
GoAT: File Geolocation via Anchor
Timestamping

Deepak Maram1,2⋆, Mahimna Kelkar1, Iddo Bentov1, and Ari Juels1

1 Cornell Tech
2 Mysten Labs

Abstract. Decentralized storage systems are a crucial component of the
rapidly growing blockchain ecosystem. They aim to achieve robustness
by proving that they store multiple replicas of every file. They have a se-
rious limitation, though: They cannot prove that file replicas are spread
across distinct systems, e.g., different hard drives. Consequently, files are
vulnerable to loss in a single, locally catastrophic event.

We introduce a new primitive, Proof of Geo-Retrievability or PoGeo-
Ret, that proves that a file is located within a strict geographic boundary.
Using PoGeoRet, one can, for example, prove that a file is spread across
several distinct geographic regions—and by extension across multiple sys-
tems, e.g., hard drives. We define what it means for a PoGeoRet scheme
to be complete and sound, extending prior formalism in key ways.

We also propose GoAT, a practical PoGeoRet scheme to prove file
geolocation. Unlike previous geolocation systems that only offer nomi-
nal geolocation guarantees and require dedicated anchors, GoAT geolo-
cates provers using any timestamping server on the internet with a fixed,
known location as a geolocation anchor. GoAT’s geolocation guarantees
directly depend on the physical constraints of the internet, making them
very reliable. GoAT internally uses a communication-efficient Proof-of-
Retrievability (PoRet) scheme in a novel way to achieve constant-size
PoRet-component in its proofs.

We validate GoAT’s practicality by conducting an initial measurement
study to find usable anchors and perform a real-world experiment. The
results show that a significant fraction of the internet can be used as
anchors and that GoAT achieves geolocation radii as low as 500km.

1 Introduction

Decentralized systems are a rapidly expanding form of computing infrastructure.
Blockchain systems in particular have enjoyed considerable recent popularity
and constitute a $1.5 trillion market at the time of writing [2]. Many decentral-
ized applications, ranging from non-fungible tokens (NFT) [19] to retention of
blockchain state [3], require a reliable bulk storage medium. As blockchains have
limited innate storage capacity, there is thus a growing demand for purpose-built

⋆ Corresponding author: sm2686@cornell.edu

2 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

decentralized storage systems, of which a number have arisen, such as IPFS [13],
Filecoin [32], Sia [41], Storj [33], etc.

Like today’s cloud storage services (e.g., Amazon S3 [9]), decentralized stor-
age systems typically achieve robustness by replicating files. With this approach,
even if some replicas become unavailable, others can be used to fetch files. To help
ensure trustworthy storage of replicas, decentralized file systems require storage
providers to prove retention of file replicas. As a notable example, Filecoin [14]
uses a protocol called Proof of Replication (PoRep) [22] for this purpose. Related
systems such as Sia, Storj, etc., use alternative techniques.

While a PoRep or related proof system can prove the existence of multiple
copies of a file, however, its robustness assurances are limited. This is because
such systems cannot ensure that file replicas reside on independent devices or
systems. If all file replicas are stored on the same hard disk, for example, dam-
age to that one device can destroy the file.

In this paper, we explore an alternative approach to building robust decen-
tralized storage systems: proving that file replicas reside in distinct geographical
regions. For example, one may wish to prove that three replicas of a file are
present in the United States, Europe, and Asia respectively. Such a proof auto-
matically implies the property ensured by existing techniques such as PoReps,
namely the existence of three distinct replicas of the file. It also ensures much
stronger properties than a proof of replication alone, namely that file replicas
are stored on distinct devices and in distinct physical locations. These additional
properties imply that the file can survive device failures, destructive local events
(e.g., natural catastrophes), etc. Thus the ability to prove replica geolocation
can greatly improve robustness in decentralized storage systems. Geolocation-
based proofs can also incur substantially lower resource costs than techniques
like PoReps, as we show in this paper.

Beyond rendering decentralized storage more robust, proving storage location
is useful in other settings. For example it can help prove compliance with laws
specifying localized storage of certain forms of data, e.g., [26].3 It can also be
used by CDN providers to prove that they are serving data from geographically
distributed locations according to a claimed policy.

In brief, the goal of our work here is to build protocols to prove that a
given file replica is stored within a strictly-bounded geographical region. Our
main building block for these protocols is a primitive we call a Proof of Geo-
Retrievability (PoGeoRet). A PoGeoRet involves a single prover proving to a
number of verifiers that it holds a file replica in a given geographical region. To
ensure the practicality of our PoGeoRet designs we consider here, we focus on
proofs involving relatively large geographical regions (e.g., thousand-km radius),
which suffices for applications such as file replication.

We introduce a formal definition of PoGeoRets in this paper, and propose,
implement, and experimentally validate a PoGeoRet system called GoAT. GoAT

3 Some nations only require that a copy of data be stored locally whereas more
stricter laws make transferring data abroad illegal [26]. Our techniques suffice for
the former but the latter would additionally require the use of trusted hardware.

GoAT: File Geolocation via Anchor Timestamping 3

creates publicly verifiable file-replica geolocation proofs. GoAT proofs can thus
be consumed by a multiplicity of verifiers and can be used to construct a system
that ensures the presence of file replicas in desired locations even in the presence
of some dishonest verifiers.

The Anchor Model: To avoid the undesirable assumptions of previous ge-
olocation systems, we explore a model for GoAT that relies on a collection of
servers called anchors. An anchor is a server with a publicly announced location
that emits digitally signed timestamps on queries. That is, an anchor has an API
that returns the current time along with a signature over the time and any value
sent by a client. Crucially, the main job of an anchor is not to geolocate entities
directly, but only to provide timestamps. Anchors can therefore be distinct from
verifiers. Anchors can be purpose-built for a GoAT instance. We also show that
it is possible to use existing, unmodified servers, e.g., TLS 1.2 or Roughtime [7]
servers, as anchors.4 Thus it is possible with some tradeoffs to realize GoAT with
today’s internet infrastructure.

1.1 Conceptual Starting Point: Proving Geolocation

In GoAT, a prover must prove proximity of a file it stores to an anchor. We first
explain how a prover can prove its own geolocation. Then we explain how these
techniques are embellished in GoAT to prove geolocation of a file.

To prove geolocation, GoAT uses a simple, well known technique: The prover
pings the anchor successively to get two timestamps t1, t2 (see Fig. 2). If the
prover is indeed situated in proximity to the anchor, then the timestamps will not
differ by much, i.e., t2−t1<∆, for a small predetermined threshold ∆. Note that
if the pings are truly sequential, i.e., the second ping happens after the first is
completed, a prover can spoof a higher distance from an anchor just by delaying
t2, but cannot spoof a lower distance, and thus cannot falsify proofs of proximity.

Realizing proofs of geolocation: Even before incorporating files into geolo-
cation proofs, several challenges arise.

First, ensuring correct geolocation proofs involves some subtleties. For ex-
ample, as we have noted, it is critical that the prover’s pings of an anchor be
sequential. Otherwise a dishonest prover can interleave pings and shrink t2−t1
arbitrarily. Thus GoAT proofs are designed in such a way that later pings by the
prover depend cryptographically on earlier ones.

An especially important challenge is to be compatible with existing infras-
tructure, i.e., using existing servers as anchors. TLS 1.2 servers, for instance,
only provide second-level timestamps, which is insufficient as network round-trip
times are on the order of milliseconds. We address this challenge by introducing
an amplification technique: Instead of pinging twice, a prover pings the anchor
repeatedly with related challenges over an extended time interval, e.g., 1 second.

Another challenge is identifying usable anchors. Many TLS 1.2 servers, for
instance, do not return accurate time or have a unique location, needed for a

4 TLS 1.2 is still almost universally supported. Roughtime is an emerging protocol
adopted by Google, Cloudflare, etc.

4 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

Fig. 1: Prover and (Roughtime) anchor
are situated 300km apart. GoAT’s
region of uncertainty is a circle of
radius 2000km (purple) proving that
the prover’s file replica is in eastern
North America.

Anchor AProver P

Time t1

Time t2

Using σ1 as seed,
compute PoRet
commitment
N2 = com

GetAuthTime(N1)

{M1,σ1}

GetAuthTime(N2)

{M2,σ2}

Time differ-
ence timer=

t2 − t1

Fig. 2: The geo-commitment protocol.

prover to prove geolocation. We conduct an initial measurement study of the
Alexa top 1M list to identify a broad network of usable anchors.

A key requirement is reliable geolocation guarantees. GoAT bases its guaran-
tees on physical network limitations making no assumptions about the underly-
ing network topology. Concretely, GoAT’s geolocation accuracy depends on two
factors: (i) the real spherical distance between the anchor and the prover, and (ii)
a parameter ω that denotes how fast an adversary can send and receive messages
compared to the internet speeds of an honest party. We derive ω by conservatively
assuming that the adversary can send messages at light speed and fixing a real-
istic lower speed (set based on empirical data) that any honest prover can meet.

The use of existing servers as anchors also requires us to consider an econom-
ically rational adversary that will not incur bandwidth costs in excess of the
revenue it receives for storage (Sec. 3.3). In brief, this is necessary because of
the passive nature of anchors in GoAT, which, in contrast to prior research, lack
the capability to challenge the prover at random times. Nevertheless, we assert
that this approach is a more pragmatic solution to geolocation than mandating
the establishment of a new geographically distributed network of anchors.

1.2 Geolocating Files: GoAT

Recall that our goal in GoAT is not to geolocate servers, but files. Building on
basic geolocation proofs as described above, a straightforward idea is to inter-
leave the file into the prover’s anchor pings. But this approach only works for
extremely small files due to limits on input sizes to anchors, typically just hun-
dreds of bytes. Given that GoAT aims to geolocate files of significantly larger
sizes, this approach is not practical.

So the key idea in GoAT is to interleave what is called a Proof of Retrievabil-
ity (PoRet) [29,38]. A PoRet is compact, efficient proof that a full file replica is
indeed stored.

GoAT: File Geolocation via Anchor Timestamping 5

Making GoAT work: A key challenge in interleaving geolocation proofs with
PoRets arises from the computational latency introduced by PoRets. It is es-
sential to minimize the latency in GoAT between the two anchor pings, as this
latency impacts geolocation accuracy. Each millisecond of computational latency
caused by PoRet computation degrades geolocation accuracy by about 100km.
Our solution to this problem is to introduce techniques for computing a (compu-
tationally lightweight) commitment to the randomness in a PoRet proof between
two pings, before computing the PoRet proof itself. Our technique improves ge-
olocation accuracy by an order of magnitude in some cases.

Yet another challenge is reducing the size of GoAT proofs. Due to a combi-
nation of amplification and proof accumulation across epochs and anchors, the
proof sizes quickly blow up, even with use of a communication-efficient PoRet
(e.g., [38]). Using techniques that combine vector commitments and compression
across proof instances, we manage to achieve at least 3x reduction in proof sizes
(potentially unbounded). We do in a GoAT variant called GoAT-P by introduc-
ing a new homomorphic commitment scheme that relies on a new knowledge
assumption closely related to the Knowledge-of-Exponent Assumption (KEA),
specifically KEA1 [12]. (Another variant of GoAT called GoAT-H sacrifices com-
pactness in favor of a standard commitment scheme using hash functions.)

Given use of these techniques, GoAT can geolocate files regionally using al-
ready existing infrastructure. For instance, Figure 1 illustrates GoAT’s file ge-
olocation capabilities using a local Roughtime server.

Contributions: Our contributions are summarized as follows:
1. GoAT: We introduce our Proof of Geo-Retrievability (PoGeoRet) protocol

GoAT (Sec. 4). GoAT leverages the Shacham-Waters PoRet and timestamping
anchors. Using several new techniques to minimize computational latency and
proof sizes, we make GoAT practical.

2. Implementation and Evaluation: To demonstrate practicality, we prototype
GoAT (GoAT-P) and run a small real-world experiment using 10 TLS / Rough-
time anchors (5 each in the US and UK) for over a week. GoAT’s prove and
verify protocols execute in just a few seconds, with proof sizes of a few hun-
dred KB. GoAT can work with geolocation radii lower than 1000km, smaller
than required for applications like file replication (Sec. 5).
We have released GoAT as an open-source tool.

Organization: We cover the necessary preliminaries in Sec. 2. Section 3 in-
troduces Proofs of Geographic Retrievability and the system model. Section 4
specifies the GoAT protocols. Sec. 5 presents the implementation and evaluation
details, and we conclude with Sec. 6.

Due to lack of space, the formal security definitions are in App. A and GoAT’s
security is defined in App. C. Finally, we prove security in App. D.

1.3 Related Work

Several works aim to prove correct file storage by a storage provider e.g., PoRet [38,29],
Proof of Data Possession [11,25] and more recently Proof of Replication [22,18,23,15].

https://github.com/GoATTeam/GoAT

6 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

To the best of our knowledge, only few works [16,43] aim to prove file lo-
cation. [16] works with small files as they rely on directly fetching file parts
and leave open the task of combining a PoRet with a proof-of-location (PoL).
[43] combines Shacham-Waters PoRet scheme with a PoL, making it the closest
to our work. But they make benign assumptions about storage providers, e.g.,
providers operate at normal network speeds. In contrast, GoAT considers faster
speed-of-light providers and yet achieves geolocation accuracy similar to [43].
Digging deeper, this is due to our novel use of fast PoRet commitments whereas
[43] näıvely combines the SW PoRet and PoL protocols. [43] also entrusts anchors
with proof verification making the use of legacy anchors impossible unlike GoAT.

Many works consider geolocating servers [30,42,31,28]. Of these, only [31]
allows verifying node location in decentralized settings, but [31] operates in a
weaker model where an adversary controls a randomly sampled set of nodes.

2 Preliminaries

Authenticated time protocols:We are interested in authenticated time proto-
cols, i.e., the timestamp must be digitally signed. Two main options exist today:

(1) TLS 1.2. Some TLS 1.2 servers [20] embed the current time in seconds
into the first 8 bytes of the “server random” value. This value is then signed and
sent to the client as part of TLS 1.2 key exchange. The receiving party verifies
the signature using the server’s certificate.

This functionality has always been an informal practice, and is not specified
in the TLS 1.2 RFC, but is widespread. We found about 1/5 of Alexa top-500
hosts supported this technique. Finally, this method does not work with TLS
1.3, as the specification specifically deprecates it. In practice though, TLS 1.3
adoption is only growing slowly. And TLS 1.2 is expected to be supported by
most websites for the foreseeable future; e.g., in July 2022, 99.8% of around 1M
sites surveyed were found to support TLS 1.2 [36].

(2) Roughtime. Roughtime [7] is a recently developed authenticated time pro-
tocol. At the time of writing, we are aware of four providers hosting Roughtime—
Cloudflare [35], Google, Chainpoint and int08h. Roughtime servers provide a
highly precise timestamp in microseconds (µs) signed with a fast signature
scheme (EdDSA). As the name “Roughtime” suggests, the protocol is only de-
signed to provide a roughly accurate time, say within 10 seconds of the true
time, unlike say NTP. Note that GoAT does not need accurate absolute time.

Proof of Retrievability: Proof of Retrievability [29] schemes enable a prover to
prove knowledge of a complete file replica in a communication-efficient manner.
GoAT requires a publicly verifiable PoRet scheme—we use the communication-
efficient Shacham-Waters (SW) [38]. Figure 9 in the Appendix shows the API for
a PoRet scheme. A special feature of GoAT is the introduction of an additional
functionality in a PoRet. This functionality, called PoRet.Commit, commits to
randomness for use in a (future) PoRet proof. We introduce PoRet.Commit to
enable fast prover interaction with a timestamping service, and thus require that

GoAT: File Geolocation via Anchor Timestamping 7

it be: (1) quickly computable (within a few milliseconds), and (2) compact. We
specify our construction of PoRet.Commit later.

3 Model

We introduce Proofs of Geographic Retrievability along with informal definitions
for completeness and soundness in Sec. 3.1. We specify our model in Sec. 3.2 and
conclude with some practical modeling choices in Sec. 3.3.

3.1 Formalizing Proofs of Geographic Retrievability

A Proof-of-Geographic-Retrievability (PoGeoRet) scheme includes three parties:
a user (U) who owns a file F , a storage provider or prover (P) that commits to
storing F for a specified duration at a specified location, and an auditor or ver-
ifier (V) that verifies P’s claims. (Of course, a decentralized system will include
many instances of each party type.)

We define a PoGeoRet for a general setting in which a target file F is stored
as a publicly accessible plaintext.

A user U that wants a file F to be stored near a particular location runs the
setup protocol (PoGeoRet.Setup) on F to generate an encoded file F ∗. U then
gives F ∗ to a storage provider P situated near the desired location. The public
parameters pp are published, e.g., on a blockchain. The file handle η is unique
for each file, for example, it could be a hash of F .

A PoGeoRet protocol runs in epochs. During each epoch, the provider P
computes a Proof of Geo-Retrievability using the Prove protocol. All PoGeoRet
schemes must use time to distinguish between a challenge answered with a local
file versus another answered with a file fetched from afar. That is, some or all of
the Prove protocol must be timed by the verifier. Accordingly, Verify takes the
time timer taken to respond and a proof of geo-retrievability πgeo as inputs and
outputs a single bit indicating “success” or “failure”.

The key ingredient in Prove enabling a file geolocation proof is the sub-
function ComFrag. It takes a file fragment µ as input and outputs a commitment
of it. Intuitively, a file fragment represents the bare minimum data related to F
that a prover must have used when running Prove. Looking ahead, in GoAT, a
file fragment is a vector of data blocks derived from F and ComFrag is a vector
commitment scheme.

A PoGeoRet must also specify an extraction algorithm Extract that can re-
compute the file F from the prover’s responses. Extract will be used to model
extraction in the soundness definition of a PoGeoRet in a way largely similar
to prior works [29,38]. A key difference is that Extract needs to follow a specific
design; it must be composed of two algorithms: Extr.Derive, which, interacts with
the prover and outputs a list of file fragments µall and Extr.Assemble, which re-
computes the file F from the fragments. We assume that during Extr.Derive, the
prover can be rewound, as in, e.g., [29,38].

8 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

The PoGeoRet API is shown in Fig. 5 in the Appendix. Note that above def-
initions require interaction between prover and verifier, whereas our main goal is
for GoAT to operate non-interactively. The non-interactive PoGeoRet API only
requires minor modifications (Fig. 6).

Modeling geolocation: We model geolocation in a PoGeoRet using a metric
space [5] (M,dist) whereM is the full set of possible storage locations and dist
is a distance metric onM. As an example,M could be the set of all points on
a sphere (e.g., the Earth) and dist the spherical distance function.

For L∈M, we define a region R=(L;δ) as the set of all L′∈M that satisfy
dist(L,L′)≤δ. For example, whenMmodels points on a sphere, regions represent
circles on the surface. For simplicity, we will only consider such circular regions.

We want a PoGeoRet scheme to facilitate storage of files in a target region
Rtarget=(L;δ) where δ is a radius that captures the breadth of the target region.
Our definition allows for any arbitrary δ.

Region of uncertainty: We define a Region Of Uncertainty (ROU), denoted
Rrou, to capture the permitted noise in an attained geolocation guarantee. A Po-
GeoRet scheme for a given Rtarget ensures that files are stored inside the larger
region Rrou. By relaxing geolocation beyond a small target region, an ROU helps
eliminate spurious proof failures.

Suppose we wish to support file storage in New York City. Then the target
region is Rtarget=(L;δ) where, e.g., L=(40.73◦,−73.93◦) and δ=30km. Suppose
that we are willing to tolerate noise in proofs up to the point where we ensure
that files are at most 500km from New York. The desired region of uncertainty
then is Rrou=(L;500km).

Desired properties: Like any security protocol, a PoGeoRet must satisfy two
basic properties: completeness and soundness. Completeness means that the Po-
GeoRet scheme must succeed for any honest prover storing the file in Rtarget.
Soundness means that any dishonest prover either not storing the complete file
or storing it outside a permitted geographic boundary (Rrou) should be detected
with high probability.

The formalization for PoGeoRet soundness is similar in spirit to that for
PoRet but leads to interesting new subtleties. Intuitively, a PoGeoRet is sound
if acceptance by a verifier means that a file F can be extracted from the prover,
similar to prior PoRet formalism [38]. The key difference for a PoGeoRet is that
successful extraction must now be possible from the target location. To capture
the notion of file location, we introduce a location-specific commitment oracle.
This oracle models the PoRet commitment function and tracks queries made to
it from within the target region of uncertainty (Rrou). A PoGeoRet is sound if the
file fragments seen by the commitment oracle are enough to recompute the file.

Due to lack of space, we relegate the formal security definitions of complete-
ness and soundness to App. A.

GoAT: File Geolocation via Anchor Timestamping 9

3.2 GoAT System Model

Network model: We approximate the Earth to be a sphere. The metric space
(M, dist) is defined by the set of all locations on earth (M) and the spherical
distance function (dist). We assume that the maximum network speed attainable
by an adversary is Smax. The minimum speed required for storage providers is
Smin. The ratio ω= Smax/Smin is the adversary’s network advantage. These pa-
rameters need to be set based on empirical measurements (see Sec. 5). Honest
providers only need to attain Smin transiently. For example, if the interval length
is β=1hr, good connectivity for a few seconds every hour suffices.

Our network model includes a small per-transmission connection setup cost
tsetup; empirically, such costs dominate round trip times for nearby locations.
The expected maximum time for a round trip between locations L1 and L2 is
given by rttmax(L1,L2)=(2dist(L1,L2)/Smin)+tsetup.

Anchors: GoAT leverages existing internet servers called anchors. Anchors must
provide an authenticated time API and have a static known location. Their clocks
must provide relative time with negligible clock drift.

Anchors serve time through the GetAuthTime API. It takes as input a nonce
N and returns a transcript T = {M,σ}. M = {t,N} is a message containing the
time t and nonce N (and potentially other data, as discussed later); σ is a signa-
ture σ=SigskA(M) on M , for anchor key pair (skA, pkA). We assume an author-
itative list of well placed anchors T selected for trustworthiness and reliability.

The timestamp resolution ΓA of an anchor A is defined as the smallest (non-
zero) difference between any two timestamps. GoAT supports anchors of all res-
olutions, although smaller resolution leads to better performance.

Adversarial model: The adversary A controls the storage provider P and a
fraction of anchors such that there exist a local honest majority (see Sec. 4.2 for
an explanation). We assume that the user U is honest.

Storage: We assume storage providers use SSDs (we do not support HDDs;
see [34]) since inbuilt parallelism allows SSD seek times to be only a few ms [6].

Operational model: Time is organized into epochs each containing I intervals
of length β. A prover P must generate at least one proof per interval. Verifier V
checks P’s proofs one per epoch, i.e., once per interval of time of length I×β.

3.3 Flexible-challenge model: Eliminating random audits

Previous works on geolocation [31] usually consider a random-challenge model,
in which a verifier pings a prover at random times. A limitation of that model is
that it requires a network of verifiers that interact with and challenge provers.
However, this network of verifiers would need to be geo-distributed, i.e., have
a presence close to any potentially asserted geolocation of a prover. Otherwise,
network delays could potentially give a prover an opportunity to cheat and down-
load file contents upon being challenged.

Thus, while such auditing is practical for GoAT in principle, it carries signifi-
cant overhead. We instead favor a more practical deployment option using what

10 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

we call the flexible-challenge model. Here, instead of being randomly audited, a
prover generates its own proofs. The prover can do so at any time it chooses but
at least once every pre-specified auditing interval.

A prover P can, of course, try to cheat by taking advantage of this flexibility
to download F to a device in Rrou before generating a proof. We show, how-
ever, that a rational prover, i.e., one who is financially motivated, will not cheat
this way—provided that auditing intervals are sufficiently short. In a nutshell,
to avoid storing F in Rrou, P would need to download F frequently. It would
thereby incur bandwidth costs that exceed its revenue from file storage.

Define a parameter ϕ called the bandwidth overhead. This is the ratio be-
tween the cost of (per-byte) storage over an interval and the cost of (per-byte)
bandwidth. (For simplicity, we assume linear costs.) So a rational adversary will
not download more than ϕ|F ∗| per interval on average, as the result would be a
loss of revenue. We find that for short intervals, typically ϕ≪1 (see App. A.3).

4 The GoAT protocol

We begin with the Shacham-Waters scheme which is heavily used in GoAT. SW
is a PoRet, i.e., scheme in which a prover P stores a file F , transformed into F ∗

by a file owner U. P proves to a verifier V (not necessarily the file owner) that
it is possible to retrieve F from the prover in full. SW’s API are explained now
(see Fig. 8 in the Appendix for a concise description).

Let Zp be the support of a group G. Key generation in SW involves the file
owner generating a secret key sk∈Zp, with corresponding public key pk∈G.

Let F be an erasure-coded file. SW.Setup involves dividing F into n blocks,
with each block further divided into s sectors. The set of all sectors is {mij}1≤i≤n,1≤j≤s.
Each sector mij is a symbol in Zp. To prepare F for storage, the file owner exe-
cutes function SW.Setup on F , yielding a transformed file F ∗ for the prover. To
do so, the file owner picks s group elements {uj}sj=1 at random as public param-
eters pp and computes aggregate signatures {σi}ni=1 over all the sectors in each
block, ∀i∈ [1,...,n], σi← (H(i)

∏s
j=1u

mij

j)sk, where H is a hash function. The file
owner outputs F ∗=(F,{σi}ni=1) and file handle η=H(F ∗) for the prover to store.

A verifier challenges P by invoking SW.Chal, which outputs a set of l chal-
lenges S. Each challenge consists of a randomly chosen block number ck ←$

[1, ... , n] and a coefficient vk ←$ Zp, i.e. S = {ck, vk}lk=1. The prover invokes
SW.Prove to respond, computing several linear combinations ∀j∈ [1,...,s], µj←
Σl

k=1vkm(ck)j and an aggregate signature σ←
∏l

k=1σ
vk
(ck)

. In summary, (µ,σ)←
SW.Prove(η,S) for µ={µj}sj=1. (Note that bold face denotes vectors.)

SW.Verify verifies the proof (µ,σ) using pk and other public parameters.

Modifications to SW in GoAT: GoAT adds a function SW.Commit that takes
the same inputs as SW.Prove but only outputs a vector commitment (VC) of µ.

We consider two variants of SW, SW-P and SW-H, that differ in the choice
of VC. The main one, SW-P, uses the correlated Pedersen scheme, where two
normal Pedersen commitments are computed, but with correlated bases. That

GoAT: File Geolocation via Anchor Timestamping 11

is, given a scalar b, two sets of correlated bases h1 ∈Gs, h2 =hb
1, and a vector

µ ∈ Zs
p, the VC of µ is (hµ

1 ,h
µ
2)← CPVC.Commit(µ). (The exponentiation op-

eration between the vectors denotes multi-scalar multiplication.) Framing it as
part of SW-P, we have (hµ

1 ,h
µ
2)←SW-P.Commit(η,S). The other variant SW-H

uses a hash function, so H(µ)←SW-H.Commit(η,S). The verification functions
(SW-P.Verify and SW-H.Verify) take a commitment of µ as an extra input and
verify that µ provided in the proof matches its commitment.

4.1 GoAT protocols

We now present GoAT protocol for high-resolution anchors (i.e., ΓA ≤ 1ms). A
real-world example is an anchor using Roughtime [7], which has a 1µs resolu-
tion. Low-resolution anchors are considered in Sec. 4.2. Two variants of GoAT
arise, depending on the PoRet scheme used. The first, GoAT-H, uses the SW-H
PoRet scheme, and admits a security proof in the random oracle model. The
second, GoAT-P, uses the SW-P PoRet scheme. It has more compact proofs
than GoAT-H, but has security based on a new assumption (see Definition 3 in
App. C; roughly, this KEVA assumption extends the commonly used KEA1 [12]
assumption for a vector of elements). The two schemes are largely similar, so we
only present GoAT-P and defer GoAT-H to App. B.

Setup (Setup): User U runs PoRet setup (SW.Setup) over file F to generate
transformed file F ∗, file handle η, and the public parameters pp. Then U picks a
storage prover P located at an admissible location LP and sends {F ∗, η, pp} to P.

As noted before, we assume that a set of anchors T is predetermined; let
A ∈ T be one such anchor, located at LA. For simplicity, in this section, we
assume anchors are trusted and thus that it suffices to use the single anchor A.

Proof generation (Prove): P generates a proof of geo-retrievability in two
phases. In the first, geo-commitment generation phase, P interacts with A to
obtain PoRet challenges and uses them to generate a PoRet commitment. This
phase is run once per interval. In the second, PoRet computation phase, run once
per epoch, P computes the full PoRets. We now give details on the two phases.

Geo-commitment generation phase (GeoCommit): The key idea in GoAT is to
sandwich the file access operation between successive pings to the anchor. The
prover uses the signature returned in the first ping as a PoRet challenge and
computes a PoRet commitment. The commitment is set as the nonce in the sec-
ond ping. Fig. 2 depicts the geo-commit protocol laid out as follows. Note that
all the steps below are run by the prover P.

1. Ping 1: Send GetAuthTime(N1) for random nonce N1 to A. Receive T1 =
{M1,σ1}.

2. PoRet commitment: Use σ1 as randomness to derive a set of challenges S←
SW.Chal(η,pp,σ1) and generate a commitment com←SW-P.Commit(η,S).

3. Ping 2: Set N2 = com and ping A again via GetAuthTime(N2). Receive T2 =
{M2,σ2}.

12 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

We refer to the pair Cgeo={T1,T2} as a geo-commitment. Note that the PoRet
commitment com is embedded in T2, so we do not explicitly mention it. By the
end of an epoch (or I intervals), the prover has I geo-commitments {Cgeo

m }
I
m=1.

The ComFrag function, a crucial component of the soundness definition (Def. 1),
in GoAT-P is specified now. Recall that ComFrag takes a file fragment as input
and outputs a commitment of the same. The linear combination of file blocks
µ computed as part of SW-P.Commit is the file fragment, and the vector com-
mitment is the ComFrag function, i.e., ComFrag(µ) = CPVC.Commit(µ). This
implies that proving soundness of GoAT-P boils down to showing that the vector
commitment over µ is indeed computed inside the desired region.

It is worth emphasizing again why we had to modify the SW scheme in the
first place. It might seem that our idea would also work with the original un-
modified SW scheme. The prover could compute the full SW proof instead of
commitment in step 2. But this would result in much worse geolocation accuracy
due to the additional computational latency incurred in computing a full proof.
The relation between computational latency and geolocation accuracy will be
explained in the “Setting ∆” section.

PoRet computation phase (PoRCompute): Once an epoch ends, the prover com-
putes PoRets corresponding to the commitments computed during the epoch.

A näıve approach is to simply run the SW.Prove function I times with the
same challenge sets used in step 2 of the geo-commit phase. But this creates
large proofs. (Looking ahead, GoAT-H takes this näıve approach.)

Instead we aggregate proofs in much the same way as SW.Prove, except for
one key step, coefficient randomization. We derive a set of pseudorandom co-
efficients {rj} from the final PoRet commitment comI . Denote the challenge

set used to compute the jth PoRet commitment by Sj = {cij ,vij}ki=1 where
j∈{1,...,I}. The newly generated coefficients are incorporated into those for the

challenge sets, ∀j,S∗j ={cij ,rjvij}
k
i=1. The modified challenge sets are aggregated

as S∗=∪Ij=1S∗j . We provide the rationale behind this technique in the Appendix
(App. G) due to lack of space.

Given S∗, the PoRet is computed as πPoRet←SW.Prove(η,S∗).
The full proof of geo-retrievability then consists of the I geo-commitments

and the PoRet, πgeo=
{
{Cgeo

m }
I
m=1, π

PoRet
}
. πgeo is given to V for verification.

Proof verification (Verify): The verifier checks anchor transcripts in the I
geo-commitments using the anchor’s public key. Then the verifier derives PoRet
challenges from transcript signatures as in proof generation. The coefficients {rj}
and aggregate challenge set S∗ are similarly computed. V computes an aggregate
commitment C∗ =

∏I
j=1(comj)

rj . The proof of retrievability πPoRet and C∗ are

verified by SW.Verify(pp,S∗,C∗,πPoRet). Note that verification succeeds even with
randomization of the challenge coefficients because SW-P.Commit contains only
linear operations and the VC is homomorphic.

The final verification step is to check that the two timestamps are close in all
geo-commitments, namely that timer= t2−t1 and timer≤∆(LA,LP), where ∆
is a pre-agreed upon function that takes anchor and prover locations as inputs

GoAT: File Geolocation via Anchor Timestamping 13

and outputs the maximum permissible run time of GeoCommit operations (those
happening between times t1, t2).

Setting ∆: Choosing ∆ involves striking a balance between completeness and
soundness. To achieve completeness, ∆ should output high enough values for
honest parties to succeed. At the same time, ∆ should output low enough values
to prevent cheating, i.e., improper location of a file, by a cheating prover.

As shown in Fig. 2, the time difference captures the time taken to run two
operations: a GetAuthTime API call and a PoRet commitment. Denote the max-
imum time for the two operations by tping and tcom respectively. We then have
∆(LA,LP)= tping+tcom.

Elapsed time for the GetAuthTime API call depends on the physical distance
between the anchor and prover. We have tping= rttmax(LA,LP)+tproc, where the
first term denotes the maximum round trip time introduced in Sec. 3.2 and tproc
denotes the maximum processing time by the prover and anchor (processing
time accounts for the time taken to compute a response, see Sec. 5.1 for details).
Therefore we have:

∆(LA,LP)=(2·dist(LA,LP)/Smin)+tsetup+tproc+tcom. (1)

The radius of the region of uncertainty (ROU) is δ=∆(LA,LP)·Smax/2, i.e.,
for an adversarial prover to succeed in a PoGeoRet proof for F , most of F must
be stored within δ distance of the anchor location LA. This directly implies that
smaller ∆ results in a smaller δ, i.e., a better geolocation guarantee.

Out-sized effect on geolocation: We illustrate the out-sized effect some parame-
ters have on the geolocation guarantee. Each millisecond added to tcom causes
an equal increase in ∆ due to eq. (1), and consequently a Smax/2 increase in the
ROU radius. Setting Smax =

2
3c from Sec. 5, we see that Smax/2≈ 105m, i.e., a

100km reduction in geolocation accuracy. A similar effect is seen due to tsetup
(connection setup cost) and tproc (processing time).

Further considerations like grinding attacks (malicious prover repeatedly
pinging an anchor to get a favorable challenge) are discussed in App. G.

4.2 GoAT extensions

Low-resolution anchors (TLS 1.2): Recall that GeoCommit assumes high-
time-resolution anchors. But most existing anchors today (e..g, TLS 1.2 servers)
only offer one-second time granularity. To address this, we introduce a technique
we call amplification. The idea is to chain a sequence of proofs. Specifically, the
prover alternates between computing a PoRet commitment and pinging the an-
chor, filling an entire resolution tick this way. The length of the proof chain is
set by the amplification factor a. App. E contains more details. In brief, we show
that amplification causes only a minor degradation in geolocation quality.

Decentralizing trust among anchors: It is straightforward to consider an
extension to GoAT where as long as a threshold t number of anchors do not col-
lude, the system is secure. The prover now has to invoke Prove once per anchor.
The extra computational burden on the prover is minimal because proofs can be

14 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

executed in parallel and the basic computation costs are negligible. The geoloca-
tion quality degrades due to the use of multiple anchors. Previously each anchor
produced a circular ROU centered at its location, but with t+1 anchors, the new
ROU is the union of the t+1 spherical circles as some t of them might be corrupt.

5 Implementation and Evaluation

We implemented GoAT-P in ≈2500 lines of C with support for both TLS 1.2 and
Roughtime anchors. We use TLSe [40] for TLS, Roughenough [39] for Rough-
time, and Relic [10] for pairings. GeoCommit is optimized using the asynchronous
I/O library libaio [4]. We present our evaluation results in Sec. 5.1.

We perform a small experiment over a week using 10 anchors (5 in the US
and 5 in the UK) to validate GoAT’s performance in the wild. The experiment
details and results are in Sec. 5.2.

Setup considerations: For the purposes of this paper, we only aim to demon-
strate feasibility. We thus set parameters conservatively, favoring strong com-
pleteness with somewhat coarser geolocation than may be achievable in practice.

We set the maximum network speed of an adversary Smax=
2
3c where c is the

speed of light. This is the max. speed achievable in a fiber-optic cable [30].
Estimating the minimum speed for an honest user Smin can be tricky due to

inconsistent network quality across locations. Based on RTT data from Wonder
Network [37], we set Smin =

2
9c, i.e., advantage ω = Smax/Smin = 3 and the con-

stant startup cost tsetup=5ms. These parameter choices are consistent with recent
work [17] that estimates the median RTT between PlanetLab nodes and popular
websites to be about 3.2× slower than speed of light; so Smin=

c
4.5 is conservative.

These parameters worked consistently across our experiments, and we emphasize
again that our flexible-challenge model permits a prover to make multiple proof
attempts over a given interval, creating strong resilience to network fluctuations.

Existing anchor discovery: To show that there is an existing network of
servers that can serve as GoAT anchors, we perform a limited measurement
study of existing TLS and Roughtime servers. We obtain server locations from
the IP geolocation database, IP2Location.5

For TLS 1.2, we focus on domains for educational institutions, as we find they
are more likely than other domains to have unique physical locations. We take the
first 2850 domains from the Alexa top 1M list [1] containing the substring “.edu”.
We retain only those servers that return the correct time and whose ISP does not
belong to a CDN provider (as they do not have a unique location). The result is
a set of 300 domains that can be used as anchors, i.e., 10.5% of our original list.

We are aware of four Roughtime servers as of Apr. 2023. All of them re-
turn correct time with microsecond granularity. To check that their locations
are unique, we sent an ICMP ping request from two vantage points: North Vir-
ginia (NV) and Singapore (SP). In this process, we identified one of the servers

5 These databases are known to have some errors [24] and a rigorous geolocation
experiment like [42] would have to be done before deploying GoAT.

GoAT: File Geolocation via Anchor Timestamping 15

as unusable for geolocation, as it has a small RTT from both NV and SP (17ms
and 30ms respectively), suggesting the use of a CDN.

GoAT parameters: For SW PoRet, we use the BLS12-381 curve. Except in one
experiment below, we set the number of sectors per block, s=96. For GoAT to
be secure, we need (ρ+ϕ+(1−2−(λ+α)/l))l to be negligible (App. C). Assuming
the grinding constraint α=40, one set of parameters to achieve 128-bit security
are code rate ρ=0.33 and number of challenges l=250; note that the bandwidth
overhead is set to ϕ= 0.001 (based on App. A.3). For our experiments, we set
the number of challenges to l=100. We expect minimal impact on results due to
the slightly lower l. Details on how we set anchor processing times can be found
in App. G.2 and a discussion over parameter tradeoffs is in App. G.

5.1 Evaluation

We evaluate GoAT through several benchmarks on an AWS c5.4xlarge machine
with 16 CPU, 32GB RAM and 2TB io2 SSD that is capped at 20k IOPS. We al-
ways take 50 samples to compute the mean and standard deviation (in brackets).

PoRet commit time (vs) file size: As explained in Sec. 4, PoRet commit
time has a direct impact on the ROU radius. Table 1 presents the time taken to
compute the PoRet commitment as a function of file size (128MB to 256GB).
The times are all small (1-4ms) thanks to our parallelized implementation (we set
tcom=2ms which works for files below 16GB). Of the numbers shown, about 1ms
is spent on the actual commitment computation, while the rest is for file reads.
We use x64 Assembly accelerated code provided by Relic for EC operations and
further optimize it using a multi-threaded implementation (by breaking up a
vector into smaller ones). The file read times are largely constant except for an
abrupt jump at 64GB. This happens because the cache is no longer useful and
therefore we switch to using Direct I/O.

Computation costs: Table 1 presents the time taken for the Prove and Verify
operations. Here we assume a fixed epoch length and vary the number of in-
tervals. Recall that with more intervals per epoch, the location guarantee gets
better. As shown, with 100 intervals, Prove takes about 2s and Verify takes around
3s. Concrete costs are negligible for both operations (our AWS instance cost us
$0.376 per hour). Also note that the effect of number of intervals on both Prove
and Verify computation times is close to linear. We set the amplification factor
a to 1. A similarly linear effect is expected if a is varied.

Communication costs: With Roughtime anchors and the BLS12-381 curve,
GoAT-P proof size is 1941+ 720I bytes. The constant part of the equation is
due to the communication-efficient PoRet proofs, while the rest by anchor tran-
scripts. If I = 100, GoAT-P proof size is 72.2KB with a dominating 70KB of
anchor transcripts. Note in particular how the PoRet component of the proof
size does not change with the number of intervals.

The proofs are larger with TLS anchors due to amplification. For example,
the proof size of GoAT-P with a TLS anchor of a=20 is 799.64KB.

16 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

File size Time (ms)

128MB 1.09 (0.02)
1GB 1.02 (0.02)
4GB 1.02 (0.02)
16GB 1.04 (0.02)
64GB 4.27 (0.22)
256GB 4.06 (0.22)

#intervals PoRCompute Verify

1 18.11 (0.06) 47.28 (0.02)
10 183.65 (0.43) 320.81 (5.59)
100 1,838.44 (0.73) 2,991.14 (61.03)

Table 1: (Left) Time taken for SW-P.Commit. (Right) Computation time of PoRCom-
pute and Verify in ms (vs) no. of intervals per epoch. Standard deviations are in brackets.

GoAT-H also increases the proof sizes. For example, proofs are around 4.5MB
with a TLS anchor (about 5x bigger than GoAT-P) and 265.5KB with a Rough-
time anchor (about 3x bigger). See Fig. 12 for proof sizes for all GoAT variants.

5.2 Real-world experiment

We devise a small experiment to demonstrate the practical feasibility of GoAT,
specifically how it deals with network volatility. We focus on the GeoCommit
protocol alone as it is the sole operation affected by network conditions. Prior
works [27] have observed network stability over long time periods, and conclude
that network instability is frequent but most often transient. So we handle fail-
ures in GeoCommit by simply retrying until success. Concretely, the number of
retries is capped at 30 with a gap of 1 second between retries. In this process,
we count the number of retries needed to succeed and the false rejection rate, if
any. Under ideal network conditions, 0 retries are expected.

We run the prover from two AWS instances located in North Virginia (NV)
and London (LON).6 Five anchors, screened for the criteria described before, are
picked near each. The interval length is set to β=30mins and the GeoCommit pro-
tocol is run for 10 days at NV (525 intervals) and 7 days at LON (347 intervals).

Table 2 shows the ten anchors used including three Roughtime anchors. The
first five anchors are used with the AWS instance in NV, while the remaining
with the one in LON. The 2nd column shows the distance d between the anchor
and its corresponding AWS instance, the 3rd column shows the amplification
factor a, and the 4th column shows the ROU radius δ along with the ratio δ/d.

Geolocation accuracy: Recall that the ROU radius is given by δ=dω+(tcom+
tsetup+ tproc) ·Smax/2 (eq. (1)). Table 2 shows that δ/d converges to the advan-
tage ω=3 for storage providers farther away from the anchor, suggesting that
distance-to-the-anchor is the dominating factor in determining the geolocation
accuracy. But for nearby providers, we see high ratios going up to 46 caused
by constants like tsetup and tproc. Also note that TLS anchors achieve worse ge-
olocation compared to Roughtime ones due to the higher processing times; for
example, compare “american.edu” and “roughtime.chainpoint.org”.

6 We use a 100 IOPS, 30GB gpt2 SSD instead of io2 SSD as the latter is more
expensive. We did not find a significant impact on commit times due to this.

GoAT: File Geolocation via Anchor Timestamping 17

If finer geolocation is desired, aggressive parametrization can help. For exam-
ple, the variable tsetup (startup cost) alone is responsible for nearly half the geolo-
cation radius of “roughtime.chainpoint.org”. It can be reduced with a refined net-
work model, as we found that only some anchors require this extra time (App. G).

Anchor name Distance a ROU radius (δ/d) #retries (SD)

roughtime.chainpoint.org 46.00 1 1187.27 (25.81) 0.06 (0.23)
roughtime.sandbox.google.com 115.33 1 1395.26 (12.10) 0.02 (0.13)

www.american.edu 43.99 60 1665.51 (37.86) 0.03 (0.47)
www.sunysuffolk.edu 450.29 34 2939.14 (6.53) 1.00 (0.06)
roughtime.int08h.com 1582.83 1 5797.76 (3.66) 0.01 (0.11)

holycross.ac.uk 35.26 61 1638.21 (46.46) 0 (0)
sruc.ac.uk 58.83 58 1722.94 (29.29) 0.67 (1.04)
gold.ac.uk 87.45 55 1816.92 (20.78) 1.02 (0.15)
nott.ac.uk 175.19 48 2081.89 (11.88) 2.26 (1.76)

www.ed.ac.uk 533.67 31 3223.57 (6.04) 0.003 (0.05)

Table 2: The second column shows the distance between the anchor and its closest
AWS instance (d). The third column shows the amplification factor (a). The fourth
column shows both the ROU radius (δ) and the ratio (δ/d). All distances are in km.
Last column shows the mean and SD of the number of retries.

6 Conclusion

We presented GoAT, a practical Proof of Geo-Retrievability (PoGeoRet) scheme
for file geolocation. GoAT leverages timestamping internet servers for proving
location and the Shacham-Waters PoRet scheme for proving file retrievability.
GoAT has a unique challenge model that permits batching proofs over several
intervals and verifsying them at the end of an epoch; this also makes GoAT
proofs small. We demonstrated GoAT’s practicality through a fully functional
implementation and a real-world experiment.

References

1. Alexa top sites. https://www.alexa.com/topsites, [Accessed Apr 2021]
2. Coinmarketcap, cryptocurrency market prices, https://coinmarketcap.com/,

[Accessed Aug 2022]
3. Filecoin aims to use blockchain to make decentralized storage resilient

and hard to censor (2021), https://www.infoq.com/news/2021/02/

filecoin-blockchain-storage/, [Accessed Jul 2022]
4. Linux-native asynchronous i/o access library. https://pagure.io/libaio (2021),

[Accessed Jul 2022]
5. Metric space. https://en.wikipedia.org/wiki/Metric_space (2021), [Accessed

Jul 2022]
6. Ssd userbenchmarks - 1058 solid state drives compared. https://ssd.

userbenchmark.com/ (2021), [Accessed Apr 2021]

https://www.alexa.com/topsites
https://coinmarketcap.com/
https://www.infoq.com/news/2021/02/filecoin-blockchain-storage/
https://www.infoq.com/news/2021/02/filecoin-blockchain-storage/
https://pagure.io/libaio
https://en.wikipedia.org/wiki/Metric_space
https://ssd.userbenchmark.com/
https://ssd.userbenchmark.com/

18 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

7. A. Malhotra, A.L., Ladd, W.: Roughtime. https://datatracker.ietf.org/doc/
html/draft-roughtime-aanchal (2020)

8. Amazon: Aws ec2 costs. https://aws.amazon.com/ec2/pricing/on-demand/

(2021), [Accessed Apr 2021]
9. Amazon: Aws s3. https://aws.amazon.com/s3/ (2021)

10. Aranha, D.F., Gouvêa, C.P.L., Markmann, T., Wahby, R.S., Liao, K.: RELIC is an
Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic

11. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: ACM CCS. pp. 598–609 (2007)

12. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In: Annual International Cryptology Conference. pp.
273–289. Springer (2004)

13. Benet, J.: IPFS - content addressed, versioned, P2P file system. CoRR (2014),
http://arxiv.org/abs/1407.3561

14. Benet, J., Greco, N.: Filecoin: A decentralized storage network. Protoc. Labs pp.
1–36 (2018)

15. Benet, J., Dalrymple, D., Greco, N.: Proof of replication. Protocol Labs, July
p. 20 (2017)

16. Benson, K., Dowsley, R., Shacham, H.: Do you know where your cloud files are?
In: Proceedings of the 3rd ACM workshop on Cloud computing security workshop.
pp. 73–82 (2011)

17. Bozkurt, I.N., Aguirre, A., Chandrasekaran, B., Godfrey, P.B., Laughlin, G.,
Maggs, B., Singla, A.: Why is the internet so slow?! In: International Conference
on Passive and Active Network Measurement. pp. 173–187. Springer (2017)

18. Cecchetti, E., Fisch, B., Miers, I., Juels, A.: Pies: Public incompressible encodings
for decentralized storage. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. pp. 1351–1367 (2019)

19. Clark, M.: Nfts, explained (Mar 11, 2021), https://www.theverge.com/22310188/
nft-explainer-what-is-blockchain-crypto-art-faq, [Accessed Jul 2022]

20. Dierks, T., Rescorla, E.: TLS 1.2 RFC 5246. https://tools.ietf.org/html/

rfc5246 (2008)
21. of Entropy, L.: Drand: Distributed randomness beacon. drand.love (Accessed

Aug 2022)
22. Fisch, B.: Poreps: Proofs of space on useful data. IACR Cryptol. ePrint Arch.

2018, 678 (2018)
23. Fisch, B., Bonneau, J., Greco, N., Benet, J.: Scaling proof-of-replication for

filecoin mining. Benet//Technical report, Stanford University (2018)
24. Gill, P., Ganjali, Y., Wong, B., Lie, D.: Dude, where’s that ip? circumventing

measurement-based ip geolocation. In: Proceedings of the 19th USENIX conference
on Security. pp. 16–16 (2010)

25. Hanser, C., Slamanig, D.: Efficient simultaneous privately and publicly verifiable
robust provable data possession from elliptic curves. In: 2013 International
Conference on Security and Cryptography (SECRYPT). pp. 1–12. IEEE (2013)

26. Harding, E.L., Acevedo, L.J., Dailey, L.R.: Data localization and
data transfer restrictions. https://www.natlawreview.com/article/

data-localization-and-data-transfer-restrictions/ (August 2021), [Ac-
cessed Jul 2022]

27. Høiland-Jørgensen, T., Ahlgren, B., Hurtig, P., Brunstrom, A.: Measuring latency
variation in the internet. In: Proceedings of the 12th International on Conference
on emerging Networking EXperiments and Technologies. pp. 473–480 (2016)

https://datatracker.ietf.org/doc/html/draft-roughtime-aanchal
https://datatracker.ietf.org/doc/html/draft-roughtime-aanchal
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/s3/
https://github.com/relic-toolkit/relic
http://arxiv.org/abs/1407.3561
https://www.theverge.com/22310188/nft-explainer-what-is-blockchain-crypto-art-faq
https://www.theverge.com/22310188/nft-explainer-what-is-blockchain-crypto-art-faq
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
drand.love
https://www.natlawreview.com/article/data-localization-and-data-transfer-restrictions/
https://www.natlawreview.com/article/data-localization-and-data-transfer-restrictions/

GoAT: File Geolocation via Anchor Timestamping 19

28. Jeon, K.E., She, J., Soonsawad, P., Ng, P.C.: Ble beacons for internet of things
applications: Survey, challenges, and opportunities. IEEE Internet of Things
Journal (2018). https://doi.org/10.1109/JIOT.2017.2788449

29. Juels, A., Kaliski Jr, B.S.: Pors: Proofs of retrievability for large files. In: Proceed-
ings of the 14th ACM conference on Computer and communications security. pp.
584–597 (2007)

30. Katz-Bassett, E., John, J.P., Krishnamurthy, A., Wetherall, D., Anderson, T.,
Chawathe, Y.: Towards ip geolocation using delay and topology measurements.
In: Proceedings of the 6th ACM SIGCOMM conference on Internet measurement.
pp. 71–84 (2006)

31. Kohls, K., Diaz, C.: VerLoc: Verifiable localization in decentralized sys-
tems. In: 31st USENIX Security Symposium (USENIX Security 22).
pp. 2637–2654. USENIX Association, Boston, MA (Aug 2022), https:

//www.usenix.org/conference/usenixsecurity22/presentation/kohls

32. Labs, P.: Filecoin: A decentralized storage network. https://filecoin.io/

filecoin.pdf (July 19, 2017), [Accessed Jul 2022]
33. Labs, S.: Storj: A decentralized cloud storage network framework.

https://www.storj.io/storjv3.pdf (October 30, 2018), [Accessed Jul 2022]
34. Mellor, C.: Ssds will crush hard drives in the enterprise, bearing down

the full weight of wright’s law. https://blocksandfiles.com/2021/01/25/

wikibon-ssds-vs-hard-drives-wrights-law/ (January 25, 2021), [Accessed Jul
2022]

35. Patton, C.: Roughtime: Securing time with digital signatures. https:

//blog.cloudflare.com/roughtime/ (2018), [Accessed Jul 2022]
36. Qualys: Ssl pulse. https://www.ssllabs.com/ssl-pulse/ (2022), [Accessed Jul

2022]
37. Reinheimer, P., Roberts, W.: Global ping statistics: Manhattan. https:

//wondernetwork.com/pings/Manhattan, [Accessed Apr 2021]
38. Shacham, H., Waters, B.: Compact proofs of retrievability. In: International

conference on the theory and application of cryptology and information security.
pp. 90–107. Springer (2008)

39. Stock, S.: Roughenough. https://github.com/int08h/roughenough (2021),
[Accessed Jul 2022]

40. Suica, E.: Single c file tls 1.2/1.3 implementation. https://github.com/

eduardsui/tlse/ (2021), [Accessed Jul 2022]
41. Vorick, D., Champine, L.: Sia: Simple decentralized storage. https:

//sia.tech/sia.pdf (November 29, 2014), [Accessed Jul 2022]
42. Wang, Y., Burgener, D., Flores, M., Kuzmanovic, A., Huang, C.: Towards

street-level client-independent ip geolocation. In: NSDI. vol. 11, pp. 27–27 (2011)
43. Watson, G.J., Safavi-Naini, R., Alimomeni, M., Locasto, M.E., Narayan, S.: Lost:

location based storage. In: Proceedings of the 2012 ACM Workshop on Cloud
computing security workshop. pp. 59–70 (2012)

A Formalism details

Storage devices: To model an adversary that can place files in several distinct
locations, we introduce a model for (storage) devices. We denote a device by D.
In our security experiments (for soundness), all devices are under the control

https://doi.org/10.1109/JIOT.2017.2788449
https://www.usenix.org/conference/usenixsecurity22/presentation/kohls
https://www.usenix.org/conference/usenixsecurity22/presentation/kohls
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://www.storj.io/storjv3.pdf
https://blocksandfiles.com/2021/01/25/wikibon-ssds-vs-hard-drives-wrights-law/
https://blocksandfiles.com/2021/01/25/wikibon-ssds-vs-hard-drives-wrights-law/
https://blog.cloudflare.com/roughtime/
https://blog.cloudflare.com/roughtime/
https://www.ssllabs.com/ssl-pulse/
https://wondernetwork.com/pings/Manhattan
https://wondernetwork.com/pings/Manhattan
https://github.com/int08h/roughenough
https://github.com/eduardsui/tlse/
https://github.com/eduardsui/tlse/
https://sia.tech/sia.pdf
https://sia.tech/sia.pdf

20 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

of the adversary. The adversary can place devices in locations of its choice but
those locations remain fixed throughout the experiment. Devices have access to
unlimited storage memory. The adversary cannot execute any function outside
the device environment, a requirement that simplifies our model w.l.o.g., as the
adversary can transmit files freely between storage devices placed in locations
of its choice. Formally, we model all devices by way of an oracle Odev presented
in App. A.1.

Modeling time: As noted before, in all PoGeoRet schemes, the verifier V uses
an internal clock to time interactions with the prover P. V must also know an
upper bound on the computation time required by an honest P.
We allow the adversary to communicate messages (of any size) between devices
with speed Smax.

A.1 Soundness

Our security definition for soundness has many similarities to that of a PoRet.
The PoRet soundness definition involves two experiments: setup and challenge.
The setup experiment lets the adversary set up its devices and pick a file F for
the challenge-response interactions in the challenge experiment. The challenge
experiment corresponds to interactions with a real-world verifier, and requires
that an adversary responds to ϵ-fraction of queries correctly. The challenge ex-
periment interface is reused for extraction, in which a verifier tries to reconstruct
F from file fragments obtained in the Extract protocol. A PoRet scheme is said to
be sound if success in the challenge experiment implies that extraction succeeds.

The PoGeoRet soundness definition includes these requirements, but also
that success means the file F is inside the region Rrou. To capture this require-
ment, we introduce into PoGeoRet a commitment oracle Orou

com that models the
ComFrag function in a localized way. At a high level, Orou

com models the necessity
of computing ComFrag in a real-world execution similar to how a random oracle
models that of a hash function. In particular, Orou

com models running ComFrag
on a storage device inside Rrou and consequently captures the location where
the file fragment µ input to ComFrag is stored. Our modeling of a commitment
oracle is similar to how a random oracle models a hash function, but general-
ized to a generic ComFrag function and localized to a geographic region. (In one
of the GoAT protocols, ComFrag is a hash function, and the commitment ora-
cle then becomes a localized random oracle.) Note that the adversary can run
ComFrag on any device it wants, either inside or outside Rrou, but Orou

com only
tracks executions inside Rrou. Orou

com is a subroutine of the device oracle Odev.

Extraction, now called “geo-extraction,” is deemed successful only if F can
be computed from a set of file fragments µall such that every fragment µ∈µall

was previously seen in a query to Orou
com. The idea is that, if Orou

com was queried on
a fragment, it happened inside Rrou. Consequently, if enough file fragments are
inside Rrou, then the file F itself is in Rrou. The rest of the PoGeoRet soundness
definition is same as for a PoRet, as explained in more detail below.

GoAT: File Geolocation via Anchor Timestamping 21

Corresponding to the setup and challenge experiments, the adversary A con-
sists of two parts, Asetup and Achal, each involved only in its respective experi-
ment.
Asetup may interact arbitrarily with the verifier; it may create files and run

Setup on them; it may also undertake challenge-response interactions with the
verifier and observe if the verifier accepts or not. Asetup is allowed to place any
number of devices at locations of its choice and decide what to store in their
memories. Device locations are fixed after creation.

The setup experiment runs Setup on a file F picked by the adversary. The
resulting output F ∗ is challenged in the challenge experiment.

During the challenge experiment, challenges are issued to the second adver-
sary component Achal and success is based on whether the proof verifies.

Geo-extraction is the crux of the soundness definition. Just as a proof of
knowledge has knowledge-soundness if success with the verifier implies an abil-
ity to extract a witness, a PoGeoRet is sound only if success with the verifier
implies an ability to extract the target file from a target geographical region—
which, again, we refer to as “geo-extraction.”

Geo-extraction consists of three steps. First Extr.Derive derives file fragments
µall from interactions with Achal, i.e., the same adversary component as in the
challenge experiment. We allow the adversary to be rewound in this step, as
is standard in the PoRet literature, e.g., [29,38]. Second, Extr.Assemble tries to
recompute the file from the derived file fragments µall. Extr.Assemble does not
interact with the adversary. The third and final step is verifying if all the frag-
ments µall were seen inside Rrou, i.e., as inputs to the commitment oracle Orou

com.
We say that geo-extraction succeeds only if both Extr.Assemble succeeds and all
file fragments were in Rrou. A PoGeoRet scheme is said to be sound if adversarial
success in the challenge experiment implies that geo-extraction succeeds w.h.p.

From the point of view of an adversary whose goal is to “cheat” a verifier,
A wants to create an environment in which V believes the file is in Rrou, but it
isn’t. Thus the aim of Asetup is to set up devices in such a way that: (1) V accepts
responses from Achal in the challenge experiment and (2) V cannot geo-extract
the file F , i.e., fails to recompute F from the file fragments input to Orou

com.
We now present the device oracle formally in App. A.1. Our detailed security

experiments and soundness definition are in App. A.1.

Device oracle We model device actions in our experiments via the device oracle
Odev specified in Fig. 3.
– Odev.init is used in the setup experiment for initialization.
– Odev.createDevice allows the adversary to spawn devices at any location (both

inside and outside Rrou) and Odev.setStorage allows changes to device storage.
– Odev.exec allows the adversary to execute a function func on a device of

its choice, including any function in the PoGeoRet API except ComFrag.
Odev.execComFrag models the commitment oracle Orou

com and tracks all calls
to ComFrag.Odev.exec can also communicate with other devices throughOdev.sendTo
or execute code on a different device.

22 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

– Odev.seenInROU is used only in the soundness definition to check if a given set
of inputs were previously seen in a call to Orou

com.

Device oracle Odev

1 :
State: A region Rrou. Key-value pairs D[did]=(loc,s) where the key did is the
device identifier, loc is its location, s is an unbounded list representing device
storage. A list µrec to track calls to ComFrag made from within Rrou.

2 : init(R): Set Rrou=R. Not callable by the adversary.

3 : createDevice(loc,s): Create a unique device identifier did and set D[did]=(loc,s).
Return did.

4 :
exec(did,func)→out: If did /∈D return ⊥. Compute any function func ̸=ComFrag
and return its output. func can read / write to D[did].s or call any Odev functions
internally.

5 :
execComFrag(did,µ): If did /∈D return ⊥. Else compute ComFrag(µ) and return
its output. If D[did].loc∈Rrou, do µrec.append(µ).

6 : sendTo(did1,did2,data): If data∈D[did1].s, D[did2].s.append(data).
7 : setStorage(did,snew): Modify the device storage to D[did].s=snew .

8 : seenInROU(µall): Return 1 if ∀µ∈µall,µ∈µrec holds.

Fig. 3: The device API.

Soundness experiments and definition In all experiments, the adversary
has complete freedom to call any device function. Both the experiments are in
Fig. 4.

In the setup experiment Expsetup
A , Setup is run over a file F and the output

given to A, who decides where to place the file. Asetup outputs state s that is
given to Achal as initial input.

In the challenge experiment Expchal
A , Achal responds to a challenge issued by

the verifier. Note that we issue one PoGeoRet challenge which internally com-
prises one PoRet challenge. The success probability for the challenge experiment
is defined as:

SuccchaA (η,R,pp,s)=Pr
[
Expchal

A (η,R,pp,s)=1
]
.

Definition 1 (Soundness). A PoGeoRet scheme is (ϵ,p)-sound w.r.t. a target
region Rtarget achieving a region of uncertainty Rrou if for all poly-time A:

Pr

µall←Extr.Derive(η,Rrou,pp),
Extr.Assemble(µall)=F,
Odev.seenInROU(µ

all)=1

∣∣∣∣∣∣ (η,pp,F,s)←Expsetup
A (Rrou),

SuccchaA (η,Rrou,pp,s)≥ϵ

≥p.

This definition states that a PoGeoRet scheme is (ϵ,p)-sound if, for every ad-
versary that succeeds the challenge experiment with ϵ probability, geo-extraction
must also succeed with probability p. Sometimes we omit p and say that a Po-
GeoRet scheme is ϵ-sound; in such cases we mean that p is negligibly close to 1,
i.e., p=1−negl(λ).

GoAT: File Geolocation via Anchor Timestamping 23

Expsetup
A (R)

Odev.init(R)

(sk,pk)←KGen(1λ)

F←AOdev
setup(pk)

(F ∗,η,pp)←Setup(sk,pk,F)

s←AOdev
setup(F

∗,η,pp)

return (η,pp,F,s)

Expchal
A (η,R,pp,s)

AOdev
chal (s) % Init Achal

c←Chal(η,pp) % Random chal

timer,πgeo←AOdev
chal .Prove(η,R,c)

return Verify(pp,R,c,πgeo,timer)

Fig. 4: Setup and Challenge Experiments.

A.2 Completeness

Completeness requires that a valid prover P using a device inside the target
region Rtarget can successfully prove operation inside Rrou.

Experiment Expcomp(L,Rrou)

(sk,pk)←$KGen(1λ),F←${0,1}∗

(F ∗,η,pp)←Setup(sk,pk,F)

did←Odev.createDevice(L,F
∗)

c←Chal(η,pp)

timer,πgeo←Odev.exec(did,Prove(η,R
rou,c))

return Verify(pp,Rrou,c,πgeo,timer)

Definition 2 (Completeness). A PoGeoRet scheme is complete w.r.t a tar-
get region Rtarget achieving a region of uncertainty Rrou, if for any L ∈Rtarget,
Pr[Expcomp(L,Rrou)=1]>1−negl(λ).

Note that we use the device oracle Odev to spawn a device at the target
location L and run Prove on this device.

Remark: For simplified presentation, the above definitions of soundness and
completeness assume an interactive protocol between the prover and verifier.
Our main goal, though, is for GoAT to operate non-interactively. Due to lack
of space, we relegate non-interactive definitions to App. F.1 (they only require
minor modifications).

A.3 Extension to flexible-challenge model

As before, the setup experiment has the adversary pick file F and initialize
several devices. But then, I challenge experiments take place, one per inter-
val. After the epoch (or) I intervals end, the challenge responses are verified.
Geo-extraction takes place after that.

The device oracle Odev now maintains a record of the commitment oracle
queries made in each interval; let µrec

i denote the list of fragments queried in
the ith interval. In each interval, the adversary requests a challenge at a time

24 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

of its choosing. After the epoch (or I intervals) ends, we extract the file I times
by running Extract. Geo-extraction in the ith interval succeeds if the file can be
assembled from the fragments in µrec

i . Soundness is defined in the same way as
before except that we now require geo-extraction succeed in all I intervals.

Economic argument: Note that for short intervals, typically ϕ≪1, as we now
show in an example. Consider the bandwidth and storage costs currently charged
by Amazon. (We take storage cost as a proxy for revenue.) Suppose we set the
interval length β=30mins. If an encoded file size is |F ∗|=1TB, then a prover’s
storage revenue is at most $0.02 per interval on Amazon S3 [9]. On the other
hand, AWS bandwidth costs start from $20 per TB7.So downloading 1GB would
cost the same as the revenue obtained by storing 1TB. Therefore ϕ=1/1000.

B GoAT-H

GoAT-H version: The key difference in GoAT-H is the use of a hash func-
tion as the vector commitment. This results in larger proofs and extra com-
putational steps in Prove and Verify. GeoCommit is the same as before except
the change in the PoRet commitment function, i.e. SW-H.Commit instead of
SW-P.Commit. PoRet computation (Prove) involves näıvely running SW.Prove
I times because the aggregation tricks do not work anymore. If Sj denotes
the jth set of challenges, compute πPoRet

j ← SW.Prove(η,Sj); the final proof

is πPoRet← {πPoRet
1 ,πPoRet

2 ,...,πPoRet
I }. Accordingly, verification involves running

SW-H.Verify I times. The proof sizes in GoAT-H are asymptotically the same as
GoAT-P, but concretely about 3x larger. Geolocation accuracy remains the same.

A summary of both the GoAT protocols can be found in Figure 11.

C GoAT security

Both GoAT-H and GoAT-P achieve the same security but in different models.
GoAT-H operates in the random oracle model and its security proof relies on the
commonly used “knowledge of queries” technique. On the other hand, GoAT-P’s
security relies on a new assumption that we call the KEV Assumption (KEVA).
The proof sketches for both protocols are in App. D.

KEVAs extends the commonly used KEA1 [12] for an s-sized vector of ele-
ments. In particular, if s=1 it reduces to KEA1. It states that if A takes two
correlated sets of bases (h1,h2 = hb

1) as input and outputs (c1,c2) s.t. c2 = cb1,
then there exists an extractor EA that can output a pre-image x s.t. the Ped-
ersen commitment of x with h1 is c1, i.e., h

x
1 = c1 while using the same inputs

as before. This is saying that the only way of computing (c1,c2) is by picking a
pre-image x and computing its Pedersen commitment.

7 AWS bandwidth costs vary by region, ranging from $20-$100 per TB transferred [8].
S3 charges also vary by region, we use the maximum above.

GoAT: File Geolocation via Anchor Timestamping 25

Definition 3 (KEVAs). Given any set of distinct bases h1∈Gs, for any PPT
A, there exists a PPT extractor EA s.t.

Pr

[
x←EA(h1,h2),

hx
1 =c1

∣∣∣∣ b←$Zp,h2=hb
1

(c1,c2)←A(h1,h2),c2=cb1

]
>1−negl(λ).

Say the target region is a single location, Rtarget=(L;0). Then the region of
uncertainty achieved by GoAT-H and GoAT-P is a circle centered at anchor’s loca-
tion with radius δL=∆(LA,L)·Smax/2. In practice, the target region might have
a small diameter, Rtarget=(L;δ′). As long as δ′ is small, we can approximate and
define the region of uncertainty as Rrou=(A;δ′′) where δ′′=max{L′∈Rtarget}δL′ .

Theorem 1. Let w =
(
ρ+ϕ+1−2

−λ−α
l

)l
. For any ϵ≤ 1 s.t. ϵ−w is positive

and non-negligible and KEVAs holds and that the CDH problem is hard in bilin-
ear groups, GoAT-P is (ϵ,p)-sound at a target geographic region Rtarget = (L;δ′)
achieving a geolocation guarantee of Rrou = (A;δ′′) under the flexible challenge
model and the random oracle model.

D Security Proof Sketches

We now provide a proof sketch for Thm. 1. We primarily focus on GoAT-P with
a Roughtime anchor adding notes about how the proof extends to GoAT-H (or)
to TLS anchors where needed.

Recall that the GoAT-P proof πgeo consists of I geo-commitments and a PoRet
proof. Each geo-commitment Cgeo consists of a+1 anchor transcripts and all but
the first transcript contain a PoRet commitment. In total, N = Ia PoRet com-
mitments are in a proof. Similarly, the GoAT-H proof consists of N = Ia PoRet
proofs and I geo-commitments.

We prove soundness of GoAT in four steps.

1. Prove that the N PoRet commitments and the PoRet proof(s) are correctly
computed, i.e., PoRet verification (PoRet.Verify) part of Verify must detect
otherwise.

2. A combination of timing and knowledge based arguments to prove that the
ComFrag operation is run on a device inside Rin, i.e., prove that all file frag-
ments part of a correct proof must have been queried to the commitment
oracle Orou

com.

3. Prove that the extraction algorithm can efficiently reconstruct ρ fraction of
file blocks from the fragments in each of the I snapshots {Si}Ii=1.

4. Prove that the file can be reconstructed from any ρ fraction.

The proof for part 4 follows directly from the properties of a rate-ρ erasure
code, so we do not expand on it further.

26 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

D.1 Part-two proof

For this part, we need to prove that the commitment oracle Orou
com receives all

file fragments that are part of a correct PoRet commitment, proof. (The latter
is guaranteed by the part-one proof provided later.)

We proceed in two steps. First we argue that the only way of computing
a valid PoRet commitment is by computing ComFrag on valid file fragments.
This relies on the KEV assumption (See Def. 3) for GoAT-P and the ROM for
GoAT-H. Next we argue that all calls to ComFrag must take place from within
the desired target region Rin. This relies on a timing based argument. Overall,
this proves that if correct PoRet commitments and proofs are computed, then
the commitment oracle (Orou

com) records all the corresponding file fragments.
The proof for first step is as follows. Given a valid PoRet commitment Cµ

for SW-P, we need to prove the existence of a valid pre-image µ. But the KEVA
directly offers this. We can use the extractor provided by the assumption to
efficiently extract µ for every valid PoRet commitment.

The proof for the second part is given below. We provide two arguments
based on whether a high-resolution / low-resolution anchor is used, beginning
with the former setting.

As noted before, we assume that the clock offsets of all anchors are observed
apriori and that clock drift is negligible. So we can safely assume that the an-
chor timestamps lie inside the expected interval, as otherwise the geo-commit
verification would detect.

High-resolution anchors (a = 1) Fixing some notation, assume that the
storage provider P is at a location Lp ∈Rtarget and that the anchor assigned to
Lp is A, located at L1. Recall that the target region in GoAT is a spherical circle
centered at L1 with radius δ =∆(Lp,L1) ·Smax/2, i.e., the region Rin = (L1;δ).
Expanding the radius further we have, δ=(tcom+rttmax(Lp,L1)+tproc)·(Smax/2).

Recall that in the case of high-resolution anchors, the prover computes one
PoRet commitment per interval. We want to prove that all the I PoRet commit-
ments are computed on some device in Rin. Assume the contrary, i.e., say there
exists a device Dout situated at L2∈Rout on which one of the PoRet commitments
is computed. By definition we have dist(L1,L2)>δ.

Without loss of generality, assume that a copy of the encoded file F ∗ (gener-
ated during the setup experiment) exists in its entirety in the memory of Dout,
and therefore the time taken to compute commitment on Dout is negligible, i.e.,
tAcom=0. We also set the anchor processing time tAproc=0.

The time taken to receive and respond from Dout during the geo-commitment
protocol with A is given by z=2dist(L1,L2)/Smax. This is because in Fig. 7 we
derive challenges from anchor signatures, i.e., they arise at L1 and must reach
L2. We can assume that the adversary probability of guessing these challenges
is negligible (requires breaking selective unforgeability of the signature scheme
used by the anchor which happens with negligible probability).

Note in particular that this value is irrespective of any other factors, e.g.,
the adversary’s strategy might be to place a device Din exactly at the anchor lo-

GoAT: File Geolocation via Anchor Timestamping 27

cation L1, and initiate the protocol from Din with challenges forwarded to Dout.
Moreover, we do not include any startup cost when the adversary is sending
messages between devices, so tAsetup=0.

For the geo-commitment verification to succeed, it must be that z≤∆(Lp,L1).
(See last step in Fig. 2 when a=1.)

But we have a contradiction, as z must also satisfy z > 2δ/Smax because
dist(L1,L2)>δ. Substituting for δ we get z>∆(Lp,L1). Hence proved. ⊓⊔

The proof for low-resolution anchors is similar and relegated to the full paper
due to lack of space.

D.2 Remaining proofs

We now prove the remaining parts, part-one and part-three.

Part-one proof For this we reuse the proof for Theorem 4.2 in [38]. They
provide a series of games that prove that, except with negligible probability,
no adversary ever causes a verifier to accept in a PoRet instance, except by
responding with values {µj},σ that are computed correctly (under the assump-
tion that the computational Diffie-Hellman problem is hard in bilinear groups).
This directly proves that if the challenger provides a challenge set S∗, then the
correctly computed output of SW.Prove and SW.Commit containing {Cµ,µ,σ}
must be accepted by the verification algorithm SW.Verify. The only change we
made is the extra vector commitment. Assuming that the binding property of
the vector commitment scheme holds, this directly follows.

The remaining thing to be proved is that all the individual PoRet commit-
ments used to compute C=Cµ are correctly computed. Assume for contradiction
that some of them are not computed correctly. Observe that we derive random
coefficients rj from the final PoRet commitment comN . These coefficients are

used during verification to compute C as follows, C =
∏N

j=1(comj)
rN . Under

the random oracle model, we can assume that the probability of prover guessing
these coefficients beforehand is negligible. Note the two checks in SW.Verify: the
commitment check (VC.Verify) and the pairing equation check. Assuming that
the latter succeeds, that is the final commitment C is the same as that computed
by an honest prover, then the only way prover can make VC.Verify succeed is by
guessing the random coefficients correctly (or) by breaking commitment bind-
ing, both of which happen with negligible probability. Grinding concerns are
discussed in the main body.

Part-three proof We re-purpose the extraction algorithm provided in the proof
of Theorem 4.3 in [38]. [38] provides an extraction algorithm that, given an ad-
versary that answers ϵ fraction of the queries correctly, can extract ρ fraction
of the encoded file blocks provided that ϵ− (ρn)l/(n− l + 1)l is positive and
non-negligible.

28 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

Recall that our extraction algorithm Extract is composed of Extr.Derive and
Extr.Assemble. And the extraction algorithm of [38] already follows this addi-
tional structure we impose. Querying the adversary corresponds to Extr.Derive
and assembling the file from query responses corresponds to Extr.Assemble.

The only change now is that extraction must succeed in every interval, i.e.,
Odev.seenInROU(µ

all
i) = 1 ∀i ∈ {1,2, ... , I} must pass for all the intervals. And

the key question is how the new bandwidth constraint ϕ and grinding attacks
(discussed in Sec. 4) impact the above theorem.

Recall that the size of the encoded file is |F ∗|. Of this, due to grinding, at
least g = (1− (1−2−λ)1/α)1/l fraction is only stored inside Rin and hence only
that is available for extraction (α is the grinding cap). And further, upto ϕ bytes
(the bandwidth cap) of the g-sized fraction can be downloaded, and is hence
unavailable.

The idea in the proof of Theorem 4.3 of [38] is to query enough times
and use linear algebraic techniques to recover file blocks from query responses.
Queries are made randomly. Three types of queries are listed, and the fraction
of type-1 queries (the useful ones that help recover file blocks) is ϵ−w where
w = (ρn)l/(n− l+1)l (omitting the negligible part of the equation caused by
type-2 queries). The extractor needs ρn ≤ n type-1 queries to succeed, which
happens in O(n/(ϵ−w)) time.

The maximum number of blocks unavailable inside Rin is given by γ =
(nϕ
|F∗|)+n(1−g). Therefore the extractor needs more type-1 queries to succeed,

(ρn+γ). Note that we assume if a query challenges a block that belongs to the
unavailable portion in S1, a special symbol “−1” is used in place of the file block,
and the challenge response is computed. And by extracting (ρn+γ) blocks, we
are guaranteed to have at least ρn actual file blocks (removing the −1’s).

The useful fraction of queries now is ϵ−w where w= (ρn+γ)l/(n− l+1)l.
And assuming ρn+γ ≤ n, extraction happens in O(n/(ϵ−w)) time, i.e., same
order as before. One constraint we get is ϕ

|F∗|≤g−ρ.
We want ϵ−w to be positive and non-negligible. Therefore w needs to be

negligibly small. Meaning (ρ+γ/n)l (or) (ρ+ ϕ
|F∗|+1−g)l needs to be negligible.

As noted above, the number of interactions required and the time to extract is
the same order as in [38]. ⊓⊔

E Supporting TLS 1.2 anchors

E.1 Low-resolution anchors

This section deals more broadly with supporting low-resolution anchors.
Chaining of the two operations is done in a similar fashion to before. In to-

tal, a PoRet commitment computations and a+1 anchor pings take place. We
refer to a as the amplification factor. Note that this modification applies to both
GoAT variants, GoAT-H and GoAT-P.

The value a is set based on the exact resolution offered by an anchor. For
example if the anchor resolution is in seconds and the time difference ∆(LA,LP)

GoAT: File Geolocation via Anchor Timestamping 29

Proof of Geo-Retrievability
– (sk,pk)←KGen(1λ): Generate key pair. Run by the user.
– (F ∗, η, pp) ← Setup(sk, pk, F): Runs setup of the underlying PoRet scheme to

generate F ∗, which contains the file plus the generated data, its handle η, and
some public parameters pp. Run by the user.

– c←Chal(η,pp): On input file handle η and params pp, derive a random challenge
c. Run by the verifier.

– πgeo←Prove(η,R,c): On input file handle η, a geographic region R and a challenge
c, generate a proof of geo-retrievability πgeo. An interactive protocol between the
prover and verifier.
• ComFrag(µ): Sub-function that operates on a file fragment µ.

– 0/1←Verify(pp,R,c,πgeo,timer): The verifier checks that the file is in the desired
region R by (a) verifying the proof πgeo using the challenge and the public params,
and (b) checking that the measured time timer is bounded.

– F←Extract(η,R,pp): The extraction algorithm consists of two sub-functions:
• µall ← Extr.Derive(η, R, pp): On input file handle, geographic region, public

parameters, run an interactive protocol with the prover P to output a list of
file fragments µall.

• F←Extr.Assemble(µall): Assemble file fragments to compute the file.

Fig. 5: Proof of Geo-Retrievability (PoGeoRet) API.

Non-interactive Proof of Geo-Retrievability
– (sk,pk)←KGen(1λ): Generate key pair. Run by the user.
– (F ∗, η, pp) ← Setup(sk, pk, F): Runs setup of the underlying PoRet scheme to

generate F ∗, which contains the file plus the generated data, its handle η, and
some public parameters pp. Run by the user.

– πgeo←Prove(η,R): On input file handle η and a geographic region R, generates a
proof of geo-retrievability πgeo. Run by the prover. It consists of two sub-functions:
• Cgeo ← GeoCommit(η,R): On input file handle η and a region R, generate a

geo-commitment Cgeo. An interactive protocol between the prover and anchor.
Furthermore, the protocol com←ComFrag(µ) is a sub-function of GeoCommit
which takes a file fragment µ as input and generates a commitment com.

• πPoRet ← PoRCompute(η, S): On input file handle η and a set of PoRet
challenges S, compute one or more proofs of retrievability.

– 0/1←Verify(pp,R,c,πgeo): The verifier checks that the file is in the desired region
R by verifying the proof πgeo using the challenge, public params.

Fig. 6: NIPoGeoRet API.

is 50ms, then 20 consecutive proofs (when started at a one-second boundary
in the anchor’s clock) will have the same timestamp, so a = 19 (since a + 1
pings are needed). More generally, if the resolution of an anchor is ΓA, we set
a=⌊ΓA/∆(LA,LP)⌋−1.8 Below, we explain how to time proof execution in order
to ensure receipt of a+1 transcripts with the same timestamp.

In Prove, the prover computes a single PoRet similar to before, leveraging
the aggregability of SW. We also make a change to Verify: instead of checking

8 In theory, a = ⌊ΓA/∆(LA,LP)⌋ also works as a ·∆(LA, LP) ≤ ΓA. But for perfect
divisors, e.g., ∆(LA, LP) = 50ms, this can only be achieved with perfect time
synchronization and ideal network conditions, making it impossible in practice.

30 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

Geo-commitment generation (GeoCommit) between P and A

ProtA: Follow the standard protocol (TLS 1.2 / Roughtime).

ProtP: On input {η,pp}, runs the below protocol.

If ΓA≤1ms, set the amplification factor a=1. Or else a=⌊ΓA/∆(A,P)⌋−1. Select a
random N1, i=1 and do the following:

1. (Anchor ping) Request time from the anchor, {ti,Ni,σi}←A.GetAuthTime(Ni).
If i=a+1, then break.

2. (PoRet commitment) Run Si ← PoRet.Chal(η, pp, σi), comi ←
PoRet.Commit(η,Si). Set Ni+1=comi, i= i+1 and repeat from step 1.

P saves Cgeo={Ti}a+1
i=1 where Ti={ti,Ni,σi} denotes the transcript.

Geo-commitment verification by V

On receiving seed, epoch number e, interval number m, anchor public key pkA and
the geo-commitment Cgeo=

{
{Ti}a+1

i=1 ,{comi}ai=1

}
, the auditor V does:

– Set N1=seed and ∀i∈ [1,...,a],Ni+1=comi.
– Verify anchor signatures using pkA, ∀i∈ [1,...,a+1], VerifypkA(σi,{ti,Ni}) where

Ti={ti,σi} .
– Check that the time corresponds to epoch e, interval m.
– Check that the timestamps are close:
• If a>1, check that the time is same, t1= t2= ...= ta+1.
• If a=1, check that t2−t1≤∆(A,P).

Fig. 7: Geo-commitment protocols.

the difference between timestamps, the verifier counts if a+1 anchor transcripts
have the same timestamp. Other steps are similar to before.

A general GeoCommit protocol for any anchor, low- or high-resolution, is
specified in Fig. 7, in the paper appendix.

Effect on geolocation: The use of amplification has a small effect on the
radius of ROU, explained through an example. Suppose ∆(LA,LP) = 250ms,
ΓA=1000ms. Applying the above formula, we get a=3, i.e., 4 pings are needed.
But this leaves some “extra time”—for example, if the anchor’s clock times at the
moment of receipt of the 4 GetAuthTime requests are x, x+250, x+500, x+750
(all in ms), then an adversary still has about 250ms left in the end (Assume x
is a second boundary). So an adversary can spend an extra 250/a=83.33ms on
each of the a PoRet commitment computations and thus position the file further
from the target location than with no amplification. Such manipulation will go
undetected because the difference between the last and first anchor clock times
is still within a resolution tick, 750+83.33·3=999.99ms<ΓA.

The precise extra time available due to amplification is e=ΓA−a·∆(LA,LP).
Distributing it equally leads to an extra e/a time per commitment computation.
For practical values, the extra time is small and hence its impact is minimal. For
example, if ∆(LA,LP)=50ms and ΓA=1000ms, then e=50/19=2.6ms causing
about 260km increase compared to that without amplification.

GoAT: File Geolocation via Anchor Timestamping 31

Shacham-Waters PoRet scheme
Scheme parameters: A bilinear group (p,G,GT ,e,g). Number of challenges l. Num-
ber of sectors per block s. An erasure code with rate ρ. SW-H uses VC= HVC and
SW-P uses VC=CPVC.

– (sk,pk) ← SW.KGen(1λ): Pick key pair (ssk,spk) ← KGen(1λ). Choose α ∈ Zp at
random and compute gα∈G. The secret key is sk=(ssk,α) while the public key is
pk=(spk,gα).

– (F ∗,η,pp)←SW.Setup(sk,pk,F): Apply erasure code over F to obtain F ′. Split F ′

into n blocks, each s sectors long {mij}1≤i≤n,1≤j≤s with mij ∈Zp. Pick s elements

at random {ui}si=1 ∈ G. For each i ∈ {1,...,n} compute σi ← (H(i).
∏s

j=1u
mij

j)α

where H is a hash-to-group function. Denote F ∗ as the file together with
σi,1≤ i≤n. The public paramsa pp contains

{
pk,n,{ui}si=1

}
along with a signature

generated with ssk. η=H(F ∗).
– {ci,vi}li=1← SW.Chal(η,pp,seed): Derive k values ci ∈ [n], vi ∈ Zp from the input

seed. Return {ci,vi}ki=1.

– Cµ ← SW.Commit(η,{ci,vi}ki=1): Compute ∀j ∈ [1, ... , s], µj ← Σk
i=1vim

′
ij where

m′
ij =m(ci)j . Commit to the vector µ={µj}sj=1 by Cµ←VC.Commit(µ).

– π ← SW.Prove(η, {ci,vi}ki=1): Compute σ =
∏k

i=1 σ
vi
(ci)

and ∀j ∈ [1, ... , s], µj ←
Σk

i=1vim
′
ij where m′

ij =m(ci)j . Output π={µ,σ} where µ={µj}sj=1.

– 0/1←SW.Verify(pp,{ci,vi}ki=1,Cµ,π): Receive π={µ,σ}. Check signature on t with

spk and parse it receive {ui}si=1. Check if e(σ,g) = e(
∏k

i=1(H(ci))
vi
∏s

i=1u
µi
i ,pk).

Check if VC.Verify(µ,Cµ)=1.

a Referred to in the original Shacham-Waters paper as tag.

Fig. 8: The Shacham-Waters PoRet schemes with an extra commitment step. SW-H,
SW-P differ in the choice of VC scheme.

GoAT security: Considering both high-resolution and low-resolution anchors,
the following equation describes GoAT’s geolocation radii. Say the target region
is a single location, Rtarget = (L;0). Then the region of uncertainty achieved by
GoAT (both GoAT-H and GoAT-P) is a circle centered at anchor’s location with
radius δL given by:

δL=

{
∆(LA,L)·Smax/2 if ΓA≤1ms.

(ΓA/(⌊ΓA/∆(LA,L)⌋−1))·Smax/2 otherwise.

E.2 Changes to ComFrag

One other change needs to be made to support TLS. In GoAT-P, the vector com-
mitment has two elements and won’t fit into the nonce field of the TLS handshake
for commonly used algebraic groups. So we include a hash of the commitment
and reveal the underlying commitment as part of the proof. Details below.

For example, the size of each group element in our implementation is 20
bytes, so the SW-P PoRet commitment is 40 bytes whereas the TLS nonce is 32
bytes only.

So we modify the PoRet commitment protocol by hashing the previous com-
mitment to fit in the nonce field (which is essentially in turn modifying the

32 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

Proof of Retrievability
– (sk,pk)←PoRet.KGen(1λ): Generate key pair.
– (F ∗, η, pp) ← PoRet.Setup(sk, pk, F): F ∗ contains the encoded file, η denotes a

unique file handle and pp contains the public parameters. We model the public
key pk as a part of pp.

– F←PoRet.Extract(η,pp): An interactive function between a prover and verifier to
recover original file F .

– c←PoRet.Chal(η,pp,seed): Derive a challenge c from the input seed for the file η.
– C ← PoRet.Commit(η,c): Generate a commitment C to the proof based on the

challenge c.
– π←PoRet.Prove(η,c): Generate a proof π based on the challenge c.
– 0/1← PoRet.Verify(pp,c,C,π): Verify both the commitment C and proof π using

the public parameters pp.

Fig. 9: Publicly verifiable PoRet API. PoRet.Commit is the only addition compared to
prior modeling [29].

Correlated Pedersen commitment CPVC

Params: Group G and it’s support Zp. Supported vector size s. Generators
(h1,h2,...,hs)←G and (hb

1,h
b
2,...,h

b
s)←G.

– Cv ← CPVC.Commit(v): Receive v = {vi}si=1 where ∀i, vi ∈ Zp. Output

Cv=(
∏s

i=1h
vi
i ,

∏s
i=1h

bvi
i).

– 0/1←CPVC.Verify(v,Cv): Check if Cv=(
∏s

i=1h
vi
i ,

∏s
i=1h

bvi
i).

Hash-based commitment HVC

– Cv←HVC.Commit(v): Output Cv=H(v).
– 0/1←HVC.Verify(v,Cv): Check if Cv=H(v).

Fig. 10: Pedersen and Hash-based Vector Commitment scheme

ComFrag protocol). The output of the Prove protocol, i.e., the PoGeoRet proof
will now include all the PoRet commitments generated during the epoch.

If the number of intervals is 1, the proof will consist of a proof-of-retrievability,
a PoRet commitments and a+1 anchor transcripts.

F Formalism Extensions

F.1 Non-interactive Proofs of Geo-Retrievability

NIPoGeoRet allows any newcomer to verify that the prover indeed had the file
inside the region of uncertainty (ROU), during a specified time duration. The
NIPoGeoRet API (Fig. 6) is almost the same as the PoGeoRet one except that
the function Chal is removed. We attach the preamble NI to other API functions,
e.g., Prove and Verify.

Relation to GoAT: Recall that GoAT is a non-interactive protocol. So the API
in Fig. 6 map to the GoAT protocol specified in Fig. 11.

For ease of explaining GoAT, we divide Prove into two sub-functions, Geo-
Commit and PoRCompute. The former specifies the interaction with anchor A to
derive challenges. GeoCommit for GoAT is specified in Fig. 7.

GoAT: File Geolocation via Anchor Timestamping 33

NIPoGeoRet scheme between U, P, V
Scheme parameters: List of anchors T and their corresponding public keys. Interval
length β, number of intervals I.

ProtU,ProtP,ProtV :

– (sk,pk)←KGen(1λ): U runs (sk,pk)←PoRet.KGen(1λ).
– (F ∗,η,pp)←Setup(sk,pk,F): U runs (F ∗,η,pp)←PoRet.Setup(sk,pk,F) and picks a

geographic region R=(L;δL). Values {F ∗,pp,R} are given to P situated at L.
– Cgeo← GeoCommit(η,R): P selects an anchor A ∈ T based on the input region R

and generates geo-commitments via GeoCommit (See Fig. 7) once every interval
until the end of epoch. Note that ComFrag(µ) = PoRet.VC.Commit(µ).

– πPoRet ← PoRCompute(η,S): Let S = {Sj}Nj=1 denote the PoRet challenge sets
derived in GeoCommit. The process differs by the PoRet scheme:
• SW-H: Run ∀j,πPoRet

j ←SW-H.Prove(η,Sj). πPoRet={πPoRet
j }Nj=1.

• SW-P: P derives N random coefficients in Zp from the last PoRet commitment,
{rj}Nj=1 ← PRF(comN). Denote Sj = {cij , vij}ki=1. Apply random coefficients,
∀j,S∗

j = {cij ,rjvij}ki=1 and merge all the sets to create, S∗ =∪N
j=1S∗

j . Compute
πPoRet←SW-P.Prove(η,S∗).

– πgeo←Prove(η,R): The two sub-functions of Prove are specified above. The proof
of geo-retrievability πgeo consists of geo-commitments output by GeoCommit and
the proof(s) of retrievability output by PoRCompute.

– 0/1←Verify(pp,R,πgeo): Unpack πgeo = {{Cgeo
m }Im=1,π

PoRet}. The geo-commitments
are verified first using the protocol in Fig. 7. Then the proof of retrievability πPoRet

is verified using the steps described below.
• SW-H: Check ∀j,SW-H.Verify(pp,cj ,comj ,π

PoRet
j)=1 where πPoRet={πPoRet

j }Nj=1.

• SW-P: Denote πPoRet = {µ,σ}. V generates random coefficients {rj}Nj=1 and
aggregate challenge set S∗ similar to how P does in Prove. V computes
C=

∏N
j=1(comj)

rj and checks if SW-P.Verify(pp,S∗,C,πPoRet)=1.

Fig. 11: The GoAT proof of geo-retrievability schemes. It includes both the GoAT-H
and GoAT-P variants that internally use SW-H and SW-P PoRet schemes respectively.

Modeling time: In our previous modeling for interactive PoGeoRet, we relied
on the verifier to keep track of time during the security experiments. Instead
now we introduce a notion of time into the definition. Each system entity main-
tains an internal clock. Clocks need not be synchronous, but we assume that
clock drift is negligible. The clock time of say an anchor A is given by timeA.
If the true time is given by true time, then the clock offset of an entity A is
(timeA−true time). The offsets of all anchors are assumed to be public (this can
be observed once during a setup phase in practice). Note that the Verify function
relies on these clock offsets to judge if the proof is valid.

Security properties: The completeness definition is the same as before, except
that no challenges are issued by the verifier.

The changes to the security experiments related to soundness are also mini-
mal. The setup experiment is same as before, except that the public information
pp could also contain extra information such as anchor public keys. The chal-
lenge experiment now does not involve sending challenges to the prover. Instead,
the prover computes NIPoGeoRet proofs itself, and submits a proof at the end

34 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

File size (MiB) Encoding time (ms)

32 100 (3.37)
64 334.6 (6.93)
128 756.8 (4.78)
256 1648.6 (27.26)
512 3803.2 (38.13)
1024 8738.7 (51.11)

Table 3: Reed Solomon encoding time with a symbol size of 32 bytes. Averaged over
10 runs.

of an epoch. This proof is verified using Verify. And the soundness definition is
the same as before.

G Miscellaneous

G.1 Practical considerations

Grinding attacks: Since GeoCommit protocol is prover-initiated, an adversarial
prover can exploit by re-running the protocol. For example, an adversary could
save on storage by only storing a portion of the file, and repeatedly query the
anchor until all the challenges lie in the stored part.

Let g be the stored fraction. To model practical constraints, we assume that
a prover can make upto 2α GetAuthTime API calls per interval (this number
needs to be set based on the actual API call costs). The success probability after
2α API calls is p=1−(1−gl)2α . The adversary needs to choose the file-fraction

g such that p is non-negligible, i.e., g ≥ (1− (1− 2−λ)2
−α

)1/l (or) g > 2
−λ−α

l

(via binomial expansion). Intuitively as the number of challenges l is raised, the
adversary is forced to store more. We derive an exact constraint involving l and
α in our security proofs.

Coefficient randomization: Randomization at the end of an epoch is neces-
sary to ensure that the PoRet commitments {comi} are correctly computed in
all intervals. If the ratio between any two random coefficients was predictable,
e.g., say τ = ri/rj was known for some i < j, then an adversary could cheat by
postponing file access required to be done in the ith interval to the jth interval.
Simply set comi to random and comj in a way that the verification equation
checks out, i.e., comj = (Hi(comi)

−1)τHj . Hi and Hj are the actual ith and
jth PoRet commitments that the adversary computes in the jth interval. More
formally, we later show that an adversary that skips PoRet commitments can-
not succeed in verification, as it is equivalent to breaking commitment binding,
which can happen with negligible probability.

We ensure a negligible likelihood of guessing the random coefficients {rj} a
priori by deriving them from the final PoRet commitment comI . This still leaves
possible grinding attacks. The best strategy for an adversary is to randomly
choose the commitments (or random coefficients) and check if the verification

GoAT: File Geolocation via Anchor Timestamping 35

Protocol Anchor type Proof size

GoAT-H Any Iae(s+1)+I(a+1)|T |
GoAT-P TLS 1.2 (s+1)e+2Iae+I(a+1)|T |
GoAT-P Roughtime (s+1)e+2I|T | 100 102 104

1,000

2,000

720

Epoch length (hrs)

B
y
te
s/
in
te
rv
a
l

Fig. 12: (Left) GoAT proof sizes. e is the size of elements in G or Zp of the Shacham-
Waters PoRet scheme. (Right) Proof size per interval of GoAT-P with a Roughtime
(RT) anchor against the epoch length. Interval length β = 1hr. Dashed line (720B)
corresponds to the size of two RT transcripts.

equation succeeds. The probability of success is 2−λ (as 2λ is the size of the group
used). With grinding, the probability increases to 2−λ+α, which is still negligi-
ble for practical parameters. One way to avoid grinding is to obtain random
coefficients from public randomness beacons, e.g., [21].

Parameterization trade-offs: We discuss various trade-offs arising in GoAT
parameterization now.

The number of sectors s impacts the proof sizes, geolocation quality and the
storage overhead. Higher s leads to reduced storage overhead but at the cost of
relatively poorer geolocation and worse proof size. Note that higher s leads to
increased PoRet commit times and thereby worse geolocation (eq. (1)).

The number of challenges k and the code rate ρ need to be set following the
constraint given in Thm. 1. As shown in Sec. 5, for practical values of ρ, the num-
ber of challenges is around 200. k and ρ impact geolocation quality and storage
overhead respectively. There is a direct trade-off between the two — higher code
rate (ρ) leads to less storage overhead but requires setting a higher number of
challenges (k), which leads to higher PoRet commit times and worse geolocation.

G.2 Implementation details

Anchor processing times: Many TLS servers take a non-negligible amount
of time to compute the response, called the anchor processing time (taproc). This
is measured by pinging 114 servers at repeated intervals over two weeks both
via TLS (with TCP connections established apriori) and ICMP (for raw RTT).
The processing time is defined as the difference between the two. We compute
the average processing time for each server, and then the 75th percentile over all
the servers, which is ttlsaproc=6.5ms. Anchors in the remaining 25th percentile are
discarded. Note that setting a somewhat high value of 6.5ms for all TLS servers
is conservative—a better approach is to set anchor-specific values.

For Roughtime, we find that the processing times are almost negligible, we
set trtaproc=2ms. This could be due to a combination of several factors, e.g., less
load, faster transport layer (UDP) [17] and faster signature scheme (EdDSA).

Remaining parameters: Two more parameters remain to be set: tproc and tcom
(see eq. (1)). tproc is separated into client (tcproc) and anchor (taproc) components,

36 Deepak Maram, Mahimna Kelkar, Iddo Bentov, and Ari Juels

with the latter discussed before. tcproc corresponds to the time spent in han-
dling the anchor response. We set tcproc = 1.5ms and tcom = 2ms based on code
benchmarks (the latter is discussed below).

Erasure codes: Recall that a PoRet encoding F ∗ of file F incorporates an era-
sure code (to amplify soundness). Our implementation omits this part as it is
standard to all PoRet implementations.

An (N,K)-erasure code encodes a message consisting of K symbols into an-
other message ofK symbols such that the original message can be recovered from
a subset of the K symbols. The code rate ρ is equal to K/N . Note that a symbol
here is same as that defined in the explanation of the Shacham-Waters scheme in
Sec. 4. In our implementation, the symbol size is 32 bytes. For a fixed ρ and file
size |F |, observe that we want an erasure code with K= |F |/32 and N=K/ρ.

RS encoding is expected to run in O(nlogn) time. We use an off-the-shelf
library that implements Reed-Solomon codes with large message, block lengths.
Table 3 presents the execution results from running RS encoding on a c5.4xlarge
AWS machine (like before). We set the symbol size to 32 bytes and modify
the field appropriately to allow for larger N values. It takes about 8 seconds
to encode a 1GB file, and more generally, a slightly superlinear growth can be
observed in the timing numbers matching the expected shape of O(nlogn).

Some directions of future work include exploring optimizations that can re-
duce encoding times for larger file sizes or exploring settings where the user can
offload erasure coding to another entity.

G.3 Ways to improve geolocation accuracy

One set of ideas is related to improving the network model. Our current network
model is unified, i.e., it assumes the network conditions across the globe are same
for simplicity. Taking endpoint locations into account can improve geolocation
quality in areas with better connectivity. Moreover a network model that avoids
the blanket use of a startup cost tsetup (we set it to 5ms) is desirable given that it
causes upto 2x worse geolocation for nearby anchors. In our small measurement
study, we found a lot of variance in the round trip times for nearby locations.
But since GoAT can deal with short-lived network variances better due to the
use of flexible-challenge model, a smaller value for tsetup could be used. More
experiments to understand if this idea can be used in practice are needed.

The network model could also be more nuanced, for example nearby locations
are known to have higher latencies due to long routing paths. In this case, choos-
ing a different model based on how close the two locations are would be better.

Another idea is to optimize the PoRet commit compute time (we set it to
2ms). This can for example be done by finding a pairing-friendly curve that has
faster vector commit times and optimizing code runtime.

With regards to the choice of anchors, using Roughtime servers is clearly
beneficial if possible due to their low processing times. Otherwise finding TLS
servers that respond quickly is suggested, i.e., have low processing times. Over-
all Roughtime is a better choice of anchor, both from a performance perspective

https://github.com/Bulat-Ziganshin/FastECC
https://github.com/Bulat-Ziganshin/FastECC

GoAT: File Geolocation via Anchor Timestamping 37

and an ethical standpoint since our use of TLS might be seen as abusing it. We
hope that Roughtime gains more adoption in the future.

Several other optimization opportunities exist: reducing the client processing
time by optimizing client-code (we allocate 1.5ms which could potentially be re-
duced to almost zero), using an anchor-specific model for processing times, and
perhaps even deploying new anchors with fast connectivity and low processing
times.

	GoAT: File Geolocation via Anchor Timestamping

