy and precise analysis. We
require B ≥ 2(Q/2)D deg(G)D−1 ≥ 2(Q/2)DDD−1, B′ ≥ 2(Q′/2)DnD−1, Q′′ =
F (B′) ≥ (B′)n, and Q = G(B) ≥ BD. This leads to Q′′ ≥ (Q/2)D3nD(D−1)D2n ·
n(D−1)n ≥ (Q/2)D3nD(D−1)D2n. Reasonable parameters for the HE scheme
are Q ≈ 21000 and n = 216. Furthermore, we choose m = 5, as it seems to
give a somewhat realistic runtime/speed tradeoff (cf. Fig. 1). This now implies
that d = N1/m = 16, D = dm = 80, and q = (Q/2)D3nD(D−1)D2n, and then the
formulas of Proposition 5.1 give the corresponding values in Table 2.

Fourier decomposition of ciphertexts. As demonstrated above, the
increase in the ring size introduced by the “sufficiently homomorphic” maps
significantly harms efficiency. Fortunately, this can be avoided altogether when
the ciphertext space is a quotient of some ring modulo a product of small prime
ideals. This is standard for implementations of certain FHE schemes as it allows
much faster arithmetic on ciphertexts (known as double-CRT format [GHS12]).
The idea is to choose Q = p1 · · · pr with each pi ≡ 1 mod 2n. In this case, the
ideal (pi) ⊆ Z[X]/(Xn + 1) splits into n degree-1 prime ideals, and so

ZQ[X]/(Xn + 1) ∼=
r⊕

i=1

n⊕
j=1

Fpi .



We now propose to choose G = Y k − 1 where k > D is a prime, in which case

R ∼= ZQ[Y ]/(Y k − 1)⊗ ZQ[X]/(Xn + 1) ∼= ZQ[X]/(Xnk + 1) ∼=
r⊕

i=0

nk⊕
j=1

Fpi

has a similar decomposition, assuming that every pi | Q satisfies pi ≡ 1 mod 2nk.
Moreover, this isomorphism can be computed very efficiently using a fast Fourier
transform (FFT). It thus suffices to use Algorithm 2 or Algorithm 3 rnk times on
much smaller primes q ∈ {p1, ..., pr}. Primes p with p ≡ 1 mod 2nk are relatively
common, and for the parameters N = 220, m = 5, n = 216, Q ≈ 21000, it suffices
to choose k = D + 3 = 83, r = 35, and maxi pi = 2023489537. This results in the
corresponding values in Table 2.

Total degree instead of individual degree. Proposition 5.1 shows that
the performance depends only on D and m. Hence, D and m should be as small
as possible, while maximizing N .

The choice of f as the polynomial of individual degree d is thus suboptimal,
as this can interpolate only N = (D/m)m points for a fixed D. Instead, we can
choose f as the polynomial of total degree D, which can interpolate N =

(
D+m

m

)
points - an improvement by a factor exponential in m (by Stirling’s approximation,
assuming m≪ D). However, this requires a different (more complicated) approach
to compute f that is discussed in § B. For N = 220, we can choose relatively
small m = 5 and D = 39, and still find that

(
D+m

m

)
≥ 220 is large enough.

Furthermore, it is sufficient to choose k = 41, r = 35, and maxi pi = 1493630977,
which gives the corresponding entries of Table 2.

Computing liftp1···pr
(InvCRT(·)) mod q fast. In Algorithm 2 and Algo-

rithm 3, we need to compute the CRT-induced map

Zp1 × ...× Zpr

InvCRT−→ Zp1···pr

liftp1···pr−→ Z mod q−→ Zq .

In practice, the product p1 · · · pr will be quite large (thousands of bits), and so
arithmetic in Zp1...pr would require “slow” arbitrary precision integers. Alter-
natives for this have been proposed in the context of FHE [BEHZ16], and our
method is inspired by that work. However, our approach is a variant of these
techniques as these usually only give approximate results.

As in [BEHZ16], the idea is to consider ϕ : Zp1 × ... × Zpr
→ Z which

maps (xi)i 7→
∑

i liftpi

(
xi

pi

P

)
P
pi

for P = p1 · · · pr. Clearly ϕ(x1, ..., xr) ≡ xi mod pi,
and furthermore, the images of ϕ are “almost” reduced, i.e., |ϕ(x1, ..., xr)| ≤ rP

2 .
This implies that we can perform the whole sum directly in modular arithmetic,
without being “far” from the result. Concretely, for δ ∈ {−⌊r/2⌋, ..., ⌊r/2⌋}, we
find that

∑
i liftpi

(
xi

pi

P

)
P
pi

mod q is equal to liftp1···pr
(InvCRT(x1, ..., xr)) mod q

except for an “error term” δP with |δ| ≤ ⌊r/2⌋.
In [BEHZ16], the authors show how to approximate δ up to ±1 using only

modular arithmetic, which suffices for their purpose. We need an exact result,
but can also assume that the input is slightly smaller than P/2, by choosing the
bound 2N∥f∥∞(q/2)D in Algorithm 2 and Algorithm 3 slightly higher. More



concretely, we assume |liftp1···pr
(InvCRT(X1, ..., xr))| < P/(2+2ϵ) for some ϵ > 0.

In this situation, we can exactly compute δ by using only the highest significant
bits of the sum. In other words, we choose γ ≥ (

√
1 + ϵ

2r − 1)−1 and compute
both

R′ :=
∑

i

liftpi

(
xi

pi

P

) P

pi
mod q and δ :=

⌊ 1
γ2

∑
i

⌊ liftpi

(
xi

pi

P

)
P/γ

⌋
·
⌊

γ

pi

⌋⌉
.

The result is then R′ − δP mod q. In our implementation, we can choose γ small
enough to compute δ using 32-bit integer arithmetic.

Due to its complexity, we did not implement the “naive” base protocol with
arbitrary precision integers and thus cannot measure the speedup achieved by this
optimization. Nevertheless, we expect it to be significant, and profiling shows that
the computational cost of Algorithm 2 resp. Algorithm 3 is extremely low (only
storage access time matters).

Size/Runtime tradeoffs. Apart from whether to take one or two reduction
steps (as in Algorithm 2 or Algorithm 3, respectively), the choice of m gives
us the most important speed/size tradeoff. In [LMW23], m was chosen as m =
ϵ
2 log(N)/ log log(N), which has the advantage of giving polylogarithmic runtime
and a storage size very close to linear (i.e., O(N1+ϵ)). However, the constant in
the required storage size is still huge, and, in practice, storage larger than a few
terabytes is difficult to procure. Hence, it is necessary to choose smaller values
for m. For our experiments, m = 4 seemed a reasonable tradeoff.

Remark 6.1. By Proposition 5.1, if we use one reduction step, the runtime of
the online phase of is about knrD log(q), since we execute Algorithm 2 a total
of knr times. This is exactly log #R, and will basically stay log #R for any ring
R. Note that even if we use Algorithm 3 to get a storage size depending only
on log log #R, the runtime will still be at least log #R. This is in some sense
unavoidable, as one has to at least read the whole ciphertext.

Applied to our case, it follows that the runtime is at least cubic in D. This is
because clearly k > D, and, additionally, we must have r = Θ(D) to prevent noise
overflow in the HE scheme. In other words, the runtime in the one-reduction-
step case is Õ(N3/m). Letting m = log(N)/ log(polylog(N)) would thus give
us DEPIR, but since we choose m = 4 or 5, this becomes N3/4 or N3/5.

7 Implementation and Evaluation

Due to our optimizations, the running times and required storage sizes were
reduced to a level that is manageable for modern hardware. Therefore, we are
able to provide the first ever implementation of a DEPIR scheme. In this section,
we report on the concrete performance of our implementation.

7.1 Setup and results
Our experiments were run on a machine with an Intel Core i9-10900K, 80GB RAM,
and a 4TB PCIe Gen4 SSD. Our implementation exploits multithreading, using



Table 3. Experimental and extrapolated results for databases ranging from “tiny” (N ≈
213) to “large” (N ≈ 228). Entries marked by * are extrapolated.

Parameter tiny small medium large
N 7315 46376 15020334 185250786
Plaintext modulus t 65537 65537 65537 65537
Ring degree n 215 215 216 216

Polynomial degree D 18 30 68 68
Variable number m 4 4 5 6
Ciphertext modulus q (bits) 518 804 1817 1817
# level 1 primes l1 32 30 145 145

Communication Query (MB) 10 14.5 75 90
Reply (MB) 19 54.25 483 483

Used Storage RAM (GB) 10 36 253 253
Disk (TB) 0 1.0 873 411744

Performed Queries RAM (·109) 8.7 31.2 1177.3 622.9
Disk (·109) 0 0.9 2086.3 2607.3

Time Preprocessing (h) 0.2 46.3 1.3 · 107* 7.4 · 1010*
Runtime (s) 236 1789 2.1 · 106* 2.6 · 106*
Amortized (ms) 7.2 54.6 32.3 · 103* 4.0 · 103*

the available 16 logical cores both for RAM and Disk reads. For RAM reads,
the speedup is close to linear in the number of cores, while the speedup for Disk
accesses is sublinear. The code is written in Rust and contains both the polynomial
evaluation datastructure as well as the ASHE scheme described in § 4.2. We used
the feanor_math library for the Cooley-Tuckey and Bluestein FFT algorithms.
The results are shown in Table 3.

For large parameter sets, our benchmarking setup does not have sufficient
storage to run experiments. Nevertheless, our implementation can count the
exact amount of storage accesses it would make in that setting. To obtain the
extrapolated runtimes for medium and large database sizes in Table 3, we estimate
that our system has RAM read speed of 4 · 107 reads per second and a disk read
speed of 1 · 106 reads per second.

Amortization. Recall that the plaintext space is Zt[X]/(Xn + 1), which de-
composes into s “slots” Sj

∼= Ftn/s that correspond to the factorization of Xn + 1
modulo t. Hence, one evaluation at the server side can be used for s queries.
Computing the runtime per query results in the listed “amortized time”.

Additional parameters in Table 3. Our implementation allows us to “in-
terpolate” between Algorithm 2 and Algorithm 3, i.e., have fine-grained control
of whether we perform one or two reduction steps. Concretely, we choose l0
primes p1, ..., pl0 and l1 further primes pl0+1, ..., pl0+l1 where the latter are
the “level 1 primes”. We also introduce one more parameter, the “reply ci-
phertext modulus”. To reduce the reply size, we modulus-switch the result to
this smaller modulus before we send it to the client.



Table 4. Comparison of amortized timings with other PIR protocols. The values
presented are from the corresponding papers, which is why we compare our protocol
with different protocols for different parameter sizes. For protocols with offline phase,
only the client-dependent offline phase is considered. The entries for our protocol are
extrapolated, as in Table 3.

Scheme Storage Am. queries Am. runtime Am. comm. N Entry size
Small DB
Ours 870 TB 216 32.3 s 8.9 KB 15020334 2 B
FrodoPIR [DPC23] - 500 192 ms 271 KB 65536 1 KB
Large DB
Ours 412 PB 216 40.0 s 9.1 KB 185250786 2 B
PianoPIR [ZPSZ24] - 2.2 · 105 14.5 ms 68.9 KB 134217728 8 B
OnionPIR [MCR21] - 1 24.9 s 192 KB 65536 30 KB

7.2 Comparison with other PIR protocols

The total running times of our implementation are much larger than the ones
of any other modern protocol in the literature. However, the amortized running
times are competitive. We present a comparison in Table 4, which shows that
our protocol has the lowest amortized communication costs for a single query.

As in SimplePIR [HHC+23], we compare protocols by total database size, i.e.,
parameters with the same N · t, where t is the entry size. As mentioned previously,
there are also alternate ways to build batched PIR from standard PIR that
can reduce the computational cost [IKOS04] compared to naive batching (with
negligible impact on communication cost). In contrast to the HE-based batching
we use, these techniques reduce batched PIR to PIR with smaller databases, and
we believe that on a theoretical level, this would not give an accurate impression
of the potential of DEPIR.

Because of these points, a fair comparison between the protocols is not trivial.
In particular, the classical HE-based PIR protocols usually achieve good perfor-
mance only for “small” databases with very large entries, e.g., N = 216 entries of
size 30KB. Clearly, in this setting, communication costs of less than 30KB per
query (as for our protocols) are impossible, and in fact the 192KB per query are
only a factor of 6.4× higher than the unencrypted baseline. On the other hand,
the hint-based approach following [CK20] is usually best suited for very large
databases with entries as small as a single bit. The communication cost of these
protocols usually scales with O(

√
N), so here the overhead is large, in exchange

for fast running times. Our protocol has the natural database entry size given
by t = 65537, or approximately two bytes.

8 Conclusion and Future Work

As we answer our main question on the practicality of DEPIR with a some-
what unsatisfactory “almost”, we want to comment on how future research
might make it a “yes!”. In our opinion, the polynomial evaluation datastructure
is far less inefficient (even including constants) than one might think at first
glance. In fact, the runtime dependency on the degree D is linear. The main



running time contribution comes from the linear dependency on log q, or respec-
tively log #R (cf. Remark 6.1). However, the total runtime clearly cannot be
lower than the length of the representation of a query, which is also log #R.
Therefore, we strongly believe that the way forward is to improve the ASHE
scheme. If an ASHE scheme with sufficiently small ring size could be found, we
believe that this could immediately lead to practical instantiations of DEPIR.
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A Omitted Proofs

Lemma A.1. An asymptotic expression for the product of all primes less than
or equal to B is

∏
p≤B p = exp((1 + o(1))B).

Proof. It is well-known that the PNT implies

lim
B→∞

 ∏
p≤B

p

 1
B

= e

Taking logarithms on either side shows then that

log

 ∏
p≤B

p

 /B = 1 + o(1)

and the claim follows.

Lemma A.2. An asymptotic expression for the sum of the mth power of all
primes less than or equal to B is

∑
p≤B pm = (1 + o(1)) Bm+1

(m+1) log B .

Proof. Again using the PNT, we find that∑
p≤B

pm = o(Bm)+
∑

0<n≤B/ log(B)

pm
n = o(Bm+1/ log(B))+

∑
0<n≤B/ log(B)

(n log n)m



We can estimate this with an integral to get∑
1≤n≤B/ log(B)

(n log n)m = O(Bm) +
∫ B/ log(B)

1
(t log t)mdt

=O(Bm) + 1
m + 1(B/ log B)m+1 log(B/ log(B))m −

∫ B/ log B

1
tm log(t)m−1dt

=O(Bm) + Bm+1(log B − log log B)m

(m + 1) log(B)m+1 −
∫ B/ log B

1
O(tm log(t)m−1)dt

=O(Bm) + Bm+1

(m + 1) log B
+ O((B/ log B)m+1 log(B/ log(B))m−1)

= Bm+1

(m + 1) log B
+ O(Bm+1/ log(B)2) = (1 + o(1)) Bm+1

(m + 1) log B

Proof of Proposition 5.1, one-step case. We need to find primes p1, ..., pr such
that

∏
pi ≥ 2N∥f∥∞(q/2)D. Using Lemma A.1, we find that the set of primes pi ≤

B with

B = 1
1 + o(1) log(2N∥f∥∞(q/2)D)

= (1 + o(1))(log N + log ∥f∥∞ + D log q) = (1 + o(1))(log ∥f∥∞ + D log q)
= (1 + o(1))D log q

is sufficient.
Now, by the prime number theorem, there are π(B) = (1 + o(1))B/ log B

primes ≤ B. This gives

(1 + o(1)) D log q

log(D log q) = (1 + o(1)) D log q

log D + log log q

The number of queries is clearly equal to that number.
Furthermore, the precomputations consist of that many tables, with size

ranging from pm
1 to pm

r . By Lemma A.2, we get∑
p≤B

pm =(1 + o(1))m (D log q)m+1

(m + 1) log(D log q)

=(1 + o(1))m Dm+1 log(q)m+1

(m + 1)(log D + log log q)

Proof of Proposition 5.1, two-step case. We already know from the one-step case
that after the first reduction, we are left with

(1 + o(1)) D log q

log D + log log q

primes of size at most
(1 + o(1))D log q



Applying Lemma A.1 again, we see that the second-level primes are bounded by

B =(1 + o(1)) log
(

2N∥f∥∞ ((1 + o(1))D log q/2)D
)

=(1 + o(1)) (log N + log ∥f∥∞ + D log (D log q))
=(1 + o(1)) (log N + log ∥f∥∞ + D log D + D log log q)
=(1 + o(1)) (D log D + D log log q + log ∥f∥∞)

Using the prime number theorem to estimate π(B), we find that the number of
second-level primes is

(1 + o(1)) D log D + D log log q + log ∥f∥∞

log (D log D + D log log q + log ∥f∥∞)

The total number of queries is now the product

(1 + o(1)) D log D + D log log q + log ∥f∥∞

log(D log D + D log log q + log ∥f∥∞) ·
D log q

log D + log log q

We find that

D log D + D log log q + log ∥f∥∞

log D + log log q
= D log(D log q) + log ∥f∥∞

log(D log q)

and the expression for the number of queries follows. Finally, we again use Lemma A.2
and find the required storage size

(1 + o(1))m log(∥f∥∞)m+1 + Dm+1 log(D log q)m+1

(m + 1) log(log ∥f∥∞ + D log(D log q))

B Computing the total degree interpolation polynomial

In the original work [LMW23], a Fourier transform-based method was used
to compute the polynomial f from the database entries via interpolation, with
asymptotic complexity only O(N log N). This approach is not compatible with
the total degree optimization we introduced in § 6. However, there still is a faster
approach than using a generic algorithm to solve the linear system

∀i ≤
(

D + m

m

)
:

∑
I∈{0,...,D}m∑

Ij≤D

XI

∏
j

x
Ij

ji = yi

given points (x1i, ..., xmi, yi). In particular, we can choose the interpolation
points (x1i, ..., xmi) with i ≤

(
D+m

m

)
to be the set of points{

(z0i1 , ..., zmim) ∈ Fm
t

∣∣∣ ∑
j

ij ≤ D
}



for arbitrary distinct values zj0, ..., zjD ∈ Ft for each j. In this case, we can
arrange the rows and columns of the corresponding matrix to have a block form.
More precisely, we consider the bijection

σ :

I ∈ {0, ..., D}m
∣∣∣ ∑

j

Ij ≤ D

 ∼−→
{

1, ...,

(
D + m

m

)}
induced by the enumeration of the tuples I in lexicographic order. The matrix
is given as A = (aij) with aij =

∏m
l=1 z

σ−1(j)l

l,σ−1(i)l
. All blocks have different size,

but it is still possible to adjust the explicit formula for the entries of the LU-
decomposition of the Vandermonde matrix to this setting, which then gives an
explicit O(N2)-algorithm for inverting the matrix. Depending on the choice of m,
n, and Q, this can dominate the asymptotic preprocessing time. In practice, it is
absolutely negligible.

C The complete algorithm

Algorithm 4 shows our complete algorithm, including the optimizations of § 6.

D The reduction step for number fields

The idea described in § 4.1 does not require the special properties of Z, but can
be generalized. We consider a natural generalizations to number fields, as these
already have a “natural” norm and their quotients yield all finite fields.

In detail, we replace the map

Zp1···pr ↠ Zq, x 7→ liftp1···pr (x)

with
OK/J ↠ OK/I, x 7→ liftJ(x)

where OK is the ring of integers in a number field K, and liftJ(·) refers to any
one of the shortest representatives a ∈ OK of some coset a + J w.r.t. a norm ∥ · ∥
on K. Usually, we would take the canonical norm ∥ · ∥ on K, which is given by

∥x∥ :=
√ ∑

σ∈Hom(K,C)

|σx|2.

Doing this, the constraint p1 · · · pr ≥ 2N∥f∥∞(q/2)D that ensures that the
computations do not wrap around p1 · · · pr in the scalar case has to be replaced
by

λ(J) ≥ 2N∥f∥∞µ(I)D.

Here, λ(J) stands for the length of a shortest nonzero element of J , and µ(I)
stands for the maximal distance of an element from I, i.e.,

λ(J) = min
x∈J\{0}

∥x∥ and µ(I) = sup
x∈K

min
a∈I
∥x− a∥.



Note now that if we choose J = p1 · · · pr a product of prime ideals pi ≤ OK over
primes pi that split completely in OK , then each OK/pi

∼= Fpi
. In particular,

this implies that

OK/J =
r⊕

i=1
Fpi

= Zp1···pr
.

This naturally allows us to reduce the evaluation in finite rings of the form Zq[X]/(F (X))
to prime fields Fp using exactly the same approach (i.e., Algorithm 2). Thus, this
implies Theorem 4.1 for a suitable choice of parameters.



Algorithm 4: The DEPIR scheme.
Input: Index i (Client)

The database DB of N =
(

D+m
m

)
entries in Zt with t > D (Server)

Output: DB[i] (Client)

Preprocessing

1 Compute the total degree interpolation fDB ∈ Zt[T1, ..., Tm] as in § 6
2 Set f = f lift

DB ∈ Z[T1, ..., Tm]
3 Compute the minimal number r1 such that

∏r1
i=1 pi ≥ 2∥f∥∞N(q/2)D

4 if two reduction steps are used (i.e. Algorithm 3) then
5 Compute the minimal number r such that

∏r

i=1 pi ≥ 2∥f∥∞N(pr1 /2)m

6 else
7 r := r1
8 end
9 for i ∈ {1, ..., r} do

10 Initialize table tabi

11 for z1, ..., zm ∈ Zpi do
12 Compute f(z1, ..., zm)
13 Add (z1, ..., zm, f(z1, ..., zm)) to tabi

14 end
15 end

Client Server

16 (i1, ..., im) := σ(i) with σ as in § 6
17 Generate a secret key s
18 Encrypt ctj = Enc(ij , s)
19 Send (ct1, ..., ctm)
20 Set Ci := cti mod (Y k − 1) ∈ R where

R = ZQ[X, Y ]/(Xn + 1, Y k − 1)

21 Use FFT to get γiqj := ϕ(Ci)qj where

ϕ : R
∼−→

⊕
q | Q prime

kn⊕
j=1

Fq

22 for q | Q prime do
23 for j ∈ {1, ..., kn} do
24 Use Alg. 2 or 3 to compute

γ′
qj := fDB(γ1qj , ..., γmqj)

25 end
26 end
27 Use inv. FFT to set C′ := ϕ−1((γ′

qj))
28 Lift C′ to get ctres ∈ ZQ[X, Y ]/(Xn + 1)
29 Send ctres
30 return Dec(ctres, s)
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