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Abstract. The Narwhal system is a state-of-the-art Byzantine fault-
tolerant (BFT) scalable architecture that involves constructing a di-
rected acyclic graph (DAG) of messages among a set of validators in
a Blockchain network. Bullshark is a zero-overhead consensus protocol
on top of the Narwhal’s DAG that can order over 100k transactions per
second. Unfortunately, the high throughput of Bullshark comes with a
latency price due to the DAG construction, increasing the latency com-
pared to the state-of-the-art leader-based BFT consensus protocols.
We introduce Shoal, a protocol-agnostic framework for enhancing Narwhal-
based consensus. By incorporating leader reputation and pipelining sup-
port for the first time in DAG-BFT, Shoal significantly reduces latency.
Moreover, the combination of properties of the DAG construction and
the leader reputation mechanism enables the elimination of timeouts in
all but extremely uncommon scenarios in practice, a property we name
“prevalent responsiveness" (it strictly subsumes the established and often
desired “optimistic responsiveness" property for BFT protocols).
We integrated Shoal instantiated with Bullshark in an open-source Blockchain
project and provide experimental evaluations demonstrating up to 40%
latency reduction in the failure-free executions, and up-to 80% reduction
in executions with failures against the vanilla Bullshark implementation.

1 Introduction

Byzantine fault tolerant (BFT) systems, including consensus protocols [29,12,22,23]
and state machine replication [6,47,43,9,26], have been a topic of research for over
four decades as a mean of constructing reliable distributed systems. The recent
advent of Blockchains has underscored the significance of high performance, lead-
ing to a race among committee-based blockchains [44,39,40,45,41,42] to deliver
a scalable BFT system with the utmost throughput and minimal latency.

A recent throughput breakthrough stemmed from the realization that data
dissemination, especially in the leader-based approach, is the primary consensus
bottleneck and it can benefit from parallelization [15,38,37,46,4]. The leader-
less Narwhal&Tusk system [15] achieves a throughput of 160000 transactions
per second by parallelizing the networking layer and abstracting it away from
the consensus logic [27,35]. Narwhal is a perfectly load-balanced system that
efficiently constructs a directed acyclic graph (DAG) of messages, where each
message is a vertex that contains, among other things, transaction information.
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Tusk is a local asynchronous consensus algorithm, in which validators observe
their local views of the DAG and agree on the total order of all vertices without
any extra communication.

The drawback, however, of the Narwhal&Tusk system is its high latency com-
pared to the partially synchronous leader-based approach. To improve latency,
the Bullshark paper, which together with Narwhal is currently run in produc-
tion in Sui Blockchain [45] and under development in Aptos [39], trades the
ability to tolerate asynchrony and reduces Tusk’s latency by 30% while preserv-
ing its high throughput. However, the Bullshark latency is still high compared
to latency-optimized leader-based protocols such as the two-chain Jolteon [20]
and others [25,21].

Our goal is therefore to explore the latency bottlenecks in Narwhal-based
consensus protocols and provide a general solution to drastically reduce them.

We present Shoal: a framework that incorporates leader reputation and pipelin-
ing mechanisms into all Narwhal-based consensus protocols (i.e., DAG-Rider [27],
Tusk [15], and Bullshark [35,36]), and in addition, eliminates timeouts in all ex-
cept extremely rare scenarios therein.

1.1 Latency bottlenecks

Narwhal provides a round-based DAG in which each validator contributes one
vertex per round, and each vertex links to n−f vertices in the preceding round.
Each vertex (message) is disseminated via an efficient reliable broadcast, en-
suring that malicious validators cannot distribute different vertices to different
validators within the same round. The idea shared by Narwhal-based consensus
protocols is to interpret the DAG structure as the consensus logic [27,15,35,36].
Although the protocols differ in the networking assumptions and the number of
rounds required for vertex ordering, they all share a common structure.

Prior to the protocol initiation, there is an a-priori mapping from specific
rounds to leaders shared among all validators (in the asynchronous protocols,
this mapping is hidden behind threshold cryptography). We use the term anchor
to refer to the vertex associated with the round leader in each relevant round.

The DAG local ordering process is divided into two phases. First, each valida-
tor determines which anchors to order. Then, the validators sequentially traverse
the ordered anchors (the rest are skipped), deterministically ordering all DAG
vertices contained within the causal histories of the respective anchors. Conse-
quently, the main considerations that affect the protocol latency are as follows:

1. Bad leaders. When a leader fails to broadcast the anchor fast enough,
validators advance the DAG without including the round anchor. In this
case, unordered vertices in previous rounds can only be ordered as a part of
a causal history of a future anchor, directly impacting their latency.

2. Timeouts. Moreover, in the partially synchronous version of Bullshark, a
crashed leader causes a significant latency penalty as validators, in this case,
must wait for a timeout expiration before moving on to the next round.
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3. Sparse anchors. In Narwhal-based consensus protocols, not every round
includes an anchor. Consequently, vertices located farther from the next
anchor must wait for additional rounds before they can be ordered.

1.2 Our algorithmic contribution

On the algorithmic side, Shoal presents a generic way to introduce leader repu-
tation and pipelining mechanisms into all Narwhal-based consensus protocols.

Leader reputation is an often overlooked concept in theoretical research, yet
it holds crucial importance for practical performance. In practice, Byzantine
failures are rare due to robust protection and economic incentives for validators
to adhere to the protocol. Moreover, the non-equivocation property provided by
the Narwhal-based DAG construction significantly reduces the range of potential
Byzantine behavior, basically eliminating the need for the consensus protocols
that interpret the DAG to deal with Byzantine behavior. Thus, the most common
failure scenarios in Blockchain (esp. in Narwhal-based) systems involve validators
who struggle to keep up, which can occur due to temporary crashes, slower
hardware, or geographical distance. If unresponsive validators repeatedly become
leaders, progress is inevitably impeded and degrades system performance. The
leader reputation schemes select leaders based on the history of their recent
activity, as introduced in Diem [43] and later formalized in [14].

As for pipelining, in the context of Narwhal-based consensus, it means having
an anchor in every round (as apposed to every 2 and 4 rounds in Bullshark and
DAG-Rifer, respectively), which would improve latency for non-anchor vertices.

The main challenge. The leader reputation problem is simpler to solve for mono-
lithic BFT consensus protocols. While the validators may disagree on the history
that determines the next leader’s identity, the worst that can happen is a tem-
porary loss of liveness until view synchronization, i.e. the quorum of validators
can eventually recover by agreeing on a fall-back leader. This exact method was
utilized in [14], electing the fall-back leaders by a simple round-robin.

In contrast, in Narwhal-based protocols, all communication is done upfront
for building the DAG. Therefore, their safety relies on a key property of the local
computation that all validators will decide to order the same set of anchors.

For pipelining, even if all validators agree on the mapping, they also must
agree on whether to order or skip each anchor. Our attempts to solve the problem
by delving into the inner workings of the protocol and exploring complex quorum
intersection ordering rules have not been fruitful. Intuitively, this is because
consensus requires a voting round after each anchor proposal and the next anchor
should link to the decisions (votes) on the previous one (as done in Bullshark).

Our solution. In Shoal, we lean into the power of performing computations
on the DAG. In particular, the ability to preserve and re-interpret information
from previous rounds. More concretely, Shoal combines multiple instances of the
instantiated protocol in a suitable manner, where the trick is to agree on the
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switching point based on the following observation:

For any Narwhal-based consensus protocol, since all validators agree on which
anchors to order vs skip, they in particular agree on the first ordered anchor.

With this observation in mind, each validator can start locally interpreting
its view of the DAG by running an instance of its favorite protocol until it
determines the first ordered anchor. Since validators agree on this anchor, they
can all deterministically start a new protocol instance in the following round.
Note that this too, happens locally, from a validator’s perspective, as a part of
re-interpreting the DAG. As a result, Shoal ensures the following

1. Leader reputation: validators select new anchors for future rounds based
on the information available in the causal history of the ordered anchors.

2. Pipelining: allocate an anchor in the first round of every instance. That
way, if the first anchor in every instance is ordered, we get an anchor in
every round, providing the pipelining effect and reducing overall latency.

1.3 Our system contribution

We implemented Shoal in the open-source codebase of one of the live Blockchain
networks and instantiated it with the partially synchronous version of Bullshark,
resulting in a Shoal of bull sharks.

Prevalent responsiveness. With the help of the leader reputation mechanism, we
discovered a way to eliminate timeouts in all except extremely rare scenarios,
a property we refer to as prevalent responsiveness. The motivation to avoid
timeouts in as many situations as possible comes from a purely practical point
of view, as (1) when timeouts are common, the duration affects the system
performance, but in a way that is non-trivial to configure in an optimal way as
it is highly environmentally (network) dependent; and (2) timeout handling is
known to add significant complexity to the implementation logic for managing
potential state space of validators. In addition, our evaluations demonstrate that
eliminating timeouts significantly improves performance.

Leader-based BFT protocols use timeouts to trigger protocol progress when-
ever a leader is faulty or slow. The optimistic responsiveness property, popular-
ized by HotStuff [47], effectively eliminates timeout implications in ideal scenar-
ios when the network is synchronous and there are no failures. However, when
failures do occur or the network experiences asynchronous periods all validators
must still wait until the timeout expires before transitioning to the next leader.

Utilizing the inherent properties of the DAG construction, and leader repu-
tation mechanism, we ensure that Shoal makes progress at network speed under
a much larger set of scenarios than optimistically responsive protocols would.
While the FLP [17] impossibility result dictates that there has to be a scenario
that requires a timeout, Shoal design aligns this FLP scenario to be extremely
improbably in practice (requires an adversary that fully controls the network).
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All available Bullshark implementations use timeouts when advancing rounds
to ensure honest validators wait for slow anchors. By eliminating timeouts, Shoal
drastically reduces latency when a leader is faulty, as the corresponding anchors
would never be delivered and it is best to advance to the next round as fast as
possible. However, if the leader is just slower, validators may skip anchors that
they could order if they waited a little bit longer. This is where the leader rep-
utation mechanism of Shoal shines, filtering out slow validators that constantly
delay new rounds and allowing the DAG to proceed at network speed.

In addition, since the DAG construction provides a notion of an asynchronous
clock [18], we avoid the issue faced by leader-based protocols during asynchrony –
the impossibility of distinguishing a slow leader from a crashed one – which might
cause time outing good leaders, decreasing "responsiveness". DAG consensus
protocols, in contrast, do not require a view-change and thus can afford waiting
until 2f+1 vertices are eventually delivered, resulting in network speed progress.

Evaluation Our experimental evaluation demonstrates up to 40% reduction in
latency against vanilla Bullshark protocol implementation when there are no
failures in the system, and up to 80% reduction in latency when there are failures.
In addition, we compare Shoal to Jolteon [20] and get comparable latencies.

In summary, the paper focuses on improving latency and robustness in DAG-
Based protocols. It provides Shoal, a framework to enhance any Narwhal-based
consensus protocol with:

1. Leader reputation mechanism that prevents slow, isolated, or crashed val-
idators from becoming leaders.

2. Pipelining support that ensures every round on the DAG has an anchor.
3. The ability to eliminate timeouts in most cases.

2 DAG BFT

2.1 Background

Fig. 1: A causal history is high-
lighted in green.

The concept of DAG-based BFT consensus,
initially introduced by HashGraph [5], decou-
ples the network communication layer from
the consensus logic. Each message consists
of a collection of transactions and references
to previous messages. These messages collec-
tively form an ever-growing DAG, with mes-
saging serving as vertices and references be-
tween messages serving as edges.

In Narwhal, the DAG is round-based, similar to Aleph [19]. Each vertex
within the DAG is associated with a round number. In order to progress to
round r, a validator must first obtain n−f vertices in round r−1 (from distinct
validators). Every validator can broadcast one vertex per round, with each vertex
referencing a minimum of n − f vertices from the previous round. The causal
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history of a vertex v refers to the sub-graph that starts from v. Figure 1 illustrates
a validator’s local view of a round-based DAG.

To disseminate messages, Narwhal uses an efficient reliable broadcast imple-
mentation, and all in all the DAG construction guarantees the following:

Validity: if an honest validator has a vertex v in its local view of the DAG,
then it also has all the causal history of v.

Eventual delivery: if an honest validator has a vertex in round r by validator
p in its local view of the DAG, then eventually all honest validators have a
vertex in round r by validator p in their local views of the DAG.

Non-equivocation: if two honest validators have a vertex in round r by val-
idator p in their local views of the DAG, then the vertices are identical.

Inductively applying Validity and Non-equivocation, we get:

Completeness: if two honest validators have a vertex v in round r by validator
p in their local views of the DAG, then v’s causal histories are identical in
both validators’ local view of the DAG.

In simple words, Narwhal construction guarantees that:

1. All validators eventually see the same DAG; and at any given time
2. Any two validators that locally have the same vertex v, also have and agree

on the whole causal history of v (content and structure).

Narwhal-based consensus protocols. DAG-Rider, Tusk, and Bullshark are all al-
gorithms to agree on the total order of all vertices in the DAG with no additional
communication overhead, completely eliminating the need for complex mecha-
nisms like view-change or view-synchronization. Each validator independently
looks at its local view of the DAG and orders the vertices without sending a
single message. This is done by interpreting the structure of the DAG as a con-
sensus protocol, where a vertex represents a proposal and an edge represents a
vote.

DAG-Rider [27] and Tusk [15] are randomized protocols designed to tolerate
full asynchrony, which necessitates a larger number of rounds and consequently,
a higher latency. Bullshark [36] also provides a deterministic protocol variant
with a faster ordering rule, relying on partial synchrony for liveness. While the
specific details are not required to understand this paper, next we explain the
high-level structure of these protocols and define a property they all share.

For space limitation, a detailed related work section is deferred to Appenidx A.

2.2 Common framework

Narwhal-based consensus protocols share the following abstract structure:

1. Pre-determined anchors. Every few rounds (the number depends on the
protocol) there is a round with a pre-determined leader. The vertex of the
leader is called an anchor. In the partially synchronous version of Bullshark,
the leaders are a-priori known. In the asynchronous protocols, the leaders
are hidden and revealed during the DAG construction.
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2. Order the anchors. All validators independently decide which anchors to
skip and which to order. The details differ among the protocols, although
they all rely on quorum intersection in the DAG structure.

3. Order causal histories. Validators process their list of ordered anchors
one by one, and for each anchor order all previously unordered vertices in
their causal history by some deterministic rule.

An illustration of the ordering logic appears in Figure 2. In this example,
the validator orders the red and yellow anchors, while the green (which is not in
the DAG) anchor is skipped. To order the DAG, the validator deterministically
orders the yellow anchor’s causal history after the red anchor’s causal history.

Fig. 2: A possible local view of the DAG
in the partially synchronous Bullshark
protocol. Filled squares represent the
pre-defined anchors.

The key correctness argument for all
the above mention consensus protocols re-
lies on the fact that all validators agree on
which anchors to order and which to skip.
In particular, they agree on the first an-
chor to order. More formally, our Shoal
framework relies on is the following:

Property 1. Given a Narwhal-based pro-
tocol P, if all honest validators a priori
agree on the mapping from rounds to lead-
ers, then they will agree on the first anchor
to order during the execution of P.

The proof follows immediately from Proposition 2 in DAG-Rider [27] and
Corollary C in Bullshark [35].

3 Shoal

Shoal is protocol agnostic and can be directly applied to all Narwhal-based
protocols. It makes no changes to the protocols but rather combines instances
in a “black-box" manner. The proof can be derived solely from Property 1.

3.1 Pipelining

Bullshark already halved DAG-rider’s latency for ordering anchors from 4 rounds
to 2 by adding an optimistic path under the partially synchronous network com-
munication assumption. Intuitively, it is hard to imagine latency lower than 2
rounds as in the interpretation of the DAG structure as a consensus protocol, one
round is needed to "propose" the anchor, while another is needed for "voting".
However, only anchors can be ordered in 2 rounds. The rest of the vertices are
ordered as part of anchors’ causal histories and thus require more rounds. The
vertices in a "voting" round require (minimum) 3 rounds, while vertices that
share a round with an anchor have to wait for at least the next anchor to be
ordered, thus requiring (minimum) 4 rounds. See Figure 3 for illustration.
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Fig. 3: The number in each vertex rep-
resents its minimum latency according
to Bullshark. For example, the anchor
in round i+ 1 can be ordered in round
i + 2, but the other vertices in this
round require at least 4 rounds.

Ideally, to reduce the latency we would
like to have an anchor in every round. This
would allow for non-anchor vertices to be
ordered as a part of some anchor’s causal
history in each and every round, making
latency and throughput of the protocol
less spiky. In Bullshark, it would become
possible for every non-anchor vertex to be
ordered in 3 rounds.

Solution Let P be any Narwhal-based
consensus protocol. The core technique in
Shoal is to execute P until it, as a con-
sensus protocol, guarantees agreement on
some part of the DAG for all validators. Starting from the round following the
agreed part of the DAG, all validators can switch over and start executing a
new instance of P (or a different Narwhal-based consensus protocol, if desired)
from scratch. While the instances are not executing concurrently, this scheme
effectively pipelines the “proposing" and “voting" rounds. As a result in Shoal,
in a good case an anchor is ordered in every round.

Algorithm 1 Pipelining in Shoal
1: current_round← 0
2: F : R→ A ▷ deterministic rounds to anchors mapping
3: while true do
4: execute P, select anchors by F , starting from current_round until the first

ordered (not skipped) anchor is determined.
5: let A be the first ordered anchor and let r be its round
6: order A’s causal history according to P
7: current_round← r + 1
8: update F according to A’s causal history

The pseudocode appears in Algorithm 1 (ignore line 8 for now). In the be-
ginning of the protocol, all validators interpret the DAG from round 0, and the
function F is some pre-defined deterministic mapping from rounds to leaders.
Each validator locally runs P, using F to determine the anchors, until it orders
the first anchor, denoted by A in round r. The key is that, by the correctness
of P as stated in Property 1, all validators agree that A is the first ordered an-
chor. Consequently, each validator can re-interpret the DAG from the next round
(r+1) according to a new instance of the protocol P (or another Narwhal-based
protocol) executing from scratch. Note that without re-interpreting the DAG,
the next anchor according to the instantiated protocol would appear in a strictly
later round (e.g. r+4 for DagRider and r+2 for Bullshark). The above process
can continue for as long as needed. To order the DAG, like in the original P, the
validators deterministically order A’s causal history, and by the Completeness
property, arrive at the same total order of vertices. See illustration in Figure 4.
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Fig. 4: Shoal’s pipelining integrated
into Bullshark. The vertices that are
fixed to be anchors by F are marked
by a crown. The protocol starts by in-
terpreting the DAG with anchors in
rounds 1, 3, and 5. Bullshark deter-
mines that the anchor in round 1,
marked by a green checkmark, is the
first to be ordered. Then, a new in-
stance of Bullshark starts at round 2
with the anchors in rounds 2 and 4.

Note that in Algorithm 1, function F
is fixed and used by each instance of pro-
tocol P. In a true "black-box" implemen-
tation, the round numbers could be differ-
ent from the perspective of the executing
protocol instance (i.e. start from 0 for each
new instance). However, F is fixed and al-
ways assigns the same anchor to any given
round r in Shoal regardless of the protocol
instance used for this round.

Note that with Shoal, ordering an an-
chor vertex requires 2 rounds, while all
other vertices require 3. In Section D we
discuss a potential direction to reduce the
latency for non-anchor vertices by treat-
ing all vertices as anchors. Intuitively, we
can use Property 1 to instantiate a binary
agreement to decide whether to commit
each vertex individually.

3.2 Leader Reputation

BFT systems are designed to tolerate Byzantine failures in order to provide as
strong as possible worst-case reliability guarantees. However, actual Byzantine
failures rarely occur in practice. This is because validators are highly secured
and have strong economic incentives to follow the protocol. Slow or crashed
leaders are a much more frequent occurrence which can significantly degrade the
system performance. In Narwhal-based BFT, if the leader of round r crashes,
no validator will have the anchor of round r in its local view of the DAG. Thus,
the anchor will be skipped and no vertices in the previous round can be ordered
until some later point due to an anchor in a future round.

The way to deal with missing anchors is to somehow ensure that the corre-
sponding leaders are less likely to be elected in the future. A natural approach to
this end is to maintain a reputation mechanism, assigning each validator a score
based on the history of its recent activity. A validator who has been participating
in the protocol and has been responsive would be assigned a high score. The idea
is then to deterministically re-compute the pre-defined mapping from rounds to
leaders every time the scores are updated, biasing towards leaders with higher
scores. In order for validators to agree on the new mapping, they should agree
on the scores, and thus on the history used to derive the scores.

Such a mechanism was previously proposed in [14] and implemented in the
Diem Blockchain [43] to enhance the performance of Jolteon [20], a leader-based
consensus protocol. One important property Jolteon is that Safety is preserved
even if validators temporarily disagree on the identity of the leader. In Narwhal-
based BFT, however, if validators disagree on the anchor vertices, they will order
the DAG differently, violating safety.
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Fig. 5: Shoal’s leader reputation in-
tegrated into Bullshark (no pipelin-
ing). First, the DAG is interpreted via
the red anchors. The anchor in A1 is
the first ordered anchor. Then, based
on A1’s causal history, new anchors
are selected for future rounds (marked
in green). Finally, after ordering A1’s
causal history, a new instance of Bull-
shark starts at round i+2 based on the
green anchors.

Solution. Surprisingly, leader reputation
in Shoal can be naturally combined with
pipelining as they both utilize the same
core technique of re-interpreting the DAG.
In fact, the full pseudocode for Shoal re-
quires only 1 extra line (marked in gray)
on top of the pipelining pseudocode in Al-
gorithm 1. The idea is that the valida-
tors simply need to compute a new map-
ping, starting from round r + 1, based on
the causal history of ordered anchor A in
round r (which they are guaranteed to
agree on by Property 1). Then, validators
start executing a new instance of P from
round r + 1 with the updated anchor se-
lection function F . See Figure 5 for the
leader reputation illustration.

For space limitation, the correctness proof can be found in Appendix B.

4 Implementation and Prevalent Responsiveness

We have implemented Narwhal and the partially synchronous version of Bull-
shark as part of a publicly available open-source blockchain project (undisclosed
for anonymity requirement). This blockchain is live and the process of produc-
tionizing our implementation is underway. We used Rust, utilizing Tokio for
asynchronous runtime, BLS [7] implemented over BLS12-381 curves for signa-
tures, RocksDB for persistent storage, and Noise for authentication. Our imple-
mentation of Bullshark is according to [35] and we refer to it as Vanilla Bullshark.

4.1 Eliminating Timeouts

Validators in Bullshark must observe n−f vertices in a round to advance to the
next round. Even rounds have anchors, while vertices in odd rounds determine
the “voting" pattern. The full Bullshark protocol uses, in addition, the following
conditions to advance rounds:

– Even-round: Wait until timeout or the delivery of the round anchor.
– Odd-round: Wait until timeout or the delivery of 2f +1 vertices that link to

the previous round anchor.

Shoal eliminates these timeouts in a way that significantly improves latency
and simplifies implementation and maintenance. From now on we will refer to
even-rounds as anchor rounds and to odd-rounds as vote rounds.
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Vanilla Bullshark w/o vote Timeout. In the full Bullshark 2f + 1 votes are re-
quired to order anchors. Therefore, without timeouts in vote rounds, a Byzantine
adversary can prevent the fast path from making progress even during synchrony.
As long as Byzantine validators deliberately do not link to the anchor, and even
1 of their vertices get delivered among the first 2f + 1 to an honest validator in
a vote round, then the honest validator will not be able to order the anchor.

However, we realized that timeouts in vote rounds in the partially syn-
chronous variant of Bullshark are redundant. The anchor ordering rule in this
case is f + 1 votes [36]. As a result, even if f out of the first 2f + 1 vertices
delivered to a validator in a round are from Byzantine validators, the remaining
f + 1 vertices will link to the anchor due to the anchor round timeout.

Baseline Bullshark. The FLP impossibility result [17] dictates that any deter-
ministic protocol providing liveness under partial synchrony must use timeouts.
In Bullshark, without timeouts in the even rounds, an honest leader that is
even slightly slower than the fastest 2f + 1 validators will struggle to get its
anchor linked by other vertices. As a result, the anchor is unlikely to be ordered.
The timeout, therefore, ensures that all honest validators link to anchors during
periods of synchrony, provided they are associated with honest leaders.

Even though timeouts are unavoidable in the worst case, we observe that
the DAG construction combined with the leader reputation mechanism allows
avoiding them in the vast majority of cases. This is in contrast to leader-based
monolithic consensus protocols, where timeouts are the only tool to bypass views
with bad leaders. Without timeouts, a monolithic protocol could stall forever as
there is no other mechanism to stop waiting for a crashed leader.

In contrast, the DAG construction provides a “clock" that estimates the net-
work speed. Even without timeouts, the rounds keeps advancing as long as 2f+1
honest validators continue to add their vertices to the DAG. As a result, the DAG
can evolve despite some leaders being faulty. Eventually, when a non-faulty leader
is fast enough to broadcast the anchor, the ordering will also make progress.

In the partially synchronous Bullshark, an anchor needs f + 1 votes (links)
out of the 3f + 1 vertices. Therefore, as our evaluation demonstrates, in the
failure-free case, most of the anchors are ordered in the next round. The benefit
are even more pronounced when there are failures. This is because a crashed
validator causes a timeout to expire, stalling the protocol for the entire duration.
Without a timer, however, the DAG will advance rounds at network speed and
the Bullshark protocol will immediately move to the next anchor.

Timeouts as a fallback. To guarantee liveness, i.e., to avoid the extremely un-
likely adversarial schedule of events that can prevent all anchors from getting
enough votes to be ordered, Shoal falls back to using timeouts after a certain
(pre-defined) amount of consecutive skipped anchors.

4.2 Shoal of Bullsharks

A realistic case in which timeouts may help the latency of a Narwhal-based
consensus protocol is when the leader is slower than the other validators. In this
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case, waiting for a slow anchor may be faster than building the next two DAG
rounds in network speed (and committing the next anchor). In Shoal, however,
the leader reputation mechanism excludes (or at least significantly reduces the
chances of) slow validators from being selected as leaders. This way, the system
takes advantage of the fast validators to operate at network speed.

Prevalent Responsiveness. Shoal provides network speed responsiveness under
all realistic failure and network scenarios, a property we name Prevalent Respon-
siveness. Specifically, compared to optimistic responsiveness, Shoal continues to
operate at network speed, without artificial delays, even during asynchronous
periods or if leaders fail for a configurable number of consecutive rounds.

We implemented leader reputation and pipelining on top of the Baseline Bull-
shark. We provide the logic of leader reputation score assignment in Appendix C.

5 Evaluation

We evaluated the performance of the aforemententioned variants of Bullshark,
Shoal, and Jolteon on a geo-replicated environment in Google Cloud. In order to
show the improvements from pipelining and leader reputation independently, we
also evaluate Shoal PL, which is a Shoal instantiation with only pipelining en-
abled, and Shoal LR, which is a Shoal instantiation with only Leader Reputation
enabled. With our evaluation, we aim to show that (i) Shoal maintains the same
throughput guarantees as Bullshark. (ii) Shoal can provide significantly lower
latency than Bullshark and its variants. (iii) Shoal is more robust to failures.

For completeness, we also compare against Jolteon [20], which is the current
consensus protocol of the production system we use. Jolteon combines the linear
fast path of Tendermint/Hotstuff with a PBFT style view-change, and as a result,
reduces Hotstuff latency by 33%. To mitigate the leader bottleneck and support
high throughput, the implementation uses the Narwhal technique to decouple
data dissemination via a pre-step component (called Quorum Store).

Experimental Setup. Our experimental setup consists of t2d-standard-32
type virtual machines spread equally across three different Google Cloud re-
gions: us-west1, europe-west4, asia-east1. Each virtual machine has 32 vCPUs,
128GB of memory, and can provide up to 10Gbps of network bandwidth. The
round-trip latencies are: 118ms between us-west1 and asia-east1, 251ms between
europe-west4 and asia-east1, and 133ms between us-west1 and europe-west4.
The experiments involve three different values of N (the number of validators):
10, 20, and 50, tolerating up to 3, 6, and 16 failures, respectively.

The transactions are approximately 270B in size and the maximum batch
size is 5000 transactions. We measure latency as the time elapsed from when a
vertex is created from a batch of client transactions to when it is ordered by a
validator. The timeouts, when applicable, are set to 1s.
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5.1 Baseline Performance
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Fig. 6: Baseline performance under no failures
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Fig. 7: Baseline performance w/ failures (N=50)

First, we evaluate the perfor-
mance of the Bullshark variants,
namely Vanilla Bullshark, Vanilla
Bullshark w/ Anchor Timeouts,
and Baseline Bullshark, to align
on a baseline performance to eval-
uate Shoal in the rest of the ex-
periments. The results are in Fig-
ures 6 and 7.

Figure 6 shows the through-
put and average latencies of the
three Bullshark variants as the
system size increases. The pres-
ence of timeouts in Vanilla Bull-
shark forces it to build the DAG
slowly, which combined with the
fact that fewer validators con-
tribute vertices to the DAG when
N = 10, results in lower through-
put than other variants, which
have fewer or no timeouts. The
latencies for Vanilla Bullshark is
up to 88% higher due to the time-
outs. Interestingly, the latencies
are similar for baseline Bullshark and Vanilla Bullshark w/o Vote timeout in the
normal case because there is a trade-off between building a DAG at network-
speed while skipping an anchor and waiting slightly longer for the anchor to be
part of the votes.

We also evaluated the vanilla variants and the baseline for N = 50 with
varying the number of failures, in Figure 7. The Baseline Bullshark provides lower
latency than other variants by virtue of being able to build the DAG at network
speed skipping failed anchors and ordering using the alive ones. Therefore, in the
rest of the section, we use Baseline Bullshark as the baseline to evaluate Shoal.

5.2 Performance of Shoal under fault-free case

We now evaluate the Shoal variants against the baseline under the normal case
where there are no failures. The results are in Figure 8. As expected, the through-
put of the Shoal variants is similar as the number of validators increases. It can
be observed that each variant of Shoal decreases the latency leading to full Shoal
protocol. In summary, we observe that the Shoal’s average latency decreases by
up to 20% compared to Baseline Bullshark.
On the other hand, Jolteon [20], despite its use Narwhal’s data dissemination
decoupling, is only able to achieve a peak throughput of less than 60k, about
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40% lower than Shoal. This is because under high load leaders are again the
bottleneck as they are not able to deal with the required network bandwidth,
and as a result, unable to drive progress before timeouts expire.
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Fig. 8: Shoal performance under no failures

This is because under high
load leaders become the bottle-
neck again as they are not able
to deal with the required net-
work bandwidth, and as a result,
unable to drive progress before
timeouts expire. Furthermore, in
terms of latency, Jolteon is ≈50%
better than Vanilla Bullshark, but
only ≈20% better than Shoal.
Note that the latencies presented
do not include the pre-step Quo-
rum Store’s latencies to decou-
ple data from metadata, because
all the compared protocols in-
clude this optimization. However,
in the Shoal case, this latency can
be avoided by merging Quorum
Store into the DAG construction,
as done in Narwhal. This will fur-
ther close the latency gap from
Jolteon.

In Figures 10c and 10d, we dis-
tinguish the latencies of transactions in the vote-round vertices from that in
anchor-round vertices, in order to show the effect of the pipelining approach.
The vote and anchor round latencies for Shoal PL, as well as Shoal, are similar,
which helps provide predictable and smooth latency for transactions in real pro-
duction systems. In contrast, the vote and anchor round latencies for Baseline
Bullshark and Shoal LR differ by 5-20% depending on the number of failures.

5.3 Performance of Shoal under faults
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Fig. 9: Latency timeline under 8 failures
with N = 50. The x-axis represents a part
of the experiment time window.

Figure 10 shows the behavior of base-
line and Shoal variants under faults.
For this experiment, N = 50 and the
failures are increased from 4 to 16
(maximum tolerated). This is the case
where the Leader Reputation mech-
anism helps to improve the latency
significantly by reducing the likeli-
hood of failed validators from being
anchors. Notice that without Leader
Reputation, the latencies of Baseline
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Bullshark and Shoal PL increases significantly as the number of failures increases.
Shoal provides up to 65% lower latencies than Baseline Bullshark under failures.
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Fig. 10: Shoal performance w. failures (N=50).

Figure 9 shows the impact of
skipping leaders on the latency by
comparing vanilla Bullshark with
Shoal on a timeline plot under
failures. We have a system of 50
validators, 8 of which have failed.
The x-axis represents a part of
the experiment time window and
the y-axis shows the latency. The
presence of timeouts and the need
to skip anchors causes vanilla
Bullshark’s latency to fluctuate.
In our experiment, we observed
latency jitter of approximately
one second, which makes it im-
possible to provide predictable la-
tency in production systems. In
constrast, Shoal maintains consis-
tent low latency without any jit-
ter.

5.4 Summary

Shoal provides comparable latency to Jolteon, and in contrast to Vanilla Bull-
shark, Shoal provides up to 40% lower latency in the fault-free case and up to
80% lower latency under failures. Moreover, Shoal provides predictable latency
and commits at network speed in most cases, avoiding waiting for timeouts.

6 Discussion

Shoal can be instantiated with any Narwhal-based consensus protocol to reduce
latency, and can even switch between protocols during the DAG retrospective
re-interpretation.

Moreover, Shoal eliminates the use of timeouts except in very rare cases,
which contributes to the robustness and performance of the system. These time-
outs are hard to set right, especially in dynamic networks. Too aggressive time-
outs may cause skipping honest leaders, whereas too conservative timeouts cause
high latency penalties in case of failures. In addition, predictable and smooth
latency and throughput patterns have major practical benefits for real systems.
It facilitates setting up effective monitoring and alerts for anomaly detection.
This is crucial for ensuring security and quality of service by enabling timely re-
sponse and any intervention necessary, be it manual or automated. Predictable
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consensus throughput also facilitates pipelining the ordering of transactions with
other components of the Blockchain, e.g. transaction execution and commit.

As for prevalent responsiveness, intuitively, Shoal ensures network speed
progress (no artificial delays) even under failures and asynchrony.
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A Related work

A.1 BFT systems for Blockchains

Byzantine fault tolerance (BFT) has been an active area of research for over
four decades, with a significant body of literature in both theory [10] and sys-
tems [6,12,1,29]. With the advent of Blockchain systems in recent years, the
focus on performance and scalability has notably increased.

Historically, the prevailing belief has been that reducing the communication
complexity of leader-based protocols was the key to unlocking high throughput,
leading to the pursuit of protocols with communication complexity linear to the
number of validators [47,33,8,34]. However, despite a sound theoretical premise,
the practical throughput implications arguably fell short of expectations. An
independent evaluation and comparison conducted by [3] revealed that the well-
known HotStuff [47] protocol achieved a throughput of only 3,500 TPS on a
geo-replicated network.

The practical breakthrough occurred recently with the realization that the
main bottleneck in BFT systems, particularly those relying on leaders, is data
dissemination. Mir-BFT [38] and [37] introduced an innovative approach by run-
ning multiple PBFT [12] instances in parallel. Independently, Narwhal [15] and
later Dispersedledger [46] decoupled data dissemination from the consensus logic.
These advancements showcased impressive results, with Narwhal achieving a
peak throughput of 160,000 TPS.

There has been system [32,20,16,24] and theoretical [2,31,11] research in asyn-
chronous BFT protocols. However, to the best of our knowledge, no asynchronous
protocol is deployed in production in an industrial system. Another appealing
property of Narwhal is the support of a partially synchronous [36] as well as
asynchronous [15,27,35] (as long as randomness is available) protocols, and the
ability to easily switch among them.

A.2 Timeouts and responsiveness

The FLP [17] impossibility result states that there is no deterministic consensus
protocol that can tolerate a fully asynchronous network. The proof relies on the
fact that it is impossible to distinguish between crashed and slow validators dur-
ing asynchronous periods. The immediate application to partially synchronous
networks, therefore, is that all deterministic protocols must rely on timeouts in
some way to guarantee liveness against a worst-case adversary. Indeed, to the
best of our knowledge, all previous deterministic BFT protocols, including the
partially synchronous version of Bullshark [36], relied on timeouts to implement
a simple version of a failure detector [13]. This mechanism monitors the leaders
and triggers view-changes when timeouts expire, i.e. when faults are suspected.

The optimistic responsiveness property, popularized by HotStuff [47], avoids
timeouts in the best-case synchrnous failure-free scenario. However, when failures
do occur, all validators wait until the timeout expires before view-changing to
the next leader, introducing a significant slowdown in the protocol execution.
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Moreover, as discussed in Section 4, setting a proper timeout duration is a non-
trivial problem in its own right since if timeouts are too short during periods of
asynchrony, validators view-change good leaders.

Shoal provides prevalent responsiveness, which is a strictly better property
than optimistic responsiveness as it guarantees network speed progress in case
of healthy leaders and zero artificial delays in case of failures or asynchrony.
Shoal achieves this by relying on the network speed “clock" inherent in the DAG
construction itself [18], combined with the leader reputation mechanism. While
due to the FLP result, the worst case in which a timeout would be required for
maintaining the liveness of the protocol cannot completely be eliminated, Shoal
successfully relegates such cases to occur in specific extremely uncommon sce-
narios from a practical point of view (multiple consecutive unordered anchors).

A.3 DAG-based BFT

DAG-based consensus in the context of BFT was first proposed by HashGraph [5].
The idea is to separate the network communication layer, i.e. efficiently con-
structing a system that forms a DAG of messages, and the consensus logic that
can involve complex pieces such as view-change and view-synchronization. The
consensus logic is performed locally, whereby a validator examines its local view
of the DAG and orders the vertices without sending any messages. The challenge
arises from the asynchronous nature of the network, which may cause different
validators to observe slightly different portions of the DAG. To address this, the
DAG structure is interpreted as a consensus protocol, wherein a vertex represents
a proposal and an edge represents a vote.

Aleph [19] introduced a round-based DAG structure. Such a structure simpli-
fies support for garbage collection and non-equivocation, which in turn simplifies
the consensus logic to order the vertices. Narwhal implements round-based DAG,
and three Narwhal-based consensus protocols have been previously proposed.
The first is DAG-Rider [27], which introduced a quantum-safe asynchronous
protocol with optimal amortized communication complexity and O(1) latency.
Tusk [15] improved latency in the best case. An asynchronous version of Bull-
shark [35,36] includes a fast path [35], while a stand-alone partially synchronous
protocol [36] also exists and is currently deployed in production in Sui [45].
Shoal presents a framework that applies to all Narwhal-based protocols, enhanc-
ing their latency through a more efficient ordering rule and a leader reputation
mechanism.

An orthogonal theoretical effort [28] reduces best-case latency by trading
the non-equivocation property of the DAG construction. Instead, they use a
clever quorum intersection rule on the DAG structure. Practically, however, the
approach must inherently use timeouts as it requires waiting for all honest val-
idators in every round. In addition, since validators can equivocate, the memory
footprint of the DAG is much bigger and the state-sync is much more complex.
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A.4 Pipelining

To the best of our knowledge, pipelining in the BFT context was first proposed by
Tendermint [9], and later utilized in HotStuff [47] and Diem [43]. State machine
replication (SMR) systems can be constructed from multiple instances of single-
shot consensus [30], e.g. one approach to build Byzantine SMR is by running
a PBFT instance [12] for each slot. Tendermint introduced the elegant idea of
chaining proposals or piggybacking single-shot instances such that a value for a
new slot could be proposed before the value for the previous slot was committed.
In this approach, a message in the ith round of the kth instance can be interpreted
as a message in round i−1 of instance k+1. While the latency for each instance
remains unchanged, clients experience improved latency as their transactions
can be proposed earlier.

In DAG-based consensus, the concept of piggybacking proposals is inherent
in the design, as each vertex in the DAG links to vertices in previous rounds.
However, previous protocols did not allow having an anchor in every round.
Shoal framework supports having an anchor in each round in a good case for
any Narwhal-based protocol, providing a "pipelining effect".

A.5 Leader reputation

Leader reputation is often overlooked in theory, yet it plays a crucial role in per-
formance in practice. While Byzantine failures are rare as validators are highly
protected, isolated, and economically incentivized to follow the protocol, more
common are validators that are unresponsive. This may be because they tem-
porarily crashed, running slow hardware, or are simply located farther away. If a
leader/anchor election is done naively, unresponsive validators will unavoidably
stall progress and lead to significant performance impact.

A practical approach, implemented in Diem [43] and formalized in [14], is
to exclude underperforming validators from leader election. This is achieved by
updating the set of candidates after every committed block based on the recent
activity of validators. In a chained protocol, if all validators observe the same
committed block, they can deterministically elect future leaders based on the
information in the chain. However, in some cases, certain validators may see a
commit certificate for a block earlier than others. This can lead to disagreements
among validators regarding the list of next leaders, causing a temporary loss of
liveness.

For DAG-based protocols, disagreements on the identity of round leaders
can lead the validators to order the DAG completely differently. This poses
a challenge for implementing leader reputation on the DAG. As evidence, a
Narwhal and Bullshark implementation currently deployed in production in Sui
blockchain does not support such a feature 1. Shoal enables leader reputation in
Narwhal-based BFT protocols without any additional overhead.

1 github.com/MystenLabs/sui/blob/main/narwhal/consensus/src/bullshark.rs
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B Correctness

To prove the correctness of Shoal (Algorithm 1) we assume that the underlying
protocol satisfies Property 1, which we will use inductively.

Lemma 1. Let P be a Narwhal-based DAG-BFT protocol that satisfies Prop-
erty 1. Let D be a round-based DAG, and assume a known to all function F that
maps rounds to anchors. Then all the locally ordered lists of anchors by honest
validators executing Shoal with P according to F share the same prefix.

Proof. Proof is by induction on the ordered anchors.
Base: We need to show that all honest validators agree on the first anchor.

Since Shoal starts by running P until the first anchor is ordered, the base case
follows immediately from Property 1.

Step: Assume all honest validators agree on the first k ordered anchors,
we need to prove that they agree on anchor k + 1. First, we show that all
honest validators agree on the new function F (Line 8 in Algorithm ??). This
holds because the new function F is deterministically computed according to
the information in k’s causal history, and by the Completeness property of the
DAG, all honest validators have the same causal history of anchor k in their
local view.

Next, let r be the round of anchor k. By the inductive assumption, all honest
validators agree on r. Thus, all honest validators start the next instance of P in
the same round r + 1.

Now consider a DAG D′ that is identical to D except it does not have the
first r rounds. By Property 1, all validators that run P with the new function F
on D′ agree on the first ordered anchor in D′. Therefore, all validators agree on
anchor k + 1 in D.

Theorem 1. Let P be a Narwhal-based DAG-BFT protocol that satisfies Prop-
erty 1. Shoal with P satisfies total order.

Proof. By Lemma 1, all validators order the same anchors. The theorem follows
from the DAG Completeness property as all validators follow the same deter-
ministic rule to order the respective causal histories of the ordered anchors.

C Leader reputation logic

As explained in Section 3.2, Shoal ensures all validators agree on the informa-
tion used to evaluate the recent activity and to bias the leader selection process
accordingly towards healthier validators. Any deterministic rule to determine
the mapping from rounds to leaders (i.e. the logic in pseudocode Line 8 in Al-
gorithm 1) based on this shared and agreed upon information would satisfy the
correctness requirements. Next, we discuss the specific logic used in our imple-
mentation.

At any time each validator is assigned either a high or a low score, and all
validators start with a high score. After ordering an anchor v, each validator
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examines v’s causal history H. Every skipped anchor in H is (re-)assigned a low
score, and every ordered anchor in H is (re-)assigned a high score. Then, the new
sequence of anchors is pseudo-randomly chosen based on the scores, with a val-
idator with a high score more likely to be a leader in any given round. Note that
while the validators use the same pseudo-randomness (so that they agree on the
anchors), the computation is performed locally without extra communication.

Assigning higher scores to validators whose anchors get ordered ensures that
future anchors correspond to faster validators, thus increasing their probability
to be ordered. However, we ensure that the low score is non-zero, and thus un-
derperforming validators also get a chance to be leaders. This crucially gives a
temporarily crashed or underperforming validator a chance to recover its repu-
tation.

D Multiple Anchors per Round

With pipelining, Shoal introduces an anchor in every round. As a result, in the
best case, each anchor requires 2 rounds to commit and while non-anchor vertices
require 3 rounds. Next, we present an approach to further optimize the latency
for non-anchor vertices, which relies on retrospectively re-interpreting the DAG
structure.

We could envision a protocol in which we iterate over more than one ver-
tex in each round in a deterministic order and treat each vertex as an anchor.
More specifically, for a vertex v in round r, we consider executing an instance
of the underlying Narwhal-based consensus protocol P (i.e., DAG-Rider, Tusk,
and Bullshark) starting from round r with v being the first anchor. This involves
re-interpreting the existing DAG structure, and potentially letting it evolve, un-
til a decision of whether v is ordered or skipped is locally made. If v is ordered
by P, then the causal history of v followed by v is added to the ordering deter-
mined by the new protocol. Otherwise, v is skipped and the protocol proceeds
to considering a new instantiation of P from the next potential anchor (which
may be in the same round).

A pseudocode in which all vertices are considered as anchors appears in
Algorithm 2.

In the good case, each vertex that is considered as an anchor can be ordered
in 2 rounds. However, the drawback of this approach is that if some validators
are slow and a potential anchor takes many rounds to decide whether to skip or
order, the progress of the whole protocol will be stalled. This happens because
potential anchor vertices must be considered in an agreed-upon and deterministic
order. As a result, a vertex that necessitates more rounds incurs a latency penalty
for the subsequent vertices.

The above issue can potentially be mitigated by combining it with a leader
reputation mechanism to select the vertices that are considered as potential
anchors, making the bad case delays less likely. The other vertices can be ordered
based on causal history as previously.



24 A. Spiegelman et al.

Algorithm 2 Every vertex as an Anchor
1: r ← 0
2: while true do
3: for each validator k do
4: let vr,k be a vertex by validator k in round r
5: let Fr,k : R→ A be a known to all mapping from

rounds to anchors such that Fr,k(r) = k
6: execute P, select anchors by Fr,k, starting from

r until the first ordered (not skipped) anchor A
is determined.

7: if A = vr,k then
8: order A’s causal history according to P
9: r ← r + 1
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