
Proactive Refresh for
Accountable Threshold Signatures

Dan Boneh, Aditi Partap, Lior Rotem

Stanford University
{dabo,aditi712,lrotem}@cs.stanford.edu

Abstract. An accountable threshold signature (ATS) is a threshold sig-
nature scheme where every signature identifies the quorum of signers
who generated that signature. They are widely used in financial settings
where signers need to be held accountable for threshold signatures they
generate. In this work we construct the first accountable threshold sig-
nature schemes that support a proactive refresh. Proactive refresh is a
protocol that lets the group of signers refresh their shares of the secret
key, without changing the public key or the threshold. It is an impor-
tant security mechanism that helps protect a secret key from a gradual
exposure of key shares. However, until now, no ATS scheme supported
a proactive refresh. We begin by giving several definitions for this new
concept that achieve different levels of security. We then construct three
types of ATS schemes with proactive refresh. The first is a generic con-
struction that is efficient when the number of signers is small. The second
is a collection of very practical constructions derived from ATS versions
of the Schnorr and BLS signature schemes; however these practical con-
structions only satisfy our weaker notion of security. The third is a hybrid
construction that performs well for a large number of signers and satisfies
our strongest security definition.

1 Introduction

A threshold signature scheme [21] protects the secret signing key by splitting it
into n shares so that any t shares can sign. An accountable threshold signature
scheme, also called an ATS, is a type of threshold scheme where the signature
identifies the quorum set that generated the signature. In particular, there is a
tracing algorithm that takes as input the public key pk, a message m, and a valid
signature on m, and outputs a quorum J ⊆ [n] of size at least t that must have
participated in generating the signature. More precisely, a set of signers J should
be unable to cause the tracing algorithm to blame a signer outside of J for a
signature generated by J (see Section 2 for the complete definition). Since every
signature must encode the quorum that generated it, signature length must be at
least ⌈log2

(
n
t

)
⌉ bits. We note that a non-accountable threshold signature scheme

cannot be made accountable simply by requiring that the signing quorum J sign
the pair (m,J ). The problem is that the signing quorum could lie and sign a
pair (m,J ′) for some J ≠ J ′, thereby framing the quorum J ′ for a signature
generated by J .



Accountable threshold signatures (ATS) come up often in real-world settings:
if a rogue transaction is signed by a threshold of trustees, the signature should
identify the trustees responsible. For this reason, they are widely used in fi-
nance and in blockchain applications. For example, Bitcoin multisig [2] is an
ATS. Ethereum consensus [41] uses an ATS because accountability is needed for
slashing a misbehaving attestor. Companies that provide custody services for
digital assets often use an ATS to protect critical signing keys.

The most widely used t-out-of-n ATS scheme is called the trivial ATS and
is built by concatenating t signatures. At setup, for i = 1, . . . , n, signer i locally
generates a public-private key pair (pki, ski) for a standard (non-threshold) sig-
nature scheme. The complete public key is the concatenation of all n local public
keys, namely pk = (pk1, . . . , pkn). When t parties need to sign a message m, they
each sign the message using their local secret key, and the final signature is the
concatenation of all t signatures. The verifier accepts such an ATS signature if
it contains t valid signatures with respect to some t of the n public keys in pk.
The tracing algorithm can easily determine which parties participated in gener-
ating a given valid signature by checking which of the n public keys in pk were
used. One downside of this scheme is that signature size and verification time
are at least linear in tλ, where t is the threshold and λ is the security parameter.
Although several ATS constructions achieve much lower signature size and ver-
ification time [35, 6, 37, 10, 13, 12], this trivial ATS is used widely, for example
in Bitcoin multisig transactions [2].

Proactive refresh. Consider an adversary that is able to corrupt one signing party
every week and learn its key share. After t weeks the adversary will learn enough
key shares to forge a signature on any message of its choice. To thwart such a
dynamic adversary, Ostrovsky and Yung [38] introduced the concept of proactive
refresh. Every epoch, say once a day, the n parties will engage in a protocol that
refreshes their secret key shares without changing the public key. The requirement
is that an adversary that corrupts fewer than t parties in every epoch will not
be able to forge signatures, even though in aggregate the adversary may corrupt
all n parties. Several subsequent works designed proactive refresh protocols for
specific threshold systems [28, 27, 24, 23, 39, 4, 25, 18, 1, 30, 20, 32]. The use of
proactive refresh could have made it harder to carry out some high profile hacks,
such as the Ronin and Multichain bridge hacks, to name a few.

Until now, no ATS scheme supported a proactive refresh. This presents a
difficulty for custody services who wish to periodically refresh their ATS secret
key shares. Currently, they refresh by re-generating all the shares from scratch,
and must re-register the new public key. Changing the public key is costly and
this limits the frequency with which they refresh key shares.

Our results. In this paper we initiate the study of proactive refresh for account-
able threshold signatures (ATS). An ATS with proactive refresh, or ATS-PR, is
the same as an ATS with the addition of a share update protocol. At the begin-
ning of every epoch all n parties participate in this update protocol to refresh
their key shares, without changing the public key. The scheme must be unforge-
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able and accountable against an adversary that can corrupt a different set of
parties at every epoch. We will define this more precisely in a minute.

At first, refreshing the secret keys of parties in an ATS may seem counter-
intuitive. Each party’s secret key is used to hold that party accountable for a
rogue signature. If we refresh the party’s secret key, then the tracing algorithm
will no longer be able to trace a rogue signature to that party. For example,
in the trivial ATS described above it is not possible to refresh the secret keys
without changing the public key: once an adversary learns the secret key of one
party, it will always be able to forge signature shares on behalf of that party.
Nevertheless, we construct new ATS schemes where the tracing algorithm works
correctly despite the fact that all the secret keys change at the beginning of
every epoch.

In Section 2 we define a number of security models for an ATS-PR that
capture multi-epoch unforgeability and accountability properties. We give two
natural definitions of unforgeability, denoted uf-0 and uf-1, that are an adaption
of the threshold unforgeability definitions of Bellare et al. [5] to the settings of
proactive refresh. We next give two definitions of accountability, denoted acc-0
and acc-1. In acc-1 the adversary can corrupt an arbitrary number of parties
at every epoch, and can issue arbitrary signature queries to the parties at every
epoch. Eventually, the adversary produces a message-signature pair (m∗, σ∗) that
will trace to a signing set J ⊆ [n]. We say that the adversary breaks account-
ability if in every epoch some party in J is incorrectly blamed for signing m∗.
In more detail, if in some epoch e′ the adversary obtained enough key shares
and signature shares to sign m∗ on behalf of the set J , then the adversary did
not break accountability — the set J effectively signed m∗ at epoch e′ (recall
that the public key remains unchanged, and hence the verification algorithm is
oblivious to the epoch in which a signature was produced). Therefore, to break
accountability we require the adversary to satisfy the complementary condition:
in every epoch e we require that there is some ie in J for which the adver-
sary did not corrupt party ie in epoch e and did not ask party ie to sign m∗

in epoch e. In other words, the adversary wins if in every epoch there is some
party in J that is incorrectly blamed for signing m∗. The definition requires
that no efficient adversary can satisfy this condition. We discuss this further in
Section 2. Definition acc-0 is weaker and requires that for some i in the set J ,
the adversary never corrupted party i nor did it ever ask it to sign m∗, across all
epochs. That is, the adversary wins under a more restricted condition: the same
party i is incorrectly blamed for signing m∗ across all epochs. We explore the
differences between acc-0 and acc-1 in the full version [16, App. A]. In summary,
we obtain four notions of security denoted (uf-b ∧ acc-b′) for b, b′ ∈ {0, 1}.

The security definitions in Section 2 require that the n parties honestly follow
the update protocol. This captures security against an adversary that steals key
shares, but does not otherwise corrupt the parties. It lets us focus on the main
ideas needed to build an ATS with proactive refresh. In the full version [16,
App. B] we consider a stronger adversary: we define security for an ATS-PR
when some of the parties participating in the system are fully malicious, and
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need not follow the update protocol honestly. We then describe a generic compiler
that lifts an ATS-PR that is only secure against semi-honest corruptions to an
ATS-PR that is secure against malicious corruptions. The compiler makes use
of techniques from maliciously secure multiparty computation. In Section 5 we
discuss more efficient lifting techniques for our specific constructions.

Constructions. Next, we present five constructions. We begin with a generic
combinatorial construction that performs well when

(
n
t

)
is polynomial size. The

scheme is built from any generic n-out-of-n threshold signature scheme (not nec-
essarily accountable) that supports a proactive refresh. There are many examples
built from RSA [28, 27, 24, 23, 39], Schnorr [27, 31, 34, 32], and BLS [15, 10]. It
satisfies uf-1 ∧ acc-1 security, our strongest notion of security.

In Section 3 we present a construction that satisfies uf-1∧acc-1 security even
when

(
n
t

)
is large. The scheme is built by combining two schemes:

– a refreshable n-out-of-n threshold scheme S1 that is not accountable, and
– a t-out-of-n accountable threshold scheme S2 that is not refreshable.

We build a two-level ATS-PR scheme where the scheme S1 is used to sign S2
public keys, and S2 is used to sign messages. At the beginning of epoch number e
the parties do: (i) refresh their S1 secret keys, (ii) run a distributed key generation
(DKG) protocol to generate fresh S2 secret keys and a public key pke; and (iii)
sign the newly generated ATS public key pke using the scheme S1. A signature
on a message m is a triple (pke, σ1, σ2), where σ1 is the S1 signature on pke,
and σ2 is the S2 signature on m. To make this construction practical we need an
ATS scheme S2 that has short public keys (so that our overall signature is short)
and has an efficient DKG. In the full version [16] we construct a new factoring-
based ATS that has both properties: a constant size public key (i.e., its size is
independent of t and n) and a simple distributed key generation protocol. A
recent work of [17] gives another example built from pairings.

Finally, in the full version [16] we construct very practical refreshable ATS
schemes from standard signature schemes such as Schnorr [40] and BLS [15].
This leads to practical short ATS schemes that support proactive refresh. How-
ever, we describe an attack that shows that the schemes do not provide acc-1
accountability. Instead, we prove that they provide acc-0 accountability. Signa-
ture generation and verification in these schemes are essentially as efficient, and
signatures are of the same length, as in non-refreshable versions of Threshold
Schnorr and BLS.

Additional related work. The notion of an accountable threshold signature
(ATS) is closely related to the concept of a multisignature defined in [35] and
further developed in [6, 13, 37, 29, 3, 12]. However, there are a number of differ-
ences. First, multisignatures are often viewed as a compression mechanism, com-
pressing multiple signatures into one, not a threshold mechanism. The threshold
is often left implicit. An ATS imposes an explicit threshold used by the veri-
fier to decide if a signature is valid. Second, the syntax of an ATS allows for
centralized key generation or an interactive distributed key generation protocol
(DKG). Multisignatures often only allow for local key generation where every
signer generates its key share by itself (however, there are some exceptions [12]).
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Traditionally, threshold signatures come in two flavors: fully private (called
PTS) where a signature reveals nothing about the threshold or the signing quo-
rum, or fully accountable (called ATS), as in this paper. A recent proposal called
TAPS [14] provides both properties: it is fully private to the public, but fully
accountable to an authority that holds a secret tracing key.

2 Accountable Threshold Signatures with Proactive
Refresh

In this section we present our definitions for ATS schemes with proactive refresh
(ATS-PR). We start by providing the syntactic additions for such schemes (when
compared to standard ATS schemes), then define the correctness properties that
should be satisfied by them, and finally, we present new security notions. To
simplify the presentation, we focus on non-interactive schemes, and formally
consider interactive schemes in the full version.

2.1 Syntax and Correctness

The key-update procedure. An ATS-PR scheme is an ATS scheme that is
additionally equipped with a key-update procedure, whose role is to refresh the
signers’ secret keys without modifying the public key in any way. We can envision
the key-update procedure as dividing time into epochs. An epoch starts once one
execution of the key-update procedure ends (or, for the first epoch right after
the invocation key generation algorithm), and ends when the next execution of
the key-update procedure ends.
Formally, the key-update procedure is a pair Update = (Update0,Update1) of
algorithms:

– Update0 is a randomized algorithm that takes in a secret key skei of signer
i in epoch e and the public key pk, and outputs a vector (δei,1, ...., δ

e
i,n) of

update messages. Each signer i sends δei,j to the jth signer, for all j ̸= i.
– Update1 is a deterministic algorithm that takes in a secret key skei and n

update messages δe1,i, . . . , δ
e
n,i. It outputs an updated secret key ske+1

i for
epoch e+ 1 for signer i.

For succinctness, we may write (ske+1
1 , . . . , ske+1

n )←$ Update(pk, ske1, . . . , sk
e
n) as

a shorthand for the random process of first invoking Update0(sk
e
i , pk) for every

i ∈ [n] to randomly sample n2 update messages {δi,j}i,j∈[n]; and then running
Update1(sk

e
i , (δ

e
1,i, . . . , δn,i)) to obtain ske+1

i for every i ∈ [n].
Correctness. Informally, the basic correctness requirement for ATS-PR schemes
is that Vf should accept honestly-generated signatures in all epochs.

Definition 2.1 (correctness). We say that an ATS-PR scheme PRATS =
(KGen,Sign,Combine,Vf,Trace,Update) is correct if for all public parameters
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pp, all messages m in the associated message space Mpp, all positive integers
n, t and e such that t ≤ n, and all subsets J ⊆ [n] of size at least t, it holds that

Pr
[
Vf(pk,m,Combine(pkc, {Sign(skej ,m)}j∈J )) = 1

]
= 1,

where the probability is over the random variables (pk, pkc, sk11, . . . , sk
1
n)←$ KGen(pp, n, t),

(ski+1
1 , . . . , ski+1

n )←$ Update(pk, ski1, . . . , sk
i
n) for i = 1, . . . , e−1, and the random

coins of Sign.

In addition to the traditional correctness property, an ATS-PR scheme should
also provide trace correctness. That is, on input a public-key pk, a message m,
and a signature σ, the tracing algorithm Trace should output a subset of the set
of keys used to generate σ. This should hold irrespective of the epoch in which
σ was generated.

Definition 2.2 (trace correctness). We say that an ATS-PR scheme PRATS =
(KGen,Sign,Combine,Vf,Trace,Update) satisfies trace correctness if for all
public parameters pp, all messages m in the associated message space Mpp, all
positive integers n, t and e such that t ≤ n, and all subsets J ⊆ [n] of size at
least t, it holds that

Pr
[
Trace(pk,m,Combine(pkc, {Sign(skej ,m)}j∈J )) ⊆ J

]
= 1,

where the probability is over the random variables (pk, pkc, sk11, . . . , sk
1
n) ←$

KGen(pp, n, t), and (ski+1
1 , . . . , ski+1

n )←$ Update(pk, ski1, . . . , sk
i
n) for i = 1, . . . , e−

1, and the random coins of Sign.

2.2 Security Notions for ATS-PR Schemes

We now turn to present our notions of security for ATS-PR schemes. We start
with a brief overview of the security notions and then provide formal definitions.

An ATS-PR scheme should satisfy two security requirements, unforgeability
and accountability, which extend the traditional security notions of ATS schemes
to the setting of proactive refreshes.
Unforgeability. The traditional unforgeability requirement for threshold sig-
natures asserts that an adversary cannot produce a valid signature on a message
m without observing either the secret key or a signature share on m of at least t
different signers. In the proactive refresh setting, we require that this holds per
epoch. That is, the adversary should not be able to produce a signature on a
message m, unless there is a specific epoch in which it observed the secret keys
or signature shares on m of at least t signers. Note that this means that the
adversary is allowed to observe t or more secret keys or signature shares on m
across epochs, and potentially even observe the secret keys of all signers at dif-
ferent points in time. However, in each specific epoch, the total number of secret
keys and signature shares on m that the adversary observes should be strictly
less than t. Following [5], we consider two flavors of this unforgeability definition,
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denoted uf-0 and uf-1, depending on whether or not the adversary is allowed to
observe signature shares on the message m∗ for which it forges a signature. We
present constructions satisfying both notions with different trade-offs.

Accountability. The accountability property of ATS schemes states that an
adversary should not be able to produce a valid signature on a message m on
behalf of a subset J of signers without observing the secret key or signature
share on m of all the signers in J . In the proactive refresh setting we present
a strong accountability definition that requires that this restriction on the ad-
versary should only hold in each epoch (thus allowing them to observe secret
keys/signature shares on m of all signers in J across different epochs). We also
consider a milder accountability definition, which requires that for some signer
j ∈ J , the adversary never observes j’s secret key or a signature share of j on
m. Looking ahead, we will present different constructions of ATS-PR schemes
satisfying the two notions. In the full version, we explore the differences between
these two notions.

Note that even under our strong accountability definition, if the adversary
learns all the secret keys (or signature shares on m) of J in the same epoch, say
epoch 1, then they can forever produce signatures on m, even in future epochs.
This is inherent, since we want the public verification key to remain the same
over time, rendering the verification algorithm oblivious to the epoch in which
the message was signed.

Game-based security definitions. We use security games to define the above
security notions for ATS-PR schemes, following the framework of Bellare and
Rogaway [8]. A game G consists of an adversary A interacting with the chal-
lenger. The game is specified by a main procedure and possibly additional oracle
procedures, which describe the manner in which the challenger replies to oracle
queries issued by the adversary. We denote by G(A) the output of G when ex-
ecuted with an adversary A. This G(A) is a random variable defined over the
randomness of both A and the random choices of the game’s main procedure
and oracles.

For an ATS-PR scheme PRATS and public parameters pp, the above-described
requirements are captured by the security games defined in Figure 1. All games
are defined similarly, and the only difference between them is the winning condi-
tion for the adversary (i.e., the condition that results in the game outputting 1).
In all games, the adversary first specifies the number n of overall signers, the
threshold t, and the number E of epochs. This is followed by challenger sampling
keys for all E epochs using the KGen and Update procedures of PRATS. The ad-
versary then interacts with the challenger using two types of queries: Secret-key
queries and signature queries. A secret-key query (e, i) reveals to the adversary
the secret key of signer i in epoch e. A signature query (m, e, i) provides the ad-
versary with an honestly-generated signature share on m with respect to signer
i’s secret key in epoch e. Finally, in all games the adversary should produce a
valid forgery; that is, a message m∗ and a signature σ∗ that passes verification.
Each game has additional restrictions on the adversary in light of our informal
discussion above. Games Guf-0

PRATS[pp] and Guf-1
PRATS[pp] capture two notions of un-
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forgeability, whereas games Gacc-0
PRATS[pp] and Gacc-1

PRATS[pp] capture two notions of
accountability. For b, b′ ∈ {0, 1}, we also define the game Guf-b∧acc-b′

PRATS[pp] , that cap-
tures schemes that satisfy both unforgeability and accountability. This will help
us state and prove our theorem statements more succinctly.

Games Guf-b
PRATS[pp],G

acc-b′
PRATS[pp],G

uf-b∧acc-b′
PRATS[pp]

1 : flaguf-0, flaguf-1, flagacc-0, flagacc-1 ← 0

2 : (st, n, t, E)← A(pp)

3 : (pk, pkc, sk11, . . . , sk
1
n)←$ KGen(pp, n, t)

4 : for e = {2, . . . , E} do

5 : (ske1, . . . , sk
e
n)←$ Update(pk, ske−1

1 , . . . , ske−1
n )

6 : (m∗, σ∗)←$AskO(·,·),SignO(·,·,·)(st, pk, pkc)

7 : if Vf(pk,m∗, σ∗) = 0 then

8 : return 0

9 : if ∀e ∈ [E], |Qsk
e | < t ∧ |Qsig

e (m∗)| = 0 then flaguf-0 ← 1

10 : if ∀e ∈ [E], |Qsk
e ∪Qsig

e (m∗)| < t then flaguf-1 ← 1

11 : if Trace(pk,m∗, σ∗) ̸⊆ ∪e∈[E]

(
Qsk

e ∪Qsig
e (m∗)

)
then flagacc-0 ← 1

12 : if ∀e ∈ [E],Trace(pk,m∗, σ∗) ̸⊆ Qsk
e ∪Qsig

e (m∗) then flagacc-1 ← 1

13 : Only game Guf-b
PRATS[pp] : return flaguf-b

14 : Only game Gacc-b
PRATS[pp] : return flagacc-b

15 : Only game Guf-b∧acc-b′
PRATS[pp] : return flaguf-b ∨ flagacc-b′

Oracle skO(e, i)

1 : Qsk
e ← Qsk

e ∪ {i}
2 : return skei

Oracle SignO(m, e, i)

1 : σi ← Sign(skei ,m)

2 : Qsig
e (m)← Qsig

e (m) ∪ {i}
3 : return σi

Fig. 1. The security games Guf-b
PRATS[pp],G

acc-b′
PRATS[pp],G

uf-b∧acc-b′
PRATS[pp] for b, b′ ∈ {0, 1} for an

ATS-PR scheme PRATS = (KGen,Sign,Combine,Vf,Trace,Update) with public param-
eters pp. For a set X and an element x, we let X ← X ∪ {x} be a shorthand for the
following operation: If X was previously defined, then set X ← X ∪ {x}; if X is still
undefined, then set X = {x}.

Three remarks regarding the games in Figure 1 are in order:

– By convention, we assume that that ⊥ ̸⊆ Q for any set Q. Hence, if the
adversary successfully outputs a valid signature σ∗ on a message m∗ such
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that Trace(pk,m∗, σ∗) = ⊥, then the adversary breaks even our weak ac-
countability notion (that is, wins the acc-0 security game).

– If we add the syntactic requirement that Trace never outputs⊥ on a signature
that passes verification, then acc-1 security implies uf-1 security. This is
because under this requirement, Trace always outputs a subset J of size at
least t on valid signatures. If in each epoch the adversary corrupted at most
t−1 signers, then in each epoch there must be at least one signer in J which
is uncorrupted by the adversary.

– For simplicity of presentation, we start with a definition in which the chal-
lenger samples the keys for all epochs at the beginning of the games. The
adversary cannot influence the key updates and receives no additional infor-
mation about the key updates other than what is revealed by the answers
to its secret key queries and signing queries. In the full version, we consider
stronger security notions, in which the adversary can corrupt signers (either
semi-honestly or maliciously) during the key update protocol as well.

Definition 2.3 below defines the advantage of an adversary A in the eight
games defined in Figure 1 as the probability that the games output 1 when
executed with A.

Definition 2.3. Let PRATS = (KGen,Sign,Combine,Vf,Trace,Update) be an
ATS-PR scheme with public parameters pp and let prop ∈ {uf-b, acc-b,uf-b ∧
acc-b′}b,b′∈{0,1}. The advantage of an adversary A in Gprop

PRATS[pp] is defined as

AdvpropPRATS[pp](A)
def
= Pr

[
Gprop

PRATS[pp](A) = 1
]
.

Threshold signatures without accountability or proactive refresh. In
subsequent sections we will consider threshold signature (TS) schemes with
proactive refresh but without accountability (i.e., without a Trace algorithm).
These can be treated as a specific case of ATS-PR schemes in which the Trace
algorithm is trivial (returns ⊥ on all inputs). As such, games Guf-0

PRATS[pp] and
Guf-1

PRATS[pp] and Definition 2.3 readily captures the unforgeability property of
such schemes. In addition, we will consider ATS schemes without proactive re-
fresh (i.e., no Update procedure). These can also be treated as a special case
of ATS-PR schemes in which the number of epochs is fixed at 1. The games
defined in Figure 1 together with Definition 2.3 define the unforgeability and
accountability of such schemes by having the game fix the number of epochs E
to 1 (instead of receiving it from A).
Semi-adaptive adversaries. The security games as defined in Figure 1 allow
for fully-adaptive adversaries, in the sense that they do not pose any restrictions
on the order in which the adversary decides on its oracle queries. Proving secu-
rity against such adversaries is known to be a challenging task, already for non-
accountable threshold signature schemes [33]. Since the problem of fully-adaptive
adversaries is not at the focus of this work, we also consider semi-adaptive adver-
saries. For every epoch e, such adversaries are restricted to issuing all secret-key
queries for that epoch before issuing their signature queries for this epoch. This
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is captured by modifying the security games as follows. The game will maintain
a set E which will include all epochs for which a signature query has been issued
by the adversary. On input (e, i), the oracle skO will first check if e is in E . If
so, it will ignore the query, returning ⊥. Otherwise, it will continue as defined
in Figure 1. This ensures that at every epoch e the adversary must issue all of
its key queries for epoch e before issuing a signature query in epoch e.

For a ATS-PR scheme PRATS with public parameters pp, and for a security
property prop ∈ {uf-b, acc-b, uf-b ∧ acc-b′}b,b′∈{0,1}, denote by Gsa-prop

PRATS[pp] the
semi-adaptive security game obtained from Gprop

PRATS[pp] as described above. The
advantage of an adversary in these games is defined similarly to the adversarial
advantage in the fully-adaptive security games.

Definition 2.4. Let PRATS = (KGen,Sign,Combine,Vf,Trace,Update) be an
ATS-PR scheme with public parameters pp and let prop ∈ {uf-b, acc-b,uf-b ∧
acc-b′}b,b′∈{0,1}. The advantage of an adversary A in Gsa-prop

PRATS[pp] is defined as

Advsa-propPRATS[pp](A)
def
= Pr

[
Gsa-prop

PRATS[pp](A) = 1
]
.

Our combinatorial and two-tier constructions will assume a (non-accountable)
TS scheme with proactive refresh as a building block. In terms of the adaptive-
ness of the adversary, our constructions will inherit the security guarantees of the
assumed TS scheme. Hence, in these sections we will not address the question of
adaptivity directly. In the full version, we present direct constructions of ATS-PR
schemes from BLS and Schnorr, and prove them secure against semi-adaptive
adversaries (we will remind the reader of this fact in these sections). We leave
the task of extending these constructions to handle fully-adaptive adversaries as
an interesting open question for future work.
Extending the definitions to the random oracle model. All of the syntac-
tic and security definitions above extend to the random oracle model by granting
all algorithms, including the adversary A, oracle access to a function H chosen
uniformly at random from a family H of functions. In the correctness and se-
curity definitions (Definition 2.3), all probabilities are then also taken over the
choice of H.

3 An Efficient Construction with Strong Security
Guarantees

In this section, we present a generic two-tier approach for obtaining ATS-PR
schemes efficiently and with strong security guarantees: the construction satisfies
the stronger acc-1 accountability notion. The ATS-PR scheme makes use of two
basic schemes: An n-out-of-n TS-PR scheme (without accountability) and a t-
out-of-n ATS scheme (without proactive refresh). The idea is to set the TS-PR
public key as the public key of the new scheme. To refresh the secret keys of
the new scheme, we refresh the secret keys of the TS-PR scheme and generate
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fresh epoch-specific keys for the ATS schemes. The epoch-specific ATS keys are
then used to sign messages. To enforce consistency, in each update the new ATS
public key is signed using the n-out-of-n TS-PR scheme. The epoch-specific ATS
public key and the signature on it are then appended to signatures issued using
the epoch-specific ATS signing keys.

Although this basic idea might seem simple at first blush, it is unclear al-
together that it can be instantiated efficiently. In fact, instantiating it using
existing ATS schemes will result in an inefficient ATS-PR scheme. Making it
efficient requires coming up with an entirely new ATS scheme that fits surpris-
ingly well with our two-tier approach. We discuss the reasons for this later in
this section, and we present our new ATS scheme in Appendix 4.

We now formally present our generic ATS-PR scheme. The construction relies
on the following two building blocks:

1. A threshold signature scheme with proactive refresh PRTS = (PRTS.KGen,
PRTS.Sign,PRTS.Combine,PRTS.Vf,PRTS.Update).1

2. An ATS scheme ATS = (ATS.KGen,ATS.Sign,ATS.Combine,ATS.Vf,ATS.Trace).
We assume that ATS is equipped with a distributed key generation protocol
ΠATS.KGen enabling signers to generate the keys for the scheme in a dis-
tributed manner.

When presenting our ATS scheme with proactive refresh we use the follow-
ing notation. We write σ ←$ PRTS.Sign((sk1, . . . , skn), pkc,m) to denote the
process of simulating the execution of the (potentially interactive) signing pro-
tocol PRTS.Sign, where the i-th signer runs on local input (ski,m) and σ is the
result of applying PRTS.Combine onto the local outputs of the protocol with key
pkc. When presenting the signing procedure, we do so in a general language that
also captures interactive protocols. In particular, we also provide the (potentially
interactive) Sign algorithm with the subset J of signers as input (we refer the
reader to the full version for a formal definition of interactive ATS-PR schemes).

Our ATS-PR scheme, called PRATS, is then defined as follows.2

PRATS: A generic ATS scheme with proactive refresh (built from
PRTS and ATS)

PRATS.KGen(pp, n, t):

1. Sample
(PRTS.pk,PRTS.pkc, (PRTS.sk1, . . . ,PRTS.skn))←$ PRTS.KGen(pp, n, n).

2. Sample (ATS.pk,ATS.pkc, (ATS.sk1, . . . ,ATS.skn))←$ ATS.KGen(pp, n, t).
3. Compute σpk ←$ PRTS.Sign((PRTS.sk1, . . . ,PRTS.skn),PRTS.pkc,ATS.pk).
4. For i = 1, . . . , n set ski ← (PRTS.ski,ATS.ski,ATS.pk, σpk).

1 We only need PRTS to support n-out-of-n signing, which may be easier to instantiate
than general threshold signature schemes.

2 Though the underlying PRTS and ATS scheme might be defined relative to a random
oracle, we abstract this fact away for simplicity of presentation. The proof of security
would remain essentially unchanged without this simplification.
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5. Output (pk = (n, t,PRTS.pk), pkc = ATS.pkc, (sk1, . . . , skn)).

PRATS.Sign(ski,m,J ):

1. Parse ski as (PRTS.ski,ATS.ski,ATS.pk, σpk).
2. Invoke ATS.Sign(ATS.ski,m,J ) and let sm denote the output of the protocol.
3. Output si = (J ,ATS.pk, σpk, sm).

PRATS.Combine(pkc, (si1 , . . . , siℓ)):

1. Parse each si as (Ji,ATS.pki, σpk,i, sm,i).
2. Let (J ,ATS.pk, σpk)← (Ji1 ,ATS.pki1 , σpk,i1).

If for some j ∈ [ℓ] it holds that (J ,ATS.pk, σpk) ̸= (Jij ,ATS.pkij , σpk,ij ),
output ⊥.

3. Invoke σm ← ATS.Combine(pkc, sm,i1 , . . . , sm,iℓ).
4. Output σ = (ATS.pk, σpk, σm).

PRATS.Vf(pk,m, σ):

1. Parse pk as (n, t,PRTS.pk) and σ as (ATS.pk, σpk, σm).
2. Output 1 if PRTS.Vf(PRTS.pk,ATS.pk, σpk) and ATS.Vf(ATS.pk,m, σm).

Otherwise, output 0.

PRATS.Trace(pk,m, σ):

1. Parse σ as (ATS.pk, σpk, σm).
2. Verify that PRTS.Vf(PRTS.pk,ATS.pk, σpk) = 1 and otherwise, output ⊥.
3. Output J = ATS.Trace(ATS.pk,m, σm).

PRATS.Update(ski, pk):

1. Parse ski as (PRTS.ski,ATS.ski,ATS.pk, σpk) and pk as (n, t,PRTS.pk).
2. Run the protocol PRTS.Update with signer i running on local input (PRTS.ski,

PRTS.pk) and let PRTS.sk′i be the output of signer i.
3. Invoke ΠATS.KGen(n, t) and let (ATS.pk,ATS.sk′i) denote the output of signer i.
4. Invoke PRTS.Sign(PRTS.pk.PRTS.sk′i,ATS.pk) and let σ′

pk denote the output
of the protocol.

5. Output sk′i = (PRTS.sk′i,ATS.sk
′
i,ATS.pk

′, σ′
pk).

On the efficiency of the scheme. The public key of PRATS consists solely
of the public key of the non-accountable scheme PRTS (in addition to n and
t), for which we instantiations with short public keys are known (the reader is
referred to Section 1 and the references therein). Two main efficiency measures
that depend on ATS are:

– Length of signatures, which consist of a public key of ATS, an ATS signature,
and a PRTS signature. Known PRTS do enjoy short signatures.

– The complexity of updates, which is dominated by (1) The key refresh of
PRTS; (2) the execution of the distributed key generation protocol ΠATS.KGen

to produce new ATS keys; and (3) invoking the signing algorithm of PRTS
to collectively sign the new ATS keys. For items (1) and (3), existing PRTS
schemes have efficient key updates and signing protocols.
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In light of the above discussion, what is missing is an ATS scheme that si-
multaneously enjoys (1) a short public key; and (2) an efficient distributed key
generation protocol. Although ATS schemes with short public keys are known
(see for example [7]), their key generation procedures rely on a trapdoor, and
hence do not admit efficient distributed analogs. To fill in this gap, in Section 4
we present a new construction of an ATS with short public keys and an efficient
key distribution protocol.
Security. Theorem 3.1 below reduces the security of PRATS to that of PRTS
and ATS. For concreteness, in the statement of the theorem and its proof we
assume that PRTS and ATS satisfy uf-1 security. If either of them only satisfies
uf-0 then essentially the same proof shows that PRATS satisfies uf-0 security.

Theorem 3.1. For any adversary A there exist adversaries B1 and B2 such that
for every set pp of public parameters it holds that

Advuf-1∧acc-1
PRATS[pp] (A) ≤ E · Advuf-1∧acc-1

ATS[pp] (B1) + Advuf-1
PRTS[pp](B2),

where E is a bound on the number of epochs requested by A in Guf-1∧acc-1
PRATS[pp] .

The proof of Theorem 3.1 is presented in the full version.

4 An ATS with Short Public Key and Efficient DKG

In this section we present a new ATS construction with a short public key and
an efficient distributed key generation protocol. In conjunction with our generic
construction from Appendix 3, this yields a concretely-efficient ATS-PR con-
struction.

Our scheme relies on the strong RSA assumption. Previous constructions of
ATS schemes from RSA-like assumptions in hidden-order groups (e.g., [7]) re-
quire knowledge of the group’s order to compute parties’ secret keys. Hence, they
inherently require either trusted key generation or a heavy MPC for distributed
key generation. Additionally, they can only be instantiated in groups that admit
a trapdoor, like RSA groups or subgroups thereof, and cannot be instantiated
in trapdoorless groups like class groups imaginary quadratic fields.
Our construction. To address the aforesaid issues, we adopt a different ap-
proach than previous constructions and draw inspiration from cryptographic
accumulators (see [19] as well as [9, 11] and the many references therein). In a
nutshell, we associate different keys with different roots of the same group ele-
ment. That is, the public key consists of one group element Y , and the secret
key of signer i is Y 1/ei for some exponent ei which is deterministically derived
from the index i. We carefully generalize the GQ protocol [26] to allow a sub-
set J of signers to collectively prove knowledge of the

(∏
j∈J ej

)
-th root of Y ,

yielding an efficient ATS scheme via the Fiat-Shamir transform [22]. Moreover,
we present an efficient 1-round (i.e., non-interactive) distributed key generation
protocol for this scheme.
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In detail, our construction is parameterized by a group G in which the strong
RSA problem is conjectured to be hard. Possible instantiations include the group
Z∗
N relative to a bi-prime modulus N , and class groups of imaginary quadratic

fields. For each security parameter λ (implied by the description of the group G)
and integer n = poly(λ), we assume an efficiently-computable injective mapping
from [n] to primes greater than 2λ, and we denote by ei the prime corresponding
to i ∈ [n]. The scheme makes use of two hash functions, treated as random
oracles in the security proof. The first, Hcom maps pairs of subsets of signers and
group elements to λ-bit strings. The second, Hchal, maps 4-tuples consisting of a
message, a group element, a subset of signers, and an additional group element,
to exponents.

RSAATS[G]: An RSA-based ATS scheme

KGen(G, n, t):

1. For i = 1, . . . , n: Sample Xi ←$ G.
2. Compute X ←

∏n
i=1 Xi and Y ← X

∏n
i=1 ei .

3. For each i ∈ [n], set ski ← X
∏

j∈[n]\{i} ej (so that skeii = Y ).
4. Output (pk = (n, t, Y ), pkc = ⊥, (sk1, . . . , skn)).

Sign(ski, pk,J ,m):

1. First Round:
(a) Sample Zi ←$ G, and compute Ri ← Z

∏
j∈J ej

i .
(b) Compute ci ← Hcom(J , Ri).
(c) Send ci to each signer j ∈ J \ {i}.

2. Second Round:
(a) Upon receiving a message cj from each j ∈ J \ {i}, send Ri to all j ∈
J \ {i}.

(b) For each j ∈ J \ {i}: Upon receiving Rj from signer j, verify that cj =
Hcom(J , Rj). If not, abort the execution of the protocol.

(c) Set R←
∏

j∈J Rj .
3. Third Round:

(a) Set h← Hchal(m, pk,J , R).
(b) Compute Si ← skhi · Zi.
(c) Output (h, Si).

Combine(pkc, (σi1 , . . . , σik )):

1. Parse each σij as (hj , Sj) and set h← h1. If hj ̸= h for a j ∈ [k], output ⊥.
2. Let J = {i1, . . . , ik}, and compute S ←

∏
j∈[J ] Sj .

3. Output σ = (J , h, S).

Vf(pk,m, σ):

1. Parse pk as (n, t, Y ) and σ as (J , h, S).
2. Compute R← S

∏
i∈J ei/Y h·

∑
i∈J

∏
j∈J\{i} ej .

3. Compute h′ ← Hchal(m, pk,J , R).
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4. Output 1 if h = h′ and |J | ≥ t. Otherewise, output 0.

Trace(pk,m, σ):

1. Parse σ as (J , h, S).
2. Output J .

Correctness. Observe that for an honestly generated signature (J , h, S) it holds
that

S
∏

i∈J ei =
∏
j∈J

(
S
∏

i∈J ei
j

)
=

∏
j∈J

((
skhj · Zj

)∏
i∈J ei

)
=

∏
j∈J

(
sk

h·
∏

i∈J ei
j ·Rj

)
=

∏
j∈J

(
Y h·

∏
i∈J\{j} ei

)
·R.

Rearranging, this implies that

R =
S
∏

i∈J ei

Y h·
∑

i∈J
∏

j∈J\{i} ej
,

and the verification goes through.
Distributed key generation. The public and secret keys of RSAATS can be
generated via a simple distributed protocol. Recall that this is needed to instan-
tiate ATS in the generic construction from Section 3. Concretely, this is done by
the following steps:

1. Each signer i ∈ [n] samples a uniformly random group element Xi ←$ G,
computes Yi ← Xei

i , and sends Yi to all other signers.
2. Upon receiving Y1, . . . , Yn from the other signers, each signer sets the public

key as pk←
∏

i∈[n] Y
∏

j∈[n]\{i} ej
i , and its secret key as

ski ← X
∏

j∈[n]\{i} ej
i ·

∏
k∈[n]\{i}

Y
∏

j∈[n]\{k,i} ej

k ∈ G.

Observe that if we denote X =
∏

j∈[n] Xj , then pk = X
∏

j∈[n] ej and ski =

X
∏

j∈[n]\{i} ej . Hence, ski is indeed the ei-th root of pk for each i. Looking ahead,
our security reduction for RSAATS will internally simulate precisely this key
generation process, while planting a strong RSA challenge Y ∗ as one of the
Yi’s and simulating the role of all other signers. Hence, it will readily prove the
security of the scheme when the key generation algorithm KGen is replaced by
an honest execution of the above distributed key generation protocol.
Security. The security of RSAATS is proven based on the hardness of the strong
RSA problem, defined in Definition 4.1.

15



Definition 4.1. Let G be a group and let A be an algorithm. We define the
advantage of A in solving the strong RSA problem in G as

AdvsrsaG (A) def
=

[
Xe = Y ∧ e ̸∈ {−1, 1} :

Y ←$ G
(X, e)←$A(G, Y )

]
Theorem 4.2 below, whose proof can be found in the full version, reduces the

security of RSAATS to the hardness of the strong RSA problem.

Theorem 4.2. For any adversary A there exists an algorithm B such that

AdvsrsaG (B) ≥

(
Advuf-1∧acc-1

RSAATS[G](A)
)2

n2
max · (qsign + qchal)

−
q2sign + qsign · qcom + qsign · qchal + qsign

|G|

−
2q2com + 3qsign · qcom + q2sign

2λ
,

where nmax is a bound on the number of signers, and qsign, qchal, and qcom are
bounds on the number of queries issued by A to its signing oracle, to Hchal, and
to Hcom, respectively.

On the necessity of strong RSA. We stress that though the security state-
ment for our ATS scheme relies on the strong RSA assumption, our proof actually
reduces the security of the scheme to a somewhat milder assumption. Concretely,
the adversary that we construct in the reduction is restricted to computing the
eth root of a randomly sampled group element Y , where e has to be chosen from
a small set of pre-determined exponents {e1, . . . , en} (where n is the number of
signers). This should be contrasted with the strong RSA problem, in which the
adversary is free to choose e however it pleases.

5 Discussion and Extensions

In this section, we explore several extensions and directions for future work.
Corruptions during key updates. In our security games, the adversary is
oblivious to the key update process. It is reasonable to consider a strengthening in
which the adversary can observe, and even control, some key-related information
during key updates. We discuss this issue in detail in the full version.
Distributed and local key generation. Our definitions and constructions
are in a setting where key generation is carried out by a central key generation
algorithm. When the set of signers is known a-priori, this step can be replaced
with a distributed key-generation protocol. In our BLS- and Schnorr-based con-
structions, the (honestly-generated) secret keys are sampled independently of
each other. Hence, these constructions further support signers that (i) join at
any time, and (ii) locally generate their key material.

An interesting direction for future research is generalizing our security notions
to accommodate both of the above extensions, and adjusting our constructions to
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these settings. This will require employing a mechanism to defend against rogue
key attacks, in which the adversary maliciously chooses the keys of corrupted
parties based on what it knows about the keys of honest parties [13]. In the
simpler case where the identity of potential signers is known in advance, such
mechanisms can be incorporated in the distributed key generation protocol. In
the setting where keys are locally and non-interactively generated by the parties,
the signing protocol needs to be extended to disallow such attacks. For more
information on rogue key attacks and how to protect against them, see [36, 13,
10, 6, 12, 37] and the references therein.

In the full version, we outline a mechanism to securely allow local key gener-
ation in our BLS-based ATS-PR. This mechanism is based on the fact that all
the secret key shares in that scheme are chosen independently of one another.

Confirmation vs. tracing. In real-world settings it may be sufficient to use a
confirmation algorithm instead of a tracing algorithm. A confirmation algorithm
takes as input a rogue signature and a suspect quorum and outputs “yes” if the
suspect quorum is the one that generated the given signature. This can lead to
shorter accountable signatures because now it suffices to embed a commitment
to the signing quorum in the signature, rather than explicitly encode the signing
quorum in the signature.

Key updates with partial participation. Similarly to the standard notion
of proactive refresh in (non-accountable) threshold signatures, our definitions
and constructions assume that all parties are online during key updates. An
interesting open question is to construct ATS schemes with proactive refresh
in which key updates can be performed when some of the parties are offline.
Offline parties can then refresh their keys when they go back online. This task
was recently considered in the non-accountable setting [32].

However, the problem becomes much more technically involved when requir-
ing accountability. In non-accountable refreshable signatures, when an offline
signer goes back online, she can engage in a multiparty computation protocol
with t previously-online parties to learn her updated secret key. The reason is
that in such signature schemes, a quorum of t signers with up-to-date secret
keys can compute the up-to-date secret keys of all other n− t signers. This prov-
ably cannot be the case in the accountable setting (since otherwise, the t online
parties could frame the offline party). Interestingly, our two-tier scheme (Sec-
tion 3) seems to be the best-suited for an extension to this offline/online setting.
At the beginning of each epoch, we can generate keys for the underlying ATS
scheme exclusively for the parties who are currently online. Since the underlying
refreshable scheme does not need to be accountable, it can also be refreshed, as
discussed above. The issue that remains is how to sign the new ATS public key
using the refreshable scheme when not all parties are online. We leave resolving
this as an interesting open question.
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