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Abstract. The goal of this paper is to rigorously interrogate conven-
tional wisdom about centralization in block-building (due to, e.g., MEV
and private order flow) and the outsourcing of block-building by valida-
tors to specialists (i.e., proposer-builder separation):
1. Does heterogeneity in skills and knowledge across block producers

inevitably lead to centralization?
2. Does proposer-builder separation eliminate heterogeneity and pre-

serve decentralization among proposers?
This paper develops mathematical models and results that offer answers
to these questions:
1. In a game-theoretic model with endogenous staking, heterogeneous

block producer rewards, and staking costs, we quantify the extent
to which heterogeneous rewards lead to concentration in the equilib-
rium staking distribution.

2. In a stochastic model in which heterogeneous block producers repeat-
edly reinvest rewards into staking, we quantify, as a function of the
block producer heterogeneity, the rate at which stake concentrates
on the most sophisticated block producers.

3. In a model with heterogeneous proposers and specialized builders, we
quantify, as a function of the competitiveness of the builder ecosys-
tem, the extent to which proposer-builder separation reduces the
heterogeneity in rewards across different proposers.

Our models and results take advantage of connections to contest design,
Pólya urn processes, and auction theory.

1 Introduction

Heterogeneity in rewards for block production. The economics of block produc-
tion for blockchain protocols has been growing increasingly complex over time,
with block producers earning revenue from an increasing number of different
sources. For example, when the Bitcoin and Ethereum protocols first launched,
there was minimal demand for blockspace and minimal activity at the appli-
cation layer. Publishing a block netted a fixed block reward for the miner or
validator that produced it but little other revenue. In this regime, the frequency
⋆ Author’s research at Columbia University supported in part by NSF awards CCF-
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of block production varies across block producers (according to the hashrate or
stake invested in the protocol), but the per-block reward does not.

In time, demand for blockspace exceeded supply, forcing users to pay non-
negligible transaction fees in exchange for transaction inclusion. Block produc-
ers were then incentivized to publish a block with the maximum-possible sum
of transaction fees. In this case, if all transactions are visible to all block pro-
ducers (e.g., in a public mempool), the value of a block production opportunity
would remain the same across potential block producers (namely, the block re-
ward plus the revenue-maximizing packing of pending transactions). If not all
block producers are aware of the same transactions, however—perhaps because
some transactions were submitted privately to one or a subset of potential block
producers—different block producers might be able to extract differing amounts
of revenue from the same block production opportunity.

The rise of decentralized finance (“DeFi”) and the consequent opportuni-
ties for value extraction from the application layer (“miner/maximal extractible
value,” or “MEV”) appears to have exacerbated the gap in revenue that can be
earned by the most and least capable block producers [26,14]. A block producer
with exclusive access to high-value DeFi transactions and a proprietary and com-
putationally intensive algorithm to assemble them into blocks will generally earn
much more from a block production opportunity than, for example, a hobbyist
running the protocol’s reference client on their home computer .

The centralizing forces of heterogeneity. Why does it matter? One concern is that
heterogeneity in information and skill across potential block producers could lead
to “centralization,” with the blockchain protocol ultimately run by only a very
small number of the most skilled block producers (perhaps operated by some of
the world’s largest financial institutions). For example, Buterin [7] writes: “Block
production is likely to become a specialized market.” One possible intuition for
this prediction is economic: participating in a protocol carries a cost (e.g., in a
proof-of-stake protocol, the opportunity cost of staked capital and/or the cost
of operating one or more validators) and perhaps only those with the highest
return-on-investment will find it profitable. A different intuition stems from long-
run dynamics: the block producers that earn the highest rewards will be in a
position to increase their control over the protocol (e.g., by reinvesting rewards
as additional stake) until none of the other block producers matter. In any case,
much of the motivation behind the design of permissionless blockchain protocols
like Bitcoin and Ethereum is exactly to avoid this type of centralization.

Confining heterogeneity to block-building. How could one encourage a large set
of diverse participants to contribute to the operation of a blockchain protocol,
despite what would seem to be strong forces pushing toward centralization? One
widely-discussed idea in the Ethereum ecosystem is “proposer-builder separa-
tion (PBS)” [8], in which the role of assembling a (presumably high-revenue)
block of transactions is split out from the role of actually participating in the
blockchain protocol (validating and proposing blocks, voting on other proposed
blocks, etc.). The intuition is that block-building is the part of the block pro-
duction pipeline that benefits from specialization (private knowledge of transac-
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tions, proprietary block-building algorithms, etc.), with a relatively level playing
field for everything else (publishing blocks already assembled by builders, vot-
ing, etc.).3 Quoting Buterin [7] again, on the subject of PBS: “This ensures that
at least any centralization tendencies in block production don’t lead to a com-
pletely elite-captured and concentrated staking pool market dominating block
validation.”4

One possible implementation of this idea, which is roughly the implementa-
tion in Flashbots’s MEV-Boost [12], is for block-builders to submit bids along
with blocks. If a block from a builder is published by a proposer, the correspond-
ing bid is transferred from the builder to the proposer. (Presumably, the builder
extracts enough value from the block, via transaction fees and/or application-
layer value, to cover its bid to the proposer, perhaps plus a premium.) The hope,
then, is that builders are good enough at their jobs that no proposer would be
able to improve over the obvious strategy of publishing the block accompanied
by the highest bid. If all of the block proposers followed this strategy and always
knew about the full set of builder-submitted blocks, then the reward earned by
a block production opportunity would once again be independent of the selected
proposer. Ideally, restoring such homogeneity would allow for a large and diverse
set of proposers.

Goal of this paper. The motivation and objectives for proposer-builder separation
described above rest on plausible but largely unsubstantiated beliefs, the rigorous
interrogation of which is the goal of this paper.

1. Does heterogeneity in skills and knowledge across block producers inevitably
lead to centralization?
(a) Is it economic forces that lead to centralization? If so, to what extent?
(b) Do long-run dynamics lead to centralization? If so, how quickly?

2. To what extent does proposer-builder separation reduce heterogeneity and
preserve decentralization among proposers? How does the answer depend on
the competitiveness of the builder ecosystem?

1.1 Overview of Results

This paper develops mathematical models and results that offer answers to all
of the questions above:

1. Section 3 addresses question 1(a) through a game-theoretic model with en-
dogenous staking, heterogeneous block producer rewards, and staking costs.

3 In the language of [4], PBS can be interpreted as an approach to turn “active” block
producers (that care about the semantics of the transactions in a block) into “pas-
sive” proposers (that don’t). Block builders would then be regarded as the “active”
participants.

4 A separate concern with centralized block-building is censorship-resistance (i.e., pre-
venting the potentially small number of builders from systematically excluding cer-
tain types of transactions). This is obviously an important issue, but it is outside
the scope of this paper.
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Building on connections to Tullock contests, the main result (Theorem 2)
quantifies the extent to which heterogeneous rewards lead to concentration
in the equilibrium staking distribution.

2. Section 4 investigates question 1(b) using a stochastic process in which het-
erogeneous block producers repeatedly reinvest rewards into staking. Build-
ing on connections to Pólya urns and Yule processes, the main result (Theo-
rem 3) quantifies, as a function of the block producer heterogeneity, the rate
at which stake concentrates on the most sophisticated block producers.

3. Section 5 studies question 2 in a model with heterogeneous proposers and
specialized builders, with proposers optionally constructing their own blocks
on the side. Building on connections to auction theory, the main result (The-
orem 4) quantifies, as a function of the competitiveness of the builder ecosys-
tem, the extent to which PBS reduces the heterogeneity in rewards across
different proposers.

Our results clarify the extent to and the assumptions under which the conven-
tional wisdom around centralization in block-building and PBS is correct. For
example, our analysis in Section 3 shows that economic forces generally lead to
an oligopolistic equilibrium outcome rather than a naive “winner-take-all” sce-
nario. For another example, our analysis in Section 5 shows that conventional
intuition around PBS breaks down if the distribution of block values is suffi-
ciently heavy-tailed.

Our results also provide quantitative predictions that would be impossible
without concrete mathematical models. For example, our analysis in Section 3
suggests that if, say, there at least 10 block producers that are at least 90% as
good at extracting value as the most sophisticated block producer, then at equi-
librium no block producer will control more than roughly 17.5% of the stake. For
another example, our analysis in Section 4 suggests that even modest constant-
factor decreases in the performance gap between the best and second-best block
producers can greatly slow down the rate of stake concentration.

1.2 Related Work

Tullock contests. Outside the world of blockchains, considerable effort has gone
into understanding the equilibria of games in which strategic agents must invest
resources to compete for a fixed prize. This type of game, termed a Tullock Con-
test, was first studied by Tullock [5] for the case of homogeneous agents. That
model was then extended by Hillman and Riley [15] and Gradstein [13] for the
case with heterogeneous agents that faced different costs of investment. In a sepa-
rate but closely related line of work, Johari and Tskitlis [18] and Rougharden [23]
study equilibria in resource allocation games. Here there is a fixed amount of re-
source to be distributed and agents make bids for different shares. These models
have since been ported to blockchains in [2,9,1,6] to understand how much min-
ers invest in hardware and energy at equilibriun in proof of work blockchains. In
particular, Arnosti and Weinberg [2] and Alsabah and Capponi [1] demonstrate
that, at equilibirum, the market share of block production becomes centralized
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amongst the miners that can invest at the cheapest cost. One difference between
these works and our analysis in Section 3 is that they focus on heterogeneity in
cost of investment while keeping the reward fixed for all miners, while our model
has block producers that earn different rewards but with identical costs. A sec-
ond is our emphasis on parameterized definitions of and sufficient conditions for
decentralization (Definition 1 and Theorem 2).

Proof of stake. Moving to proof of stake protocols, there have been many works
investigating possible rich get richer phenomena, the worry being that block pro-
ducers who start with a large fraction of the stake will grow their advantage and
eventually control all of the stake. Work by Rosu and Saleh [22] shows that in a
model in which all block producers earn the same rewards, with these rewards
relatively small compared to the absolute amount of stake, the ratio of stake con-
trolled by different block producers follows a martingale, typically keeping them
at essentially the same ratio over the long run. Additional work by Huang et
al. [16] and Tang [25,24] reach similar conclusions in somewhat different models
of proof of stake protocols. Fanti et al. [11] introduce a notion of equitability that
quantifies whether or not block producers maintain the same share of stake over
time and they study how different reward functions impact this metric. In all of
these works, the reward earned by a block production opportunity is indepen-
dent of the block producer (i.e., there is no block producer heterogeneity, other
than their current stake amounts). Our work here shows that, by contrast, with
heterogeneous block producers, a rich get richer effect does indeed occur, with
the block producers capable of earning the highest rewards (per block production
opportunity) eventually controlling a dominant fraction of the total stake.

Pólya urns. Pólya urns are important for our analysis in Section 4 of the long run
behavior of the staking process. As noted in several earlier works (without BP
heterogeneity) [11,16,22,24,25], there is a strong resemblance between the Pólya
urn setup of repeatedly drawing a ball randomly from an urn and replacing that
ball with more balls of the same color and a process in which block producers
repeatedly reinvest all earned rewards into staking. Pólya urns were first formally
introduced by Eggenberger and Pólya in [10] and there is now a large literature
on the topic. Of particular interest to us is a technique of Athreya and Karlin [3]
for embedding a discrete Pólya scheme into a continuous Pólya process. Janson
[17] built on this work by using the continuous-time process to prove results
about the limiting distribution for a wide variety of Pólya urn models, including
models with color-specific replacement parameters that correspond to the non-
uniform reward rates of heterogeneous BPs in our model. Translated to our
model, one of Janson’s results implies that a block producer with a consistent
advantage in earning rewards over the other block producers will eventually, in
the limit, control all of the stake. Our analysis here builds on Janson’s result to
quantify exactly how quickly, as a function of the size of the BP’s advantage, we
can expect this concentration to occur.



6 M. Bahrani, P.Garimidi, and T. Roughgarden

2 The Basic Model

The focus of this work is on the centralizing effects of block producer heterogene-
ity. To isolate this issue, this section defines what is arguably a minimal model
that allows for its study.

We consider a finite set I = {1, 2, . . . , n} of block producers (BPs). Each
BP i ∈ I is characterized by a reward multipler µi ≥ 1; BPs with higher µi’s
earn more from producing a block than those with lower µi’s. Specifically, we
consider a block production opportunity (e.g., a slot in the Ethereum protocol)
with “base reward” equal to some value r > 0 and assume that, if the BP i
is the one selected to take advantage of this opportunity (e.g., by winning a
proof-of-stake lottery for that slot), then it earns µir from it. We do not model
any details of the source(s) of these rewards, which could include a block reward,
transaction fees (as computed by some transaction fee mechanism), and/or value
derived from the application layer (i.e., “MEV”). We assume that a BP is chosen
for a block production opportunity with probability proportional to the amount
of the blockchain’s native currency that it has staked at that time. Thus, the
expected reward earned by BP i for a given block production opportunity is

πi∑
j∈I πj

· µi · r,

where the πi’s denote the BPs’ current stakes. We can assume, without loss of
generality, that µ1 ≥ µ2 ≥ · · · ≥ µn = 1 (reindexing and redefining r, as neces-
sary). The largest multiplier µ1 can then be interpreted as one simple measure
of the “degree of BP heterogeneity.”

Asking “does BP heterogeneity lead to centralization?” can then be investi-
gated mathematically through questions of the form “is the staking distribution
ultimately dominated by the BPs with the largest µi’s?” Section 3 probes this
question game-theoretically, with the “ultimate staking distribution” referring to
the equilibrium stake distribution in a one-shot game with endogenous staking.
Section 4 studies the question from a dynamic (but non-strategic) perspective,
with the “ultimate staking distribution” corresponding to the long-run distribu-
tion of BPs’ stake following a long sequence of block production opportunities.
Discussion. In this paper, we take the µi’s as given and deliberately avoid mi-
crofounding the reason(s) for BP heterogeneity. Plausible reasons why one BP
might have a higher multiplier than another include:

1. One BP may know about more transactions than another (e.g., transactions
submitted privately to it rather than to the public mempool), and is therefore
in a position to earn higher transaction fees and/or additional value from
the application layer.

2. One BP may have a better block-building algorithm than another and is
therefore capable of constructing higher-reward blocks.

3. One BP may be better positioned to profit from the transactions in a given
block than another (e.g., depending on long or short positions held by the
BP on a centralized exchange for assets traded in those transactions).
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In the basic model considered here (and in Sections 3 and 4), we treat a
block producer as a single entity acting unilaterally. In practice, especially in
the Ethereum ecosystem, block production can involve “searchers” (who identify
opportunities for extraction from the application layer), “builders” (who assemble
such opportunities into a valid block), and “proposers” (who participate directly
in the blockchain protocol and make the final choice of the published block). One
interpretation of a block producer in our basic model is as a vertically integrated
searcher, builder, and proposer (e.g., as in the Ethereum ecosystem circa 2020).
Section 5 considers the ramifications of “proposer-builder separation,” the more
contemporary scenario in which proposers and builders (or more precisely, inte-
grated searcher-builders) are separate entities.

3 Economic Forces Toward Centralization

3.1 Competition Between Heterogeneous Block Producers

To investigate economic forces toward centralization, we next extend the ba-
sic model in Section 2 into a game of complete information in which utility-
maximizing BPs compete for rewards through their choice of stake amounts.
We assume that there is a fixed (per-unit) cost of staking c (e.g., due to the
opportunity cost of capital and/or the operating costs of running one or more
validators), and that BPs act to maximize expected rewards earned less costs
incurred. Thus, the strategy of a BP i is its choice of stake amount πi, and its
utility function is

Ui(πi;π−i) = µi · r · xi(πi;π−i)− c · πi,

where xi(πi;π−i) = πi/
∑

j∈I πj denotes i’s fraction of the overall stake. Ob-
serve that staking offers diminishing returns: for every non-zero nonnegative
vector π−i, the winning probability xi (and hence the utility function Ui) of
BP i is strictly concave in πi.

An equilibrium of this game is then a vector π̂ = (π̂1, . . . , π̂n) of staking
amounts such that every BP i chooses a best response to the strategies π̂−i of
the other BPs:

π̂i ∈ argmax
πi≥0

Ui(πi; π̂−i). (1)

Because of strict concavity, for every non-zero and nonnegative vector π−i, the
maximizer on the right-hand side of (1) is unique. The diminishing returns to
staking are the fundamental reason why the equilibrium will be more complex
than a simple “winner-take-all” outcome, with multiple BPs staking (different)
non-zero amounts.

One advantage of this formalism is that it connects directly to a well-studied
economic model known as a Tullock contest [5] and its generalization to hetero-
geneous preferences by Hillman and Riley [15]. For example, it is known that
there is always a unique equilibrium in this model. One way to see this fact is
through the following result, due to Johari and Tsitsiklis [18] in an equivalent
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model, which connects our model to the theory of “potential games” [21,23] by
characterizing equilibria as the maximizers of a strictly concave optimization
problem.

Precisely, call a vector x̂ = (x̂1, . . . , x̂n) an equilibrium allocation if it is
induced by some equilibrium staking vector (i.e., for some equilibrium π̂, x̂i =
xi(π̂i, π̂−i) for every i ∈ I). Then:

Proposition 1 (Characterizing Equilibria as Optima [18]) For every se-
quence µ1 ≥ µ2 ≥ · · · ≥ µn = 1 of reward multipliers, every base reward r, and
every cost parameter c, a vector x̂ is an equilibrium allocation if and only if it
is a solution to the following optimization problem:

max
∑
i∈I

µi ·
r

c
· xi ·

(
1− xi

2

)
(2)

subject to ∑
i∈I

xi = 1 (3)

xi ≥ 0 for all i ∈ I. (4)

The proof is mechanical (see [18] for details): the first-order conditions for the
best-response problems (1), when translated from staking vectors to allocation
vectors, match the first-order optimality conditions for the optimization prob-
lem (2)–(4). Because the optimization problem is strictly concave, these condi-
tions also characterize its (unique) global optimum. (This optimum exists be-
cause the optimization problem has a continuous objective function and a com-
pact feasible region.) We can therefore write x̂(µ, r, c) for the unique equilibrium
allocation with multipliers µ, base reward r, and cost parameter c. Uniqueness of
the equilibrium allocation x̂ also easily implies the uniqueness of the equilibrium
staking vector π̂.

With this setup, and identifying “centralization” with concentration of the
equilibrium staking distribution, we now have a concrete way to quantify the
extent to which heterogeneity across competing BPs leads to centralization: as
a function of the heterogeneity in the reward multiplier sequence (the µi’s), how
large are the largest components of the corresponding equilibrium allocation
vector (the x̂i’s)?

3.2 Quantifying the Largest Market Share

How much does heterogeneity matter? If all the µi’s are the same, we would
expect all the equilibrium allocations to also be the same (with each BP staking
a 1/n fraction of the total). If the µi’s are different, we might expect BPs with
higher µi’s to be more motivated to participate in staking and wind up with
larger equilibrium allocations (and indeed, this follows easily from Proposition 1).
But how big does the variance in the µi’s need to be before the first BP acquires,
at equilibrium, a concerning fraction of the overall stake?
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The following definition provides one parameterization of how much better
the best BP is at reward extraction than the rest.

Definition 1 ((γ, k)-competitive). A block producer set is (γ, k)-competitive
if µk+1 ≥ γ ·µ1, or, equivalently, if there are at least k block producers that have
a reward multiplier that is at least a γ fraction of the largest multiplier.

The main result in this section characterizes the largest-possible equilibrium
allocation of a BP, parameterized by γ and k.5 Recall that x̂(µ, r, c) denotes the
unique equilibrium allocation (i.e., market shares) guaranteed by Proposition 1.

Theorem 2 (Characterization of the Maximum Market Share). Fix a
base reward r and a staking cost c.

(a) For every γ ∈ [0, 1] and k ≥ 1, for every (γ, k)-competitive BP set with
multipliers µ1 ≥ µ2 ≥ · · · ≥ µn = 1,

x̂i(µ, r, c) ≤ 1− γ · k

k + γ

for every BP i ∈ I.
(b) For every γ ∈ [0, 1] and k ≥ 1, there exists a (γ, k)-competitive BP set with

multipliers µ1 ≥ µ2 ≥ · · · ≥ µn = 1 such that

x̂1(µ, r, c) = 1− γ · k

k + γ
.

For example, if γ = 1—and so there is a (k + 1)-way tie for the maximum
multiplier—no BP is responsible for more than a 1/(k + 1) fraction of the total
stake at equilibrium. If γ = 1

2 and k = 1, the BP most capable of reward
extraction could have as much as 67% of the overall stake at equilibrium; if γ = 1

2
and k is large, that BP might control as much as (slightly more than) 50% of
the stake. In general, the maximum equilibrium allocation is small if and only
if there are several BPs that are nearly as capable as the best BP at reward
extraction (e.g., 10 BPs with multipliers within 90% of the maximum would
guarantee a maximum market share of 17.5%); see also Figure 1. The bad news,
then, is that even a modest amount of heterogeneity across the highest-skill BPs
can lead to a worrying concentration of stake. The good news is that, if there
were some way to severely limit the variation in reward multipliers (the topic of
Section 5), then, as long as there are at least a handful of BPs, decentralization
would be approximately preserved.

We next turn to the proof of Theorem 2. We require the following mono-
tonicity lemma, which follows from basic properties of separable concave max-
imization problems (like the one in Proposition 1). The details are left to the
appendix.
5 For each k ∈ {1, 2, . . . , n−1}, there is some maximum γk for which a BP set (of size n)

is (γk, k)-competitive (namely, γk = µk+1/µ1). Theorem 2(a) applies to all n− 1 of
these choices for (γk, k), and in particular to the choice that minimizes the upper
bound 1− γ · k

k+γ
.
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Fig. 1. The maximum equilibrium market share of any BP with a BP set that is (γ, k)-
competitive in the sense of Definition 1, as characterized by Theorem 2. The horizontal
dotted line corresponds to a market share of 33%, which is a critical security threshold
for many proof-of-stake blockchain protocols.

Lemma 1 (First Monotonicity Lemma). For a BP set I, base reward r, and
cost parameter c, let µ and µ′ denote two nonnegative reward multiplier vectors
that are identical except that, for some j ∈ I, µ′

j > µj. Then, for every i ̸= j,
x̂i(µ

′, r, c) ≤ x̂i(µ, r, c).

With this lemma in hand, we can now prove Theorem 2.

Proof of Theorem 2: We begin with part (b). Fix r > 0, c > 0, γ ∈ [0, 1], and
k ≥ 1. Consider a set of k + 1 BPs for which µ1 = 1/γ and µ2 = µ3 = · · · =
µk+1 = 1; this set is (γ, k)-competitive. We proceed to guess and check the
equilibrium allocation or, equivalently, the optimal solution to (2)–(4). Set

x̂1 = 1− γ · k

k + γ

and
x̂i = γ · 1

k + γ

for each i = 2, 3, . . . , k + 1. This allocation is feasible (i.e., satisfies (3) and (4))
and satisfies the optimality conditions in (5) and (6) with λ = k/(k + γ). It is
therefore an equilibrium allocation vector, and the value of x̂1 is as claimed.6

6 The corresponding equilibrium staking distribution π̂ is proportional to the equilib-
rium allocation vector x̂, with the scaling factor set (as a function also of r and c)
so that the equilibrium conditions in (1) are satisfied.
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For part (a), consider an arbitrary (γ, k)-competitive set of n BPs, with
reward multipliers µ1 ≥ µ2 ≥ · · · ≥ µn = 1. Define alternative reward multi-
pliers µ′ as follows: µ′

1 = µ1, µ′
i = γ · µ1 for i = 2, 3, . . . , k + 1, and µ′

i = 0
for i = k + 1, k + 2, . . . , n. Because the given BP set is (γ, k)-competitive,
µ′
i ≤ µi for every i. The First Monotonicity Lemma (Lemma 1), applied once for

each i = 2, 3, . . . , n, implies that x̂1(µ, r, c) ≤ x̂1(µ
′, r, c). (That lemma holds for

arbitrary nonnegative reward multipliers and does not require that µ′
n = 1.) By

the proof of part (b), x̂1(µ
′, r, c) = 1−(γ ·k)/(k+γ). (Additional BPs with µi = 0

do not change the equilibrium allocation.) Thus x̂1(µ, r, c) ≤ 1− (γ · k)/(k+ γ),
as required. ■

4 Long-Run Forces Toward Centralization

4.1 The Staking Process

We next extend the basic model of Section 2 in an orthogonal direction, to inves-
tigate connections between BP heterogeneity and centralization from a different
angle. In contrast to the single-shot setup of Section 3, this section studies the
evolution over time of the stakes controlled by different BPs. We assume here
that BPs are non-strategic and always stake all of the native currency that they
possess (including reinvesting any earned rewards back into staking).7

Precisely, we again consider a set I of n BPs with reward multipliers µ1 ≥
µ2 ≥ · · · ≥ µn = 1 and a base reward r. In addition, each BP i has a posi-
tive initial stake, denoted πi,1 > 0. More generally, πi,t will denote the stake
controlled by BP i after t − 1 block production opportunities have passed. We
consider the following probabilistic process, which we call the staking process,
for t = 1, 2, . . . ,:

– For block production opportunity t, one BP is chosen with probability pro-
portional to the current BP stakes. That is, BP i is chosen with probability

xi,t =
πi,t∑
j∈I πj,t

.

– If BP i∗ is chosen for this opportunity, then the stakes evolve according to:

πi,t+1 =

{
πi,t + µi · r, if i = i∗

πi,t if i ̸= i∗.

Thinking of r as fixed throughout this section, the staking process is fully de-
scribed by the reward multiplier vector µ = (µ1, . . . , µn) and the initial stake
vector π = (π1,1, . . . , πn,1).8 We generally assume (without loss of generality)
7 Combining the strategic features of the model in Section 3 with the long-run dy-

namics studied in this section is an interesting direction for future research.
8 Extending the analysis of this section to time-varying rewards is an interesting and

challenging direction for future work.
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that the entries of µ are sorted in nonincreasing order; we make no assumptions
about π. One advantage of this setup is that it connects directly to the theory
of generalized Pólya urn models (e.g., [20]).

We will be interested in the long-run behavior of the staking process (as a
function of µ and π), and in particular whether it “centralizes” in the sense that
a single BP dominates the staking distribution:

Definition 2 (ϵ-Centralization). For a parameter ϵ > 0, the staking process
is ϵ-centralized at block t if, for some BP i,

xi,t ≥ 1− ϵ.

With this setup and notion of centralization, we now have another concrete way
to quantify the extent to which heterogeneity across BPs leads to centralization:
as a function of the heterogeneity in the reward multiplier sequence (the µi’s),
how quickly (if at all) does the staking process become ϵ-centralized?

It is natural to conjecture that, if µ1 > µ2 and t → ∞, the first BP should,
with probability 1, end up with all but a vanishingly small fraction of the overall
stake (no matter what the initial stake distribution is). (Intuitively, the rate of
increase in the first BP’s stake should outpace that of the others.) This conjec-
ture is in fact true, although the proof is not at all obvious (see Janson [17]).
Our concern here will be on the speed with which the staking distribution con-
centrates. The hope is that, provided there is not too much heterogeneity across
BPs (e.g., with µ2 close to µ1), stake concentrates slowly, perhaps even slowly
enough to not be a first-order concern. Such a quantitative analysis is necessary
to assess the potential benefits of any design aimed to reduce BP heterogene-
ity (and slow down centralization), such as the proposer-builder separation idea
described in Section 5.

4.2 Quantifying the Speed of Centralization

We are now primarily interested in defining quantitative lower and upper bounds
on how many blocks it takes for the staking process to become ϵ-centralized. For
ease of exposition we will refer to the sum of all the BPs’ stakes at block t, not
including BP 1, by π−1,t =

∑
j∈I,j ̸=1 πj,t. We omit the subscript on time when

referring to the starting stakes, writing π1 for π1,1 and π−1 for π−1,1.

Theorem 3 (Bounds on Number of Blocks for ϵ-Centralization). Let
β = max{µ1r

π1
, µ2r
π−1

} and ρ = π−1

π1
. Then for every ϵ > 0:

1. (Upper bound on time to centralization) For every

t >
3

2µ2r

(
π1

(
3ρ(1− ϵ)

ϵ

) µ1
µ1−µ2

+ π−1

(
3ρ(1− ϵ)

ϵ

) µ2
µ1−µ2

)
,

we have
Pr (x1,t < 1− ϵ) < 8β.
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2. (Lower bound on time to centralization) For every

t <
1

2µ1r

(
π1

(
ρ(1− ϵ)

3ϵ

) µ1
µ1−µn

+ π−1

(
ρ(1− ϵ)

3ϵ

) µn
µ1−µn

− 2(π1 + π−1)

)
,

we have
Pr (x1,t ≥ 1− ϵ) < 8β.

The proof of Theorem 3 can be found in the Appendix. Observe that the
parameter β that controls the probability bounds is small provided the rewards
earned by BPs are small relative to their initial stakes. We can see that the
dominating factor in the speed to ϵ-centralization is the difference between µ1

and µ2. Reducing this gap causes an exponential increase in the time it takes
for the process to ϵ-centralize. As a concrete example, suppose that BP 1 begins
with 10% of the stake and we consider the time required for it to control at least
33% of the stake. This corresponds to the parameter values ρ = 9 and ϵ = 2/3.
In this case, decreasing µ1−µ2 from 0.5 to 0.1 can increase the number of blocks
needed to ϵ-centralize by roughly five orders of magnitude. Echoing the economic
analysis in Section 3, the probabilistic analysis in this section underscores the
importance of mechanisms for eliminating large differences between the reward
multipliers of different BPs.

5 Proposer-Builder Separation and BP Heterogeneity

5.1 Idealized Proposer-Builder Separation

Sections 3 and 4 take very different paths to arrive at a similar conclusion: sig-
nificant BP heterogeneity leads to concentration of stake (at equilibrium with
endogenous staking, or in the long run with automatic reinvestment) and, con-
versely, decentralization can largely survive a small amount of BP heterogeneity.
But, in practice, why wouldn’t there be a large amount of BP heterogeneity? As
discussed in Section 1, such heterogeneity can easily arise from many sources,
such as exclusive access to certain transactions, proprietary block-building al-
gorithms, or differences in computing resources. In the context of Theorems 2
and 3, one might expect that the parameters 1/γ and µ1 − µ2 would, in reality,
be quite large.

As discussed in Section 1, proposer-builder separation (PBS) is one approach
to reducing the degree of BP heterogeneity. An extremely idealized version of
PBS, chosen to indicate the best-case scenario, works as follows:

– Every participant chooses exactly one of two roles: a builder or a proposer.
– Only proposers participate directly in the blockchain protocol as validators

(committing stake, proposing blocks, casting votes, etc.).
– For each block production opportunity, each builder sends a block (along

with a bid) to the proposer that has been chosen for that opportunity. (A
builder’s block should be materially independent of the identity of the pro-
poser.)
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– The block proposer proposes the block with the highest bid.
– The block proposal is accepted by the other validators and finalized.
– The winning builder pays its bid to the block proposer.

The key observation is that, under the above assumptions, there is no longer
any heterogeneity across proposers—the reward for a block production oppor-
tunity is the same (namely, the highest bid submitted by a builder), no matter
which proposer is chosen to take advantage of it. This case translates to γ = 1 in
Theorem 2 (with all proposers committing an equal fraction of stake at equilib-
rium) and µ1 = µn in Theorem 3 (with the staking distribution not necessarily
concentrating at all), and in these senses is consistent with sustainable decen-
tralization.9

There are, of course, many ways that reality could depart from this ideal-
ized scenario. Here, we stress-test the implicit assumption in PBS that there
is no overlap between the set of builders and the set of proposers. (For exam-
ple, perhaps a successful block-builder chooses to invest some of its profits into
operating a number of validators.) Specifically, we allow proposers to privately
engage in block-building on the side, in the hopes of constructing a block even
more profitable than the highest bid by one of the specialized builders. At the ex-
treme, if proposers are much better block-builders than the specialized builders,
proposer-builder separation achieves nothing and we should expect significant
proposer heterogeneity and consequent centralization. The hope, then, would be
that the builder ecosystem is sufficiently competitive that proposers can rarely
if ever profit from privately constructing their own blocks. We next develop a
simple model of a competitive builder ecosystem and formalize the extent to
which this hope is in fact correct.

5.2 The Equalizing Effects of Competing Builders

We focus on a fixed block production opportunity and consider a finite set Y
of k specialized builders. Each builder y ∈ Y is capable of building a block that
generates for it a nonnegative reward of ry. Variations in ry across builders y
could stem from different information, different block-building algorithms, differ-
ent choices of random seeds, and so on. We assume that the ry’s are independent
draws from a distribution DY —in this sense, the builders in Y are all equally
proficient on average (for example, because all the inferior builders have already
been competed away). The competitiveness of the builder ecosystem is then most
simply measured by its size, k.

There is a separate finite set I of proposers.10 One of these, say i, is chosen for
the block production opportunity under consideration. The proposer i accepts
blocks from builders (along with bids), and optionally also builds its own block.
9 There might still be heterogeneity across builders, potentially leading to centraliza-

tion within the builder set. Builder centralization also poses risks, such as censorship
and collusion, but a discussion of these is outside the scope of this paper.

10 For example, in the Ethereum ecosystem, the parameter k is generally thought of as
small (e.g., 5) while the size of I would be in the thousands.
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We assume that the proposer is capable of building a block that generates a
reward of ri for it, where ri is drawn from a distribution Di. We assume that
proposers follow what is then the obvious reward-maximizing strategy:

(S1) Accept blocks from builders; let B∗ denote the submitted block with the
highest bid (from the builder to the proposer), and denote this bid by b∗.

(S2) Privately construct a block B that would generate a reward of ri ∼ Di for i.
(S3) Propose either the block B∗ (if b∗ > ri) or B (otherwise), thereby earning a

reward of max{b∗, ri}.

Heterogeneity across proposers is captured in this model by the proposer-specific
distribution Di. Perhaps some proposers do not have the resources or inclination
for private block-building, and always accept the best block submitted by a
builder (so in effect, Di is a point mass at 0) while others privately compete with
the specialized builders. Or perhaps some proposers have access to a larger pool
of pending transactions than others. How much variation in expected reward is
there across proposers, and how does the answer depend on the competitiveness k
of the builder ecosystem?11

Some version of the following three assumptions is necessary to prove bounds
on the degree of heterogeneity of proposer rewards in this model:

(A1) By publishing a builder-proposed block, the proposer should earn no reward
beyond the bid of the winning builder. (Intuitively, the builder should have
already extracted all of the value of the block it proposed.) If this assumption
does not hold, different proposers may earn rewards at much different rates
even when they all follow the strategy (S1)–(S3).

(A2) Proposers cannot be significantly better block-builders than the builders
in Y . (If they are, the builder ecosystem doesn’t matter.) Formally, we
will assume that every proposer distribution Di is first-order stochastically
dominated (FOSD) by the builder distribution DY . (I.e., for all x ≥ 0,
Prr∼Di [r ≥ x] ≤ Prr∼DY

[r ≥ x].)
(A3) Proposer distributions Di cannot be excessively heavy-tailed. (Otherwise, a

proposer with such a distribution could earn vastly more rewards in expec-
tation than a proposer that does no private block-building, even though it
is almost never able to outperform the specialized block-builders. For exam-
ple, this is true if Di is the “equal-revenue distribution,” with distribution
function 1− 1

x on [1,∞).) Formally, we will assume that the builder distribu-
tion DY (which FOSD every proposer distribution Di) satisfies the monotone
hazard rate (MHR) condition, meaning that f(x)/(1−F (x)) is nondecreas-
ing, where f and F denote the PDF and CDF of the distribution. Intuitively,
the tails of an MHR distribution are no heavier than those of an exponential
distribution.

11 This setup assumes that block-building is costless and that a proposer engages in
private block-building only when it is chosen for a block production opportunity. A
more general version of the model would incorporate the costs of block-building (e,g.,
from maintaining positions on a centralized exchange to take advantage of arbitrage
opportunities) and would allow a proposer to compete with the specialized builders
for every block production opportunity.
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The main result of this section shows that, under assumptions (A1)–(A3), a
competitive builder ecosystem ensures minimal proposer heterogeneity.

Theorem 4 (Competition Reduces Proposer Heterogeneity). Let Y de-
note a set of k specialized builders, with rewards ry drawn i.i.d. from a distribu-
tion DY that satisfies the MHR condition, and assume that builders bid according
to the (unique) Bayes-Nash equilibrium of a symmetric first-price auction with
value distribution DY . Let I denote a set of proposers, with proposer i’s pri-
vate block-building reward ri drawn from a distribution Di that is FOSD by DY .
Assume that every proposer follows the strategy in (S1)–(S3). Then, for every
pair i, j ∈ I of proposers, the expected reward earned by i (conditioned on selec-
tion) is at most

1 +O

(
1

log k

)
times that earned by j (conditioned on selection).

Thus, as the competitiveness k of the builder ecosystem increases, the ratio
in expected proposer rewards (roughly corresponding to the parameter γ in
Theorem 2 or µ1 in Theorem 3) tends to 1.

Proof of Theorem 4: The minimum expected reward (conditioned on selection)
would be earned by a proposer that never engages in private block-building
(equivalently, Di is a point mass at 0). The expected reward of such a proposer
would be the expected highest bid by a builder. It is known that, at the unique
Bayes-Nash equilibrium12 of a first-price auction with i.i.d. private valuations
(i.e., ri’s) and k bidders, the expected highest bid is the expected second-largest
sample of k i.i.d. samples from the value distribution (i.e., from DY ); see e.g. [19,
Proposition 2.3].13 Call this quantity R. How much bigger could the expected
reward (conditioned on selection) of a different proposer be?

Fix a proposer i with reward distribution Di that is FOSD by DY . In the
notation of the strategy (S1)-(S3), the expected reward of this proposer (condi-
tioned on selection) is the expected value of max{b∗, ri}. Because builders will,
at equilibrium, bid at most their values in a first-price auction, this expected
reward can be bounded above by the expectation of max{maxy∈Y ry, ri}—the
expected maximum out of k i.i.d. samples from DY and one independent sample
from Di. Because DY FOSD Di, this quantity can, in turn, be bounded above
by the expected maximum of k + 1 i.i.d. samples from DY .

Next, we use the fact that, because DY satisfies the MHR condition, the
expectation of the second-largest value out of n ≥ 2 i.i.d. samples from DY is
12 In a Bayes-Nash equilibrium, each player i picks a strategy (i.e., a mapping of each

potential reward ri to a bid bi) that, assuming other players bid according to their
equilibrium strategies, always maximizes its expected revenue (i.e., its bid times its
probability of winning).

13 This quantity is easily seen to be the expected revenue of a second-price (Vickrey)
auction in this scenario; the stated fact then follows from revenue equivalence (using
that first- and second-price auctions have the same allocation rule at equilibrium,
and that the revenue of a first-price auction equals the highest bid).
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a concave function of n (see [27, Theorem 1(b)]). Because this quantity is also
nonnegative and nondecreasing in n, this fact implies that the expected second-
largest value of k+1 i.i.d. samples from DY is at most 1+ 1

k−1 times the expected
second-largest value of k i.i.d. samples from DY (i.e., at most (1 + 1

k−1 )R).
It remains to bound the factor by which the expected value of the largest

of k + 1 i.i.d. samples from DY exceeds that of the second-largest. Using the
representation

F (x) = 1− exp

{
−
∫ x

0

h(x)dx

}
of a distribution function F with density f , where h(x) = f(x)/(1 − F (x))
denotes its hazard rate, it follows that this factor is maximized among MHR
distributions (those with h nondecreasing) by exponential distributions (those
with h constant). A calculation then shows that this factor is at most∑k+1

j=1
1
j∑k+1

j=2
1
j

= 1 +O

(
1

log k

)
.

This completes the proof: the expected reward (conditioned on selection) of
the proposer i is at most the expected value of max{maxy∈Y ry, vi}, which is at
most the expected value of the largest of k + 1 i.i.d. samples from DY , which is
at most 1 + O(1/ log k) times the expected value of the second-largest of k + 1
i.i.d. samples from DY , which is at most (1 + 1/(k − 1))(1 + O(1/ log k)) =
1 + O(1/ log k) times R (i.e., the expected second-largest of k i.i.d. samples
from DY ). ■
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A Proof of Lemma 1

Proof. The optimality conditions for the concave optimization problem in Propo-
sition 1 state that optimal solutions are those that are feasible and that equalize
the partial derivatives of the objective function (except for unused variables, for
which the partial derivative may be lower). That is, a feasible allocation x is
optimal for (2)–(4) if and only if there is a constant λ such that

∂Φi

∂xi
(x) = µi ·

r

c
· (1− xi) ≤ λ (5)

for all i ∈ I and
∂Φi

∂xi
(x) = µi ·

r

c
· (1− xi) = λ (6)

for all i with xi > 0, where Φi denotes the ith term of the objective function
in (2). Starting from the allocation x̂(µ, r, c) (with constant λ), increasing µj

increases ∂Φj/∂xj . If its new value remains at most λ, then the equilibrium
allocation remains the same. If its new value exceeds λ, to compensate and
restore the optimality conditions, xj must increase and every other xi (that is
not already 0) must decrease.

B Proof of Theorem 3

B.1 Proof of Upper Bound

We start with a monotonicty lemma that shows increasing how competitive
the block producers are can only increase the number of blocks it takes for
centralization to occur. This is intuitive since if BP 1’s competitors start earning
more, the rate at which BP 1 accrues their advantage becomes slower. We will
use this to show that if µ′ is more competitive than µ, then an upper bound on
the number of blocks till ϵ-centralization for µ′ also holds for µ.

Lemma 2 (Second Monotonicity Lemma). Let µ and µ′ be two block pro-
ducer sets with initial starting stakes π where µ′

i ≥ maxi∈I,i̸=1{µi} for all i ≥ 2.
Then Pr(x1,t > a) ≥ Pr(x′

1,t > a) for all a ∈ [0, 1] where x1,t and x′
1,t correspond

to BP 1’s chance of being chosen at block t under (µ, π) and (µ′, π) respectively.

Proof. Here we give a formal proof of the coupling argument sketched in the
main body. Let Π = (πt)t≥1 and Π ′ = (π′

t)t≥1 be the staking processes under
µ and µ′ respectively, both with starting stakes π. Then consider the following
coupling for (Π,Π ′).

For all blocks t: Define a0,t = a′0,t = 0. Then for all i ∈ I, recursively define

ai,t = xi,t + ai−1,t and similarly a′i,t = x′
i,t + a′i−1,t
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Then consider the following process to choose the block producer for every
block t:
(1) Sample yt ∼ U [0, 1], (2) Let i∗t = i if yt ∈ (ai−1,t, ai,t], (3) Let i′∗t = i if
yt ∈ (ai−1,t, ai,t]

Crucially we are using the same randomness to sample the winner under
both Π and Π ′ in every block. Combining this with the fact ai,t − ai−1,t = xi,t,
a′i,t − a′i−1,t = x′

i,t and yt is sampled uniformly random from [0, 1] gives us that
the marginal distributions of Π and Π ′ under this coupling match their distri-
butions under the staking process. Thus this process is a valid coupling, and to
prove the lemma, it suffices to show that for every sequence of random draws
{yt}t≥1 that x1,t ≥ x′

1,t. We proceed to show this via strong induction.

The base case follows trivially since both processes start with the same stakes
π so x1,1 = x′

1,1. Now for the inductive hypothesis assume that for all sequences
{yt}1≤t≤k−1, x1,s ≥ x′

1,s for all s = 1, ..., k . We then show that for any yk ∈ [0, 1]
that x1,k+1 ≥ x′

1,k+1.
We start by claiming that π1,k ≥ π′

1,k. This follows from the strong inductive
hypothesis since x1,s ≥ x′

1,s for all s ≤ k implies that whenever yt ≤ x′
1,t

that yt ≤ x1,t for all t ≤ k. Since µ1 = µ′
1 this gives us π1,k ≥ π′

1,k. Now
fix any yk ∈ [0, 1]. Then from our inductive hypothesis, we have 3 cases: (1)
yk ≤ x′

1,k ≤ x1,k, (2) x′
1,k < yk < x1,k, or (3) x′

1,k < x1,k < yk. In particular
note the case where i∗k ̸= 1 but i′∗k = 1 can never happen. We will show that
each of these three cases will lead to x1,k+1 ≥ x′

1,k+1. We use Πt =
∑

i∈I πi,t and
Π ′

t =
∑

i∈I π
′
i,t to refer to the total stakes at time t under Π and Π ′ respectively.

1. i∗k = 1, i′∗k = 1: Here π1,k

Πk
≥ π′

1,k

Π′
k

=⇒ π1,k+µ1r
Πk+µ1r

≥ π′
1,k+µ1r

Π′
k+µ1r

2. i∗k = 1, i′∗k = i ̸= 1: Here π1,k

Πk
≥ π′

1,k

Π′
k

=⇒ π1,k+µ1r
Πk+µ1r

≥ π′
1,k

Π′
k+µir

3. i∗k = i ̸= 1, i′∗k = j ̸= 1: Here we use π1,k ≥ π′
1,k, µi ≤ µ′

j , and π1,k

Πk
≥ π′

1,k

Π′
k

to

get π1,k

Πk+µi
≥ π′

1,k

Π′
k+µ′

j

Hence in all cases we get x1,k+1 ≥ x′
1,k+1.

With the monotonicity of the effect of competitiveness on the blocks to cen-
tralization established, we are ready to prove the main theorem.

Proof. We start by proving the upper bound for the staking process (µ, π).

Reducing to Two Block Producers: We first show that it suffices to prove the
upper bound for the case with two block producers where µ̂ = (µ1, µ2) and
π̂ = (π1, π−1). To see this, consider µ′ = (µ1, µ2, ..., µ2) where µ′

i = µ2 for i ≥ 2
with the same starting stakes π. Since µ2 = maxi∈I,i̸=1{µi} , by lemma 2 we
have that the probability (µ, π) is ϵ-centralized at block t first order stochastically
dominates the probability (µ′, π) is ϵ-centralized at block t. Furthermore, note
that for the purposes of finding an upper bound on the number of blocks it
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takes for (µ′, π) to ϵ-centralize, we are only concerned with how fast π′
1,t grows

compared to π′
−1,t. Then since µ′

i = µ2 for all i ≥ 2, π′
−1,t increases by the

same amount if i∗t ̸= 1 regardless of which block producer is chosen. Thus the
probability i∗t ̸= 1 for future blocks is also the same regardless of which i ∈ I\{1}
is chosen. This implies that the time to ϵ-centralization is equivalent under (µ′, π)
and (µ̂, π̂). It follows that Pr(x̂1,t > a) = Pr(x′

1,t > a) ≤ Pr(x1,t > a) for all
blocks t ≥ 1 and a ∈ [0, 1], making it sufficient to prove the upper bound holds
for (µ̂, π̂). Thus from here we will assume WLOG that there are only two block
producers with µ = (µ1, µ2) and π = (π1, π−1)

Passing to the Continuous Case: As has been noted previously, the process
describing how stake evolves can be modeled as a Pólya urn with a diagonal
replacement matrix. Imagine an urn with all of the staked coins where each coin
has a corresponding block producer. Then for every block production opportu-
nity, a coin is randomly sampled from the urn. If the coin is owned by BP i,
then µir additional coins corresponding to BP i are added to the urn. Analyzing
the dynamics of unbalanced urns, where different amounts of coins are added to
the urn depending on who is chosen, tends to be difficult in the discrete scheme
because the total amount of coins in the urn is dependent on the history of what
coins were chosen.

To get around this, a classic technique in studying Pólya urns is embedding
the discrete process into a continuous one. In the continuous case, the discrete
sampling process is replaced with a birth-death branching process. Every coin
in the urn is given a clock with a i.i.d Exp(1) random expiry date. If a coin
belonging to BP i expires, that coin’s clock resets and µir new coins belonging
to BP i are added to the urn, each also with their own i.i.d. Exp(1) clocks. Since
the Exp(1) distribution is memoryless, it follows that at any given time, the next
clock to go off will be uniformly sampled from all of the coins in the urn. Thus
the probability the next coin chosen is BP i’s matches the probability they would
have been selected in the discrete process. Thus, if we consider snapshots of the
continuous process at the times the clocks expire, then this process is distributed
identically to the discrete process. This lets us prove results about the staking
process by proving results in the continuous version of the staking process and
then inverting back to the discrete case.

The primary advantage of working in the continuous case is that coins from
different BPs don’t affect each other. Notice that a clock expiring for one BP’s
coins have no influence on how another BP’s coins evolve. We can make this
precise by observing that each BP’s coins grow according to independent Yule
processes. Since we have shown it suffices to consider the case with two block
producers, we will have two processes Π1(t) and Π2(t) representing the evolution
of stake for π1,t and π2,t respectively. The fact that Π1(t) and Π2(t) evolve
independently, lets us bound the ratio of Π1(t)/Π2(t) via concentration bounds
on Π1(t) and Π2(t) independently. From [20] we have that E[Π1(t)] = π1e

µ1rt

and Var[Π1(t)] = µ1rπ1(e
2µ1r − µ1rte

µ1rt) ≤ µ1rπ1e
2µ1rt. Thus we can apply

Chebyshev’s inequality to get
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Pr

(
|Π1(t)− E[Π1(t)]| ≥

1

2
E[Π1(t)]

)
≤ 4V ar[Π1(t)]

E[Π1(t)]2

=⇒ Pr

(
Π1(t) <

1

2
E[Π1(t)]

)
≤ 4µ1rπ1e

2µ1rt

π2
1e

2µ1rt
=

4µ1r

π1

The same derivation for BP 2 gives

Pr

(
Π2(t) ≥

3

2
E[Π2(t)]

)
≤ 4µ2r

π−1
.

Then using a union bound gives

Pr

(
Π1(t)

Π2(t)
<

1
2E[Π1(t)]
3
2E[Π2(t)]

)
< 4r

(
µ1

π1
+

µ2

π−1

)

Now let t̂ =
ln

3π−1
π1

1−ϵ
ϵ

r(µ1−µ2)
. This gives us

E[Π1(t̂)] = π1

(
3π−1(1− ϵ)

π1ϵ

) µ1
µ1−µ2

and E[Π2(t̂)] = π−1

(
3π−1(1− ϵ)

π1ϵ

) µ2
µ1−µ2

Plugging this into our union bound above gives for any t ≥ t̂,

Pr

(
Π1(t̂)

Π2(t̂)
<

1− ϵ

ϵ

)
≤ 4r

(
µ1

π1
+

µ2

π−1

)

where Π1(t̂)

Π2(t̂)
< 1−ϵ

ϵ ⇔ Π1(t̂)

Π1(t̂)+Π2(t̂)
< 1− ϵ

Moving Back to the Discrete Case: Now that we have shown a t̂ for which the
continuous process ϵ-centralizes with constant probability, it remains to find how
many blocks in the discrete process this corresponds to. Recall every time a clock
expires in the continuous process, a block passes in the discrete process. Thus
to get an upper bound on how many blocks have passed by time t̂, it suffices to
upper bound how many clocks are expected to expire by time t̂. Observe that
the number of coins must increase by at least µ2r everytime a clock goes off. So
if we have an upper bound of the total amount of coins there are at time t̂, we
know the maximum number of clocks that could have expired. Using this gives
an upper bound of Π1(t̂)+Π2(t̂)

µ2r
blocks.

Since Chebyshev’s inequality is two-sided, with our union bound from before,
we have already accounted for the probability that both Π1(t̂) and Π2(t̂) are
above 3/2 their expectations. Hence we can use this bound without suffering
any loss to our probability, giving us a bound of
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3
2 (E[Π1(t̂)] + E[Π2(t̂)])

µ2r
=

3

2µ2r

(
π1

(
3π−1(1− ϵ)

π1ϵ

) µ1
µ1−µ2

+ π−1

(
3π−1(1− ϵ)

π1ϵ

) µ2
µ1−µ2

)
Putting it all together, due to the equivalence of the continuous process and

the discrete process this gives us for t greater than this bound that

Pr

(
π1,t

π1,t + π−1,t
< 1− ϵ

)
< 4r

(
µ1

π1
+

µ2

π−1

)
< 8β

.

B.2 Proof of Lower Bound

Here we go through the proof of the lower bound in Theorem 3 for a staking
process (µ, π). We largely elide the exposition justifying steps that are directly
mirrored in the upper bound.

We start with a corollary of lemma 2 that gives us a monotonicity result in
the other direction. If we decrease the competitiveness of the BPs apart from BP
1, then the time to centralization can only decrease. Similarly to the previous
lemma, we will use this to show that if µ′ is less competitive than µ, then a lower
bound for the number of blocks till ϵ-centralization for µ′ also holds for µ.

Corollary 1. Let µ and µ′ be two block producer sets with initial starting stakes
π where µ′

i ≤ mini∈I{µi} for all i ≥ 2. Then Pr(x1,t < a) ≥ Pr(x′
1,t < a) for

all a ∈ [0, 1] where x1,t and x′
1,t correspond to BP 1’s chance of being chosen at

block t under (µ, π) and (µ′, π) respectively.

Proof. From how µ′ is defined we have that µi ≥ maxi∈I,i̸=1{µ′
i}. Thus by lemma

2 we have that Pr(x′
1,t > a) ≥ Pr(x1,t > a) implying Pr(x1,t < a) ≥ Pr(x′

1,t < a).

With this monotonocity result we can continue with the proof of the lower
bound.

Proof. We start by reducing our analysis to the case of two block producers. Let
µ′ = (µ1, µn, ..., µn). Then since µn = mini∈I{µi} we can apply Corollary 1 to
get that a lower bound for (µ′, π) also holds for (µ, π). Then, like in the upper
bound, we note that µi = µj for all i, j ̸= 1 implies that (µ′, π) ϵ-centralizes at
the same rate as the process ((µ1, µn), (π1, π−1). Thus WLOG we continue by
letting µ = (µ1, µn) and π = π1, π−1.

Now we move to the continuous case, letting Π1(t) and Π2(t) represent the
evolution of π1,t and π−1,t respectively. Note these are the same yule processes
we had in the upper bound with the slight modification of changing µ2 to µn in
Π(2). Thus we can use Chebyshev again to get

Pr

(
Π1(t) >

3

2
E[Π1(t)]

)
<

4µ1r

π1
and Pr

(
Π2(t) <

1

2
E[Π2(t)]

)
<

4µnr

π−1
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A union bound then gives

Pr

(
Π1(t)

Π2(t)
>

3
2E[Π1(t)]
1
2E[Π2(t)]

)
< 4r

(
µ1

π
+

µn

π−1

)

We can then let t̂ =
ln

π−1
3π1

(1−ϵ
ϵ )

r(µ1−µn)
giving us

E[Π1(t̂)] = π1

(
π−1(1− ϵ)

3π1ϵ

) µ1
µ1−µn

and E[Π2(t̂)] = π−1

(
π−1(1− ϵ)

3π1ϵ

) µn
µ1−µn

Plugging t̂ into the union bound then gives

Pr

(
Π1(t̂)

Π2(t̂)
≥ 1− ϵ

ϵ

)
≤ 4r

(
µ1

π1
+

µn

π−1

)
.

Now all that remains is to convert back to a bound in the discrete case. Here
we want a lower bound on the total amount of stake that the continuous process
adds by time t̂. Combining this with the fact that the maximum the total stake
increases in any block is µ1 gives us a lower bound on how many blocks need
to pass before the staking process can centralize. One difference in the analysis
here between the upper and lower bound is that we also need to subtract the
starting stake amounts on the bound for the total stake at time t̂ to get a lower
bound on how much stake was added.

Again like the upper bound, because Chebyshev is two-sided we have already
paid for the probability bounding the probability Π1(t) and Π2(t) are below half
their expectations. Thus without losing any more probability we can get a bound
of

Π1(t̂) +Π2(t̂) <
1

2

(
E[Π1(t̂)] + E[Π2(t̂)]

)
=

1

2

(
π1

(
ρ(1− ϵ)

3ϵ

) µ1
µ1−µn

+ π−1

(
ρ(1− ϵ)

3ϵ

) µn
µ1−µn

)
Putting everything together gives a lower bound of

1
2E[Π1(t̂) +Π2(t̂)]−Π1(0)−Π2(0)

µ1r
>

1

2µ1r

(
π1

(
ρ(1− ϵ)

3ϵ

) µ1
µ1−µn

+ π−1

(
ρ(1− ϵ)

3ϵ

) µn
µ1−µn

− 2(π1 + π−1)

)
where for t less than this bound,

Pr(x1,t ≥ 1− ϵ) < 4r

(
µ1

π
+

µn

π−1

)
< 8β
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