
The Costs of Swapping on Decentralized
Exchanges

Austin Adams1⋆, Benjamin Y Chan2[0000−0003−1406−9845]⋆⋆, Sarit Markovich3,
and Xin Wan1

1 Uniswap Labs, New York, USA
austin@uniswap.org, xin@uniswap.org

2 Cornell Tech, New York, USA
byc@cs.cornell.edu

3 Northwestern University, Evanston, USA
s-markovich@kellogg.northwestern.edu

Abstract. We present the first in-depth empirical characterization of
the costs of trading on a decentralized exchange (DEX). Using quoted
prices from the Uniswap Labs interface for two pools — USDC-ETH
(5bps) and PEPE-ETH (30bps) — we evaluate the efficiency of trad-
ing on DEXs. Our main tool is slippage — the difference between the
realized execution price of a trade, and its quoted price — which we
breakdown into its benign and adversarial components. We also present
an alternative way to quantify and identify slippage due to adversarial re-
ordering of transactions, which we call reordering slippage, that does not
require quoted prices or mempool data to calculate. We find that the
composition of transaction costs varies tremendously with the trade’s
characteristics. Specifically, while for small swaps, gas costs dominate
costs, for large swaps price-impact and slippage account for the majority
of it. Moreover, when trading PEPE, a popular ‘memecoin’, the proba-
bility of adversarial slippage is about 80% higher than when trading a
mature asset like USDC.
Overall, our results provide preliminary evidence that DEXs offer a com-
pelling trust-less alternative to centralized exchanges for trading digital
assets.

1 Introduction

Since its inception in 2018, the Uniswap Protocol [4,3]—the largest decentralized
exchange by volume today—has handled nearly $1.65 trillion (USD) in total
notional transaction volume, or $1.3 billion per day in 2023 alone. While de-
centralized exchanges (hereafter, DEXs) still see significantly less volume than
traditional exchanges such as the NYSE and the CME, in part because trading

⋆ This work was made possible by mempool data made available to the authors by
Blocknative (https://www.blocknative.com) and BloXroute (https://bloxroute.
com). We are tremendously grateful for their generosity.

⋆⋆ B. Chan—Work done while a Research Fellow at Uniswap Labs

https://www.blocknative.com
https://bloxroute.com
https://bloxroute.com

is limited to assets that live on a blockchain, they point to a larger promise. It
is a compelling promise: by using cryptography (such as digital signatures [21]
or collision-resistant hash functions [46,20], which power blockchains [42,14]),
we may design exchange protocols that allow us to transact without the need
to trust a third party to offer a ‘fair’ price or to settle trades. Moreover, they
are ‘permissionless’, allowing anyone to participate. In this way, decentralized
exchanges promise to lower barriers to participation, boosting liquidity, whilst
making trading fairer, auditable, and more efficient.

Whereas traditional exchanges typically route orders to a centralized match-
ing engine—the opaqueness of which enables fraud [38,26,52]—DEXs take or-
ders from a public mempool of pending transactions, before filling them on a
blockchain using either a liquidity-pool/AMM [11,35] or a decentralized order
book (e.g., EtherDelta). Still, as [19] first explored, moving things onchain does
not necessarily guarantee fair and efficient trading. For example, block proposers
have a monopoly on transaction ordering, due to requirements of an underly-
ing consensus mechanism such as that of Ethereum [13]. This combined with
the transparent nature of orders allows adversaries to carry out frontrunning
attacks, where they reorder transactions and insert their own orders (with the
help of block proposers) to extract one form of ‘miner extractable value’ (MEV)
[19] from other users. Moreover, gas costs on Ethereum remain high, around
approximately ∼ $5 to $25 per trade on the Uniswap v3 in 2023. A user of a
DEX will have to pay these costs (in addition to LP fees and price impact costs)
on top of the market price whenever they transact. Quantifying these costs is
important for evaluating existing exchanges and for designing new protocols.

To the best of our knowledge, few works (if any) have studied the overall
transaction costs experienced by users of DEXs. The community has taken some
initial steps [2,37] towards evaluating overall costs, but there remains a need for
an in-depth analysis. [9] estimate transaction costs of fixed-size trades over time
by simulating a pool using on-chain liquidity and gas price data, but do not
look at real trades or account for MEV or slippage. Some past work quantified
the magnitude of sandwich attacks, arbitrages, and liquidations on DEXs such
as Uniswap v2 and v3 [55,44,47]. However, they rely on heuristics to identify
attacks, or on assumptions about the structure of MEV extraction [29,1], and
may not capture other hidden sources of transaction costs. It is also essential to
understand how the cost of MEV compares with other transaction costs, such
as gas costs, LP fees, and price impact.

Summary of our contributions. In this paper, we study the overall efficiency of
transacting on Uniswap v3, on Ethereum mainnet:

– Framework. We present a framework for evaluating the efficiency of DEXs.
Our main tool is slippage — the difference between the realized execution
price of a trade, and its quoted price — which provides a direct measure of
the additional cost users pay on top of the quoted price. We also present
an alternative way to quantify and identify slippage due to adversarial re-
ordering of transactions, which we call reordering slippage, that requires only

2

on-chain data to compute and does not depend on heuristics. (While in this
work, we have the luxury of access to mempool data and quoted prices, such
data is usually proprietary and difficult to obtain.)

– Breakdown of transaction costs.We analyze a dataset of 534,198 trades made
through the Uniswap Labs interface for two pools that we believe are rep-
resentative of trading on the Uniswap v3 — the USDC-ETH (5bps) and
PEPE-ETH (30bps) pools — between January and mid-August, 2023. We
present a detailed breakdown of transactions costs, the first such baseline
that we know of. We find that while for small trades, gas fees dominate the
transaction cost, for large trades, on average, slippage is by far the domi-
nant cost. The average transaction cost per dollar transacted on USDC-ETH
(PEPE-ETH) is about 22 bps (140 bps). Transaction costs vary widely de-
pending on the pool and on the size of the trade.
We show that, controlling for a variety of market variables, the effect of
order size on slippage is significant, and that most of the effect of order size
is driven by adversarial behavior. In addition, higher gas prices and market
momentum worsen slippage, potentially due to collisions (i.e., if many users
are simultaneously trading in the same direction).

– Other effects. Slippage also strongly depends on the characteristics of the
pool the user is trading against. We find that when trading PEPE, a popular
‘memecoin’, the probability of adversarial slippage is historically about 80%
larger than when trading USDC, a mature asset. Finally, as an initial foray
into evaluating the integrity of mev-boost participants, we find that private
RPC services effectively eliminate adversarial slippage in our dataset (albeit
this may change in the future).

Our work establishes the first baseline for comparing the design of DEXs. More-
over, our techniques may provide a way to audit trusted entities (such as builders,
relays, and RPC providers) in the mev-boost ecosystem to ensure that they are
behaving honestly, a task previously thought to be difficult due to the opaque
and centralized nature of block building.

Looking forward, our results also show early evidence that DEXs provide a
sound trading experience, and offer a compelling trust-less alternative to cen-
tralized exchanges for trading digital assets. (The slippage we see is arguably
lower than what one would expect.) Unsurprisingly, our work also shows that
there remains ample room for improvements, and for applying new techniques
in cryptography and game theory to realize the vision of decentralized finance.

2 Background

The primary exchange that we analyze, Uniswap v3 [4,3], is an example of an
Automated Market Maker (AMM), first explored in [17,11]. We assume famil-
iarity with basic financial terminology, Uniswap and AMMs, as well as with
mev-boost [25] and the MEV ecosystem. For completeness, we describe AMMs
and the MEV ecosystem, as well as terminology for working with Uniswap swaps,
in Appendix A.

3

3 Our Framework

We present a framework for evaluating the execution quality and efficiency of
DEXs. In particular, any such framework should generalize even as markets
evolve (as is bound to happen, evidenced by the dominance of mev-boost since
its introduction by Flashbots in 2020). Combined with the empirical results
in Section 4, this gives a baseline for evaluating DEXs as they become more
sophisticated.

In this paper, we focus on the following costs of trading — slippage, settle-
ment costs, exchange fees, liquidity costs — and the latency of trades:

– Slippage.4 Whereas many works have looked at dollar value lost specifically
to sandwich attacks, backruns, etc. [55,47,44,50], or dollar value earned by
validators [29,1], to the best of our knowledge, we are the first to characterize
the efficiency of a DEX by quantifying the overall slippage experienced by
trades. Following convention, we take positive slippage to denote a price
improvement for the swapper:

Definition 1 (Slippage). The slippage of swap i (in bps) is

slippagei :=

(
realizedPricei
quotedPricei

− 1

)
· −10000

where realizedPricei is the average realized execution price of the swap (the
amount of the input asset spent, over the amount of the output asset re-
ceived), and quotedPricei is the decision price shown to the user.5

– Settlement costs, exchange fees. When trading, users must pay for the op-
eration of the exchange, as well as for settlement fees. On Ethereum, this
takes the form of ‘gas’ fees. Settlement and exchange fees are generally higher
when volume is high and the underlying blockchain is congested; however,
in Ethereum, gas costs scale sublinearly with the order size.

– Liquidity fees and price impact. For liquidity provision to be profitable, mar-
ket makers take an explicit Liquidity Provider fee (LP fee) on AMMs or
construct a bid-ask spread on order books. The price impact of a swap is
defined as the ratio of the quoted price over the market mid price minus 1,
expressed in bps, and directly measures market depth. We assume that the
quoted price incorporates LP fees and the expected liquidity consumption
of the swap, as in the case with the Uniswap Labs interface.

– Latency. The latency of a trade is the time it takes the trade to be executed
plus its settlement time; and should be minimized.

We further break down slippage into its benign and adversarial components:

4 In the literature, slippage is sometimes referred to as implementation shortfall [43].
5 Here, slippage is the difference between the realized output amount and the quoted
output amount, expressed as a percentage of the realized output amount. Alterna-
tively, we may express slippage as a percentage of the quoted output amount, with
no major changes in interpretation.

4

Adversarial slippage. Adversarial slippage refers to slippage due to adversarial
or reactive behavior. This includes frontruns, or more broadly, slippage due to
MEV [19]. Usually, adversarial slippage is negative, but it may be positive, e.g.,
in the case of Just-in-Time liquidity provisioning (JIT) [49].

Collision slippage. Collision slippage refers to slippage due to benign transactions
sequenced between quote time and the final execution time. It may arise, for
instance, if many traders are trying to trade the same assets at once on an
exchange with non-zero latency.

To measure adversarial and collision slippage, prior works relied on heuristics
for classifying sandwich attacks or arbitrages [44,47]. In Section 4, we will use a
different heuristic: we collect data from mev-boost to identify swaps that might
be in the same MEV bundle and thus adversarial.

Other desiderata. A DEX should be secure, decentralized (by principle), and
fair. We will include discussion on these trade-offs when appropriate.

3.1 Reordering Slippage

Although a heuristical approach for identifying adversarial slippage makes sense
for our empirical study, the notions of adversarial and collision slippage remain
rather informal. A heuristical approach requires us to specify the exact attacks
that we hope to measure (e.g. sandwich attacks or those captured by mev-boost

payments), and will not capture unknown adversarial strategies; it also requires
sophisticated mempool or mev-boost data that may be difficult to obtain.

As an alternative, we present a more formal notion which we call “reordering
slippage”. Reordering slippage is easy to measure without mempool data, or
even quoted prices, and also sidesteps the need for heuristics. Thus, it generalizes
even as the market evolves with new adversarial strategies. Later, in Section 4,
in addition to analyzing our heuristical notion of adverse slippage, we will also
empirically analyze reordering slippage, and show that it indeed captures both
sandwiches and arbitrages.

Defining reordering slippage. Reordering slippage compares the realized price
of a swap to its hypothetical price in a world where the trades in its block are
randomly ordered. Intuitively, if the realized price is far from this ‘randomly
ordered’ baseline, then the adversary must have explicitly ‘reordered’ the trades
in that block in order to extract value:

Definition 2 (Reordering Slippage). Fix any block B, and denote by S :=
td1, . . . , tdn the sequence of trades contained within B. For each trade tdi, the
reordering slippage (in bps) of its corresponding swap is defined as

reorderingSlippagei :=

(
realizedPricei

Eπ[hypotheticalPricei(π(S))]
− 1

)
· −10000

where the expectation is taken over sampling a uniformly random permutation
π of the sequence of trades in B. Here, realizedPricei is the realized price for the

5

ith trade, and hypotheticalPricei(π(S)) refers to the hypothetical execution price
of trade tdi if the trades in block B are ordered according to π(S).

Note that when computing the hypothetical price, we consider a world where
the actual realized trades (e.g., ‘sell 1 ETH’) in B are reordered, as opposed the
swaps or transactions (e.g., ‘sell 1 ETH if we get at least 1800 USDC’ back).6 Re-
call from Section A that a trade is the realized interaction between a transaction
and a pool. That is, only actual exchanges of assets factor into the calculation of
reordering slippage, and, when reordered, they “execute” regardless of slippage
tolerance settings or constraints set by a smart contract.7

Backruns and arbitrages. Note that reordering slippage also captures backruns
and arbitrages in the same block as the swap in question. While not directly
adversarial, it seems reasonable to classify arbitrages as adversarial because ar-
bitrages are costs born by liquidity providers [41,40], which are then passed on
to users in the form of a larger LP fee.

Achieving zero reordering slippage. Consensus-level order fairness [31,28] does
not immediately guarantee zero reordering slippage. If transactions are ordered
by observation time, backruns are possible and result in non-zero reordering
slippage, pointing to market inefficiencies and LVR [41].

A strawman approach to reduce reordering slippage is to randomize the or-
der of transactions (or swaps) within each block (e.g., using an unpredictable
randomness beacon). However, this also fails to achieve zero reordering slippage.
The problem is that the execution of a transaction can depend on the current
state of the blockchain. Thus, even if the order of transactions within a block
is randomized and unpredictable, an adversarial transaction may simply refuse
to carry through with a trade if executed in unfavorable conditions (via a smart
contract, or simply by setting a tight slippage tolerance).8 As such, achieving
zero reordering slippage remains an open question.

Concurrent work. In concurrent work, [6] present a notion that they call ‘Cost
of MEV’ which is very similar to our notion of reordering slippage (Definition 2).

6 As an example, suppose a block contains three swaps, one of which fails due to a
violation of its slippage tolerance setting, and two of which succeed. Suppose that
the first successful trade td1—corresponding to some swap s—‘buys 1 ETH’ and
the second trade td2 ‘buys 2 ETH’. Then the reordering slippage of s would be its
realized price, divided by the average of its realized price and the hypothetical price
of td1 in a world that first executes ‘buy 2 ETH’ (td2) and then ‘buy 1 ETH’ (td1).
Note that even if s would have failed (e.g., due to slippage tolerance) had it been
ordered 2nd, we can still compute a hypothetical price for executing td1 after td2.

7 While the ‘hypothetical’ world may not be realizable in practice, this definition allows
us to quantify the effects of a broader set of adversarial strategies. In particular, those
whose execution is conditional on the current state of the blockchain. To capture
liquidity slippage, S should include liquidity events in addition to trades.

8 Indeed, this exact issue caused backrunning bots to spam the Ethereum network in
the past [34].

6

Their work is theoretical and shows loose bounds on how their worst-case notion
scales with the total volume of trades, when instantiated with basic models for
frontrunning and sandwiching. To use their notion still requires instantiating
the metric with an appropriate model. In contrast, we use reordering slippage
to directly characterize the cost of trading on DEXs. Our choice of definition
highlights the fact that even randomized transaction ordering does not eliminate
adversarial slippage, since transactions can execute adaptively based on their
location in the block [34]. Thus, the definition of reordering slippage seems well-
equipped to capture MEV. Moreover, we provide an empirical characterization
of reordering slippage on Uniswap v3 in Section 4, quantifying realized execution
costs (as opposed to the theoretical worst-case).

4 Empirical Findings

4.1 Data

We obtain transaction hashes logged from the Uniswap Labs interface9, cover-
ing all swaps made through the interface (mobile and web) that were published
onchain, during the period of January 21, 2023 to August 14, 2023, and for two
specific target pools on Ethereum: WETH-USDC 5bps pool (284,031 swaps) and
WETH-PEPE 30bps pool (230,236 swaps). For each swap, the dataset includes
a ‘log index’ which together uniquely identify the swap in question, the quoted
price, and a timestamp for when the swap was relayed by the user. The quoted
price is computed using onchain pool data at the time of the quote, and rep-
resents the expected execution price had the swap been executed at that time.
In other words, the quoted price incorporates the estimated price impact of the
swap and the LP fee. Due to caching, the quote may be one or two blocks stale.
Notably, our quoted prices comprise the actual prices shown to the user when
they made the decision to swap on the interface.

We augment this dataset with additional onchain data to obtain the final
average execution price, slippage tolerance setting, location in the blockchain,
failure status, gas expenditure, and order size for each swap. We obtain onchain
data for every swap in the target pools between January 21, 2023 to August 14,
2023, including but not limited to the interface swaps.10 Onchain data is also
used to compute the liquidity distribution of each target pool at the beginning
of each block. We use the publicly available mevboost.pics dataset [48] to obtain
for each swap the builder that built the corresponding block.

We further augment our dataset with mempool data for every (onchain) swap,
including the time that each swap was seen in the mempool, and whether a swap
was seen for the first time in the public mempool, or if it was first seen as part
of a finalized block onchain. The latter indicates that the swap was likely sent as
part of a private mev-boost bundle of transactions. The mempool data comes

9 https://app.uniswap.org
10 The data for every onchain swap will later be used to simulate Uniswap v3 pools to

compute a slippage breakdown.

7

https://app.uniswap.org

from two different datasets: one assembled by bloXroute, comprising mempool
data from June 22, 2023 to August 14, 2023, and one by Blocknative, comprising
mempool data from January 21, 2023 to August 8, 2023. When mempool data
overlaps, we take the earliest mempool observation time, and consider a swap
public iff it was seen by both bloXroute and Blocknative in the public mempool.
Most of the initial work was done using the bloXroute dataset, and subsequently
extended to incorporate new data from Blocknative for the longer timeframe
when it became available.

Pool choice. We focus on two pools that we believe are representative of trading
on DEXs on Ethereum mainnet — the Uniswap v3 WETH-USDC11 5bps12 and
the Uniswap v3 WETH-PEPE 30 bps13 pools. The WETH-USDC 5 bps pool is
generally the largest pool by volume and liquidity in DeFi, trading mature assets
that have a large market cap and good price discovery on centralized exchanges.
PEPE is an archetypical high-volatility ‘memecoin’ and representative of a less
mature asset being traded on Uniswap v3; notably, the 30 bps pool has enough
volume for a meaningful analysis. An exploration of a wider selection of pools is
well-motivated and left to future work.

4.2 Summary Statistics

We study transaction costs from various angles: dollar amounts, fraction of trade
sizes, as well as the breakdown into cost items laid out in Section 3.

Our full sample includes 534,198 transactions, roughly $6B dollar of volume.
Combined, the sample accounts for approximately 20% of all swaps done through
the Uniswap Labs interface during the sample period, and roughly 12-15% of the
USD volume. The average WETH-USDC (WETH-PEPE) transaction size is
$18301.7 ($2680.6), and the average total transaction cost (relative to a gas-free
swap executed at the pool price at the end of the quote block) is $40.7 ($41.4),
which is 22 bps (140 bps) of the mean order size. Note that this latter number
represents the average transaction cost per dollar transacted in each respective
pool. Swap sizes in our sample skew to the right, and the median swap size is
only $1,650 ($407). For the median swap, gas cost is about $7.3 ($14.9), which
is 44 bps (366 bps) of its order size.

4.3 Cost Composition: High Level Patterns

We compare the magnitude of the different transaction cost components: gas
costs, slippage, LP fees, and the price impact of swaps.

Summing over all swaps, each of the four cost items accounts for between
20-35% of the total transaction cost, with no item dominating costs (Figure 1a

11 WETH is an ERC20 wrapped version of ETH backed 1-1. It is used in place of ETH
due to most of DeFi requiring a token be an ERC20.

12 pool address: 0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640
13 pool address: 0x11950d141ecb863f01007add7d1a342041227b58

8

Total Cost Gas Cost Slippage LP Fee Price Impact
Token Pair Size

ETH<>USDC All $40.7 (22bps) $10.1 (5bps) $12.3 (7bps) $9.3 (5bps) $9.0 (5bps)
Large $698.2 (24bps) $16.9 (0.6bps) $308.4 (11bps) $145.4 (5bps) $227.5 (8bps)
Medium $18.9 (14bps) $10.6 (8bps) $1.0 (0.7bps) $6.7 (5bps) $0.6 (0.4bps)
Small $8.7 (250bps) $8.5 (245bps) $0.0 (0bps) $0.2 (5bps) $0.0 (0bps)

ETH<>PEPE All $41.4 (140bps) $19.5 (66bps) $3.0 (10bps) $8.9 (30bps) $10.1 (34bps)
Large $2847.9 (212bps) $52.7 (4bps) $190.8 (14bps) $403.5 (30bps) $2200.9 (164bps)
Medium $67.9 (98bps) $22.6 (33bps) $8.3 (12bps) $20.7 (30bps) $16.3 (24bps)
Small $19.2 (526bps) $17.4 (478bps) $0.5 (14bps) $1.1 (30bps) $0.2 (6bps)

Table 1: Mean Transaction Cost Composition by Pair & Size; Each dollar item
is computed by total item cost divided by number of swaps in that bucket; each
bps item is computed by total item cost divided by the total dollar volume for
swaps in that bucket. Large Size group includes swaps larger than $100,000;
Medium Size group includes swaps between $1,000 and $100,000; Small Size
Group includes swaps less than $1,000.

in the appendix). Yet, this breakdown varies with order size and across the
different assets. Specifically, for the median sized transaction, gas cost completely
dominates other cost, accounting for more than 90% of total cost. Excluding
gas costs, which are specific to the underlying blockchain, the overall cost of
transacting in a decentralized market is on average 23bps (compared to 36bps
including gas costs). Below we detail how the composition of total costs varies
significantly with the size of the swap, across different assets, and over time:

Order Size. Transaction costs vary significantly with the size of the swap: the
larger the swap, the lower the gas cost as a percentage of the swap size. In
our WETH-USDC pool sample, gas cost is relatively tightly distributed around
a median of $7.3, with 75th and 25th percentile of $5.0 and $11.0, and a low
correlation with swap size at ∼0.21. As a result, for small swaps with size below
$1000, over 98% of total transaction cost is paid as gas cost; in contrast, for large
swaps with size above $100,000, gas cost accounts for 2.4% of total transaction
cost. That is, as swap size increases, other cost items start to dominate. In
particular, for swaps larger than $100,000, price-impact and slippage together
account for ∼77% of overall transaction cost on a per dollar basis. This makes
sense because price impact and slippage usually increase faster than swap size.
Specifically, since marginal price impact is inversely related to liquidity depth,
and Uniswap v3 pools tend to have thinner liquidity farther away from current
pool price, then larger swaps should see increasing price-impact as a fraction of
total order size. LP fees scale linearly with swap size, so their fraction of swap
size remains fixed.

9

USDC vs PEPE. In our sample, the mean transaction cost for WETH-PEPE
is about 140 bps, which is six times larger than the mean transaction cost for
WETH-USDC swaps, at 22 bps. Several factors contribute to this large differ-
ence. PEPE is a relatively recent launched token, which means it has shallower
liquidity, higher volatility, and smaller trade sizes. Specifically, the average and
median transaction sizes for WETH-USDC pair is $18,302 and $1,650, respec-
tively, while those of WETH-PEPE are only $2,681 and $407. Larger swap sizes
mean that the relatively fixed gas cost will have a larger volume base to be
amortized over, but at the same time adversaries like sandwich attackers could
also have a strong motivation to attack. This is consistent with what we see in
the data: for WETH-USDC swaps, summed slippage costs account for 30.1%
of total transaction cost14, yet accounts for only 8.1% for WETH-PEPE swaps.
In contrast, gas costs account for 24.5% of WETH-USDC cost, but 47.1% of
WETH-PEPE cost. Shallower liquidity also translates into higher price-impact
and higher slippage. In our sample, the amount of liquidity within a 5% price
range (liquidityi) is on average 70-80 times deeper for the WETH-USDC pool.
Finally, WETH-PEPE has higher price volatility, on average 10x times higher
than WETH-USDC. As we will demonstrate below in our regression analysis,
higher volatility, in general, leads to higher slippage cost.

Time effects. Transaction costs vary significantly based on the time period. We
observe a significant reduction in total transaction cost as a fraction of trade
size in the initial months of trading for WETH-PEPE. MEV related costs such
as slippage and price-impact also spike during highly volatile periods. For the
month of March, during the Silicon Valley Bank incident, the mean slippage and
price-impact total 22.5 bps for the WETH-USDC pair and over 71% of total
transaction cost, more than five times the lowest point in the month of April,
which saw a mean of 3.8 bps, accounting for only 25% of total transaction cost.

Latency and fill rate. We also present baseline data for latency and fill-rate of
transactions. Latency and fill-rate measure how quickly and reliably can traders
get into their desired positions. Our dataset indicates that roughly 90% of trans-
actions wait less than 12 seconds before their signed transactions are confirmed
in a block. As we move out farther in the distribution, waiting time gets much
longer—the 99.5th percentile waiting time is more than 20 blocks. Of the USDC-
WETH swaps in our dataset, fewer than 0.5% fail onchain. In PEPE-WETH,
interface swaps saw an onchain fail rate of nearly 10% at launch in mid-April,
dropping to 5% by the end of April, and approximately 3% in August.

Comparison with Traditional Markets. Many works have assessed transaction
costs (slippage, commission, broker fees, bid ask spreads, price impact) on tra-
ditional markets. Depending on the region and asset class, transaction costs can
vary widely [5,18,23]. For example, [5] finds that transaction costs for equities

14 This is mainly driven by a few large swaps and is not a realistic average cost per
swap.

10

range from 100 bps for emerging markets to 40 bps for US large cap companies.
[18] finds that institutional investors pay in the range of 40-70 bps in total trans-
action costs. The average transaction costs that we observe in the PEPE-WETH
and USDC-WETH pools are remarkably competitive in comparison.

4.4 Factors Affecting Slippage

We now shift our focus to understanding slippage on Uniswap v3, for two main
reasons. First, of the four cost items above, gas used by a swap and LP fees
are relatively static and do not change much with the swap’s characteristics. In
contrast, price-impact and slippage directly affect execution price on a per-trade
basis. While the factors required to minimize price-impact are well understood,
this is not the case for slippage. Second, slippage attracts the most adversarial
attention. Thus, for any given swap, slippage arguably matters the most to
execution quality.

We start by analyzing how different transaction and market factors affect
slippage. To this end, we run a set of linear regressions on a broad set of market
variables, for various measures of slippage, described by the equation

yi = β0 + β1 · orderSizei + β2 · gasPricei + β3 · logLatencyi
+ β4 · slippageTolerancei + β5 · lastHourReturni + β6 · liquidityi
+ β7 · volatilityi + weekFE+ ei,

(1)

where for each swap i, yi corresponds to one of the measures of slippage described
above. In order to further control for market conditions, we control for weekly
fixed effects. The results for the WETH-USDC 5 bps pool is presented in Table 2,
along with definitions for the above variables.

Recall that for every notion of slippage that we consider, slippage is negative
(by convention) if the realized execution price is worse than the quoted execution
price, and positive if the realized price is better.

As Table 2 shows, consistent with the high-level pattern observed in Sec-
tion 4.3, we observe in Model (1) that larger swaps (in terms of USDC size) are
associated with substantially worse slippage: for every extra 1 million dollars in
additional order size, the swap costs an additional 14 bps on top of its quoted
price. That is, larger swaps pay a large penalty on top of their price-impact.
While caution is needed when interpreting these numbers, this suggests that ad-
versaries find larger swaps — controlling for market volatility — more profitable
to sandwich or otherwise exploit (in the form of MEV). To test this, in models
(2) & (3) we run the same regression on the adverse and benign components
of slippage. We break down slippage into adversarial, collision, and liquidity
components (the methodology is presented in Table 2):

Slippagei ≈ AdversarialSlippagei + CollisionSlippagei + LiquiditySlippagei

As expected, most of the effect of order size on slippage is driven by adver-
sarial slippage. Moreover, increased liquidity reduces adversarial slippage. We

11

Table 2: Factors Affecting Slippage (USDC-WETH 5 bps)

Slippage
(1)

AdversarialSlippage
(2)

CollisionSlippage
(3)

ReorderingSlippage
(4)

TopOfBlockSlippage
(5)

LiquiditySlippage
(6)

orderSize -14.0176∗∗∗ -12.3729∗∗∗ -2.2378∗∗∗ -18.0085∗∗∗ -0.5170∗∗∗ 0.6208∗∗∗

(0.1670) (0.0793) (0.1511) (0.0940) (0.1306) (0.0169)
gasPrice -0.0043∗∗∗ -0.0004∗ -0.0038∗∗∗ -0.0011∗∗∗ -0.0028∗∗∗ -0.0001∗∗∗

(0.0004) (0.0002) (0.0003) (0.0002) (0.0003) (0.0000)
logLatency -0.0251+ 0.0042 -0.0251∗ 0.0091 -0.0399∗∗∗ -0.0038∗∗

(0.0141) (0.0067) (0.0128) (0.0079) (0.0110) (0.0014)
slippageTolerance 0.0000+ -0.0001∗∗∗ 0.0001∗∗∗ -0.0001∗∗∗ 0.0001∗∗∗ 0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
lastHourReturn -0.0115∗∗∗ 0.0008∗∗∗ -0.0123∗∗∗ -0.0004∗∗∗ -0.0087∗∗∗ 0.0000∗

(0.0002) (0.0001) (0.0002) (0.0001) (0.0002) (0.0000)
liquidity 0.0244∗∗∗ 0.0110∗∗∗ 0.0144∗∗∗ 0.0102∗∗∗ 0.0179∗∗∗ -0.0009∗∗

(0.0034) (0.0016) (0.0030) (0.0019) (0.0026) (0.0003)
volatility -0.0051∗∗∗ -0.0004 -0.0046∗∗∗ -0.0022∗∗∗ -0.0022∗∗∗ -0.0001

(0.0007) (0.0003) (0.0007) (0.0004) (0.0006) (0.0001)
Intercept -0.2951 -0.0639 -0.3057 0.0412 -0.3399∗ 0.0726∗∗∗

(0.2164) (0.1027) (0.1958) (0.1217) (0.1692) (0.0217)

Obs 258925 258906 258906 258925 258925 255392
Adj. R2 0.0471 0.0898 0.0235 0.1306 0.0152 0.0057
F-stat 356.5146 710.5045 174.4438 1081.6725 112.1161 41.6709

Every regression includes weekly fixed effects. ***, **, *, and + denote statistical significance at the 0.1%, 1%, 5%, and 10%
levels. The number of observations is less than reported in our summary statistics, due to some rows with missing latency
or slippage tolerance information. All slippage notions are in units of bps.

Variables Definition. The Slippagei of swap i is computed according to Definition 3. Note that slippage for failed transactions
(i.e. due to a violation of their slippage tolerance setting) is not well defined. Dropping these swaps from the analysis would
bias the overall slippage. Instead, we simulate the execution price for each failed swap, and compute its hypothetical
slippage in a world where the trade was executed. AdversarialSlippagei and CollisionSlippagei are calculated using a heuristic
(see below). ReorderingSlippagei is computed according to Definition 2. We calculate two additional slippage measures:
TopOfBlockSlippagei is the slippage calculated were the trade executed at the top of the block, comparing the top of
block execution price to the quoted price, and LiquiditySlippagei is the slippage attributable to transactions that deposit or
withdraw liquidity in the same block as swap i. orderSizei is the size of the swap, in units of millions of USDC. gasPricei
is expressed in units of 1e-6 USDC, using the ETH price at the time of quote. slippageTolerancei is the slippage tolerance
setting of the swap, in non-negative basis points. The Uniswap Labs interface adds the slippage tolerance on top of the
quoted price-impact of the swap to compute a minimum output (or input) amount. liquidityi denotes the dollar value of the
liquidity that would need to be consumed to increase the current price of the pool by 500 bps in the same direction as swap
i. lastHourlyReturni is the change in the pool price (in bps) in the hour prior to the corresponding swap, where a positive
change corresponds to a worse price for the swapper (compared to if their trade executed an hour ago). Volatilityi is the
standard deviation of one-minute log returns over a six hour sample. Finally, logLatencyi is the logarithm of the time the
swap ’sat’ in the mempool, that is, the time between when the swap is signed/broadcast by the user, and the time swap i is
finalized onchain. Identifying Adversarial Slippage. AdversarialSlippagei for swap i is computed using the following heuristic:
first, consider the two transactions directly preceding i in the same block B (if any). For any trade executed within those
two transactions, if the parent transaction is additionally private (i.e., part of an mev-boost bundle), then that trade is
labeled ‘adversarial’. A ‘collision execution price’ is then computed as the hypothetical average execution price of swap i,
when starting with the pool state at the top of block B, then executing only the non-adversarial trades preceding swap i in
B, and then executing i’s trade. The AdversarialSlippagei is the realized price (removing the effects of liquidity transactions
in B) over the ‘collision execution price’ (minus 1, times −10000). The CollisionSlippagei is the ‘collision execution price’ over
the quoted price (minus 1, times −10000). A more principled heuristic is to label swaps in the same mev-boost bundle as i
as adversarial, but requires comprehensive bundle data across all builders, which is hard to obtain. Using a limited sample of
Flashbots bundle data from June to August 2023, we verified that adversarial slippage computed using our heuristic closely
tracks adversarial slippage computed using bundle data, for swaps in blocks built by Flashbots during said time period.

12

also evaluate reordering slippage in model (4), and find that it behaves similarly
to our heuristical notion of adverse slippage. Interestingly, the effect of order
size on reordering slippage is larger than the effect in our original slippage and
adversarial slippage models. This may be due to back-running transactions that
are captured in reordering slippage, but not in adverse slippage. Note that when
the number of swaps in the same block is high enough to make computing the
reordering slippage computationally infeasible, we approximate it by sampling a
constant number of permutations (e.g. 16) and taking the average.

One interesting question is whether collision slippage is due to benign swaps
in the same block as the target swap, or swaps from previous blocks (in which case
latency might matter more). As shown in model (5), putting the transaction at
the top of the block does not completely eliminate slippage. While the coefficient
is significantly smaller than the coefficient in models (1)-(4), it might take 2-3
blocks between the quote time and the time the transaction becomes onchain, so
the price at the top of the block may be different than the quoted price (either
due to collision or adversarial transactions), thereby creating slippage. Still, it
seems like cross-block slippage is smaller than within-block slippage.

Another important factor affecting slippage is gas price. As the results show,
higher gas prices are also negatively associated with slippage. Here, however,
the association is mostly driven by collision slippage (see models 2 & 3). The
intuition is simple: gas price is higher when the networks is more congested and
there is more activity. Since, typically, during high activity periods, users trade in
the same directions, this results in higher negative slippage. This same intuition
can explain the negative coefficient in models (4) & (5).

Slippage is also expected to be affected by the time transactions sit in the
mempool – the longer it takes for the transaction to become onchain, the higher
the expected slippage; due to higher probability of collision and higher proba-
bility of the transaction being identified as a profitable MEV opportunity. Our
results show that indeed slippage increases with the time the transaction spends
in the mempool. Interestingly, most of the effect comes from collision rather
than adversarial slippage. This suggests that searchers respond quickly to MEV
opportunities. As before, the negative effect in the case where the transaction is
executed at the top of the block is due to inter-block slippage.

The hourly returns variable captures, in essence, the effect of market momen-
tum. It is positive if the market moves in the same direction as the swap, and
negative otherwise. As expected, market momentum negatively affects slippage
and is mostly driven by collision. All other control variables – e.g., volatility
and liquidity – are in the expected direction. Finally, note that the effect of the
slippage tolerance set by the user is economically insignificant. This is driven by
the fact that most users do not change the default tolerance of 50bps. Indeed,
both the 25th percentile and the median slippage tolerance levels are 50bps.

4.5 Comparison with the WETH-PEPE pool

As mentioned above, the WETH-USDC pool is a mature and highly liquid pool.
One would expect it to perform much more efficiently than younger, mostly

13

speculative pools with high volatility. To this end, we choose the WETH-PEPE
pool which is a highly active pool with 1/100 the liquidity of USDC (median of
0.24M vs 22.5M dollars) and about 10 times the volatility of USDC. Table 3
presents the regression results.

In general, the direction of the effects of the different factors on slippage is
similar to what we see in the WETH-USDC pool, with the notable exception
that the effect of gas price on adversarial slippage is positive and significant
and the effect of slippage tolerance is significant and economically meaningful.
The positive and significant coefficient on gas price for adversarial slippage is
likely due to the fact that an increase in the cost of a transaction makes some
adversarial strategies unprofitable. If, on average, the availability of profitable
MEV opportunities does not change during high gas price, then we should expect
to see less adversarial activity during times when gas price is high. Since, unlike
the WETH-USDC pool, network congestion is likely not closely associated with
profitable MEV opportunities in the PEPE pool, we see that adversarial slippage
for PEPE is positively correlated with gas price. As for slippage tolerance, the
25th percentile and median slippage tolerance values for the PEPE pool are 100
and 300, respectively. This suggests that users (or the Uniswap Labs interface)
are actively choosing risk tolerance levels with the expectation that slippage
would be quite high, likely, due to the high price volatility.

Given the large differences in overall activity, transaction size, etc. between
the two pools, the coefficients in the regressions in Table 2 and Table 3 cannot
be directly compared. In order to examine whether there is more adversarial
activity in the PEPE pool relative to the USDC pool, we run a logit regression
on adversarial slippage. Specifically, we run the same regression as in Equation 1
where now yi takes on the value of 1 if swap i experienced a negative adversarial
slippage larger than $5, and 0 otherwise.15 The results are presented in Table 4.
(Note that liquidity in range is quite correlated with week number for PEPE,
and much less so for USDC).

As the table shows, the likelihood of adversarial slippage for PEPE is about
80% larger than for USDC. Furthermore, the increased likelihood is enhanced
by the size of the transaction–i.e., for a certain increase in transaction size, the
increase in the likelihood of adversarial slippage for PEPE is larger than the
corresponding increase for USDC.

The results above suggest that slippage in mature markets that are highly ac-
tive, liquid, and with low volatility is minor. More generally, the results suggests
that, despite the decentralization and transparency that characterize DeFi mar-
ket, mature markets behave efficiently and may be even considered to be close in
their efficiency to traditional financial markets. In order to further examine the
impact of the fundamental characteristics of DeFi market—decentralization and
transparency—next, we break down our analysis to public and private transac-

15 To avoid the case of swaps being mistakenly identified as adverse because of a small
negative adversarial slippage (which may be spurious due to our heuristic), we clas-
sify transactions in the logit regression as being adversarial only if their adversarial
slippage (in bps) multiplied by the order size is worse than negative $5.

14

tions. Specifically, while decentralization is core to the functioning of the Uniswap
Protocol, nowadays many transactions (including MEV transactions) are sent as
private transactions. This allows us to better study the effect of transparency
on market efficiency in mature markets as WETH-USDC as well as in younger
markets like the WETH-PEPE pool.

5 The Impact of MEV Infrastructure on Slippage

We examine two important components of the MEV ecosystem: the usage of
private RPCs and trust in builders’ neutrality.

5.1 Private RPCs

Sending a transaction to a private RPC (putting it in a mev-boost bundle)
should prevent other searchers from sandwiching transactions, as the private
transaction does not appear in the mempool before becoming onchain. Conse-
quently, private transactions should have much smaller negative slippage, that is
only driven by collision. Nevertheless, since these transactions typically are sent
to specific RPCs, they might suffer from higher latency and consequently wider
collision slippage.

Table 5 presents the results for the same regression as in Equation 1 with
the addition of a dummy variable that takes on the value of 1 if transaction i
is public, and 0 otherwise. As expected, the coefficient on Public is negative and
significant for both USDC and PEPE. In fact, out of the 8294 (8629) private in-
terface swaps in USDC (PEPE), only 3 (12) have negative adverse slippage that
is larger than $5. That is, private RPCs seem to completely eliminate adverse
slippage. Of the 3 (12) swaps with adverse slippage worse than $5, none are
obviously sandwiched when manually checked on Etherscan, and the slippage
appears accidental. Furthermore, the coefficient on collision slippage is not sig-
nificant, meaning that the potential increase in latency has no effect on average
collision slippage. We note that while this shows evidence that private RPCS
are reliable in the present day, it does not guarantee that the trust assumptions
that underpin private RPCs will continue to be valid in the future.16

5.2 Builder Trust

When participating in the mev-boost ecosystem, searchers and users of private
RPCs must trust that builders do not frontrun or ‘unpack’ the mev-boost bun-
dles that are sent to builders. While in traditional markets, it is the regulator
that audits the intermediaries, in DeFi this trust relies on incentives (or even

16 We further interact Public with our other explanatory and control variables. We find
that the effect of order size on adversarial slippage is stronger for public transactions,
yet gas price interacted with Public has no significant effect. For brevity, we do not
present these results here.

15

on goodwill). It is, therefore, important to audit this trust assumption. Our re-
ordering slippage provides a way for the public to monitor builders’ behavior,
without the need to acquire private data.

As Table 6 shows, we do not find conclusive evidence that any of the top
5 builders (by private transaction count) are misbehaving, at least from a cur-
sory examination. This may suggest that the penalties associated with breaking
users’ trust are large enough to incentivize builders not to defect. Investigating
the validity of trust assumptions required by the MEV ecosystem remains an
important open question.

6 Related work

Quantifying MEV on Ethereum is an active area of research. Daian et al. [10,19]
introduced the notion of MEV and were the first to demonstrate its impact
on decentralized markets, in turn giving rise to projects such as mev-boost

[25]. More recently, a series of works [47,44] quantify frontrunning attacks and
MEV extraction using historical data. [50] further extend this to analyze the
impact of Flashbots on overall MEV extraction. Many of their techniques rely on
identifying specific strategies for extracting value from users, and then designing
heuristics for identifying those strategies. More recently, [45,7,8] explore more
automated approaches for identifying value-extraction mechanisms.

Few works have analyzed slippage or overall transaction costs of trading on
decentralized exchanges. 0x [2] analyze the slippage of trades sent through the 0x
Swap API, and show that setting an appropriate slippage tolerance is essential
for bounding the cost of MEV experienced by any single swap. [37] show that
transactions sent to private RPCs may have on average higher transaction costs
than public transactions. [9] estimate the transaction costs for various fixed-size
trades over time by simulating pools using onchain liquidity data, and gas price
data. Their analysis does not incorporate slippage, MEV, or onchain execution
prices, relying entirely on simulated execution.

A number of works measure the dynamics of liquidity provisioning on decen-
tralized exchanges, sometimes through the lenses of transaction costs. [16] show
that lower gas fees increase liquidity repositioning and concentration, reducing
price impact for small trades. They use a notion of slippage that incorporates
price impact, comparing realized prices to the market mid price. [27] show that
higher LP fees may reduce price impact. [33] show that the cost of price impact
on AMMS may be lower than on centralized exchanges for highly liquid pools.

Transaction costs on traditional markets. In contrast, a number of works
have quantified overall trading costs on traditional markets (such as equities
markets). We point to [24,23,22,18,5] as examples, but this list is by no means
comprehensive.

Mitigating MEV. Much work has focused on mitigating MEV extraction
through protocol design. At the consensus layer, [31] propose an order-fair con-
sensus algorithm, where transactions are ordered in the time they arrive in
the view of validators. Order-fair consensus has seen substantial follow-up work

16

[54,32,15,30]. Time-based order-fairness may not eliminate backruns or arbitrage
and may incentivize latency wars. An alternative approach, as described by [36],
is to force block proposers to ‘commit’ to an ordering of a block, before they learn
the contents of the transactions. Such an approach is reminiscent of those used
by MPC protocols [53,39] and asynchronous byzantine agreement algorithms;
the downside is that it requires more sophisticated cryptography (e.g. threshold
cryptography, secret sharing) that is harder to adapt to a permissionless setting.

At the block builder level, [51] propose a verifiable block sequencing rule that
block builders can follow and that observers can audit. Such a rule may mitigate
MEV whilst being accountable to the general public.

References

1. Flashbots transparency dashboard. https://transparency.flashbots.net (2022)
2. 0x.org: Measuring the impact of hidden dex costs. https://0x.org/post/

measuring-the-impact-of-hidden-dex-costs (2022)
3. Adams, H., Salem, M., Zinsmeister, N., Reynolds, S., Adams, A.,

Pote, W., Toda, M., Henshaw, A., Williams, E., Robinson, D.:
Uniswap v4 core [draft]. https://github.com/Uniswap/v4-core/blob/

ffa4af8759aa416497c94c1693dc53c6e9961f89/whitepaper-v4-draft.pdf

(2023)
4. Adams, H., Zinsmeister, N., Salem, M., Keefer, R., Robinson, D.: Uniswap v3 core.

https://uniswap.org/whitepaper-v3.pdf (2021)
5. Angel, J.J., Harris, L.E., Spatt, C.S.: Equity trading in the 21st century: An up-

date. The Quarterly Journal of Finance 5(01), 1550002 (2015)
6. Angeris, G., Chitra, T., Diamandis, T., Kulkarni, K.: The specter (and spectra) of

miner extractable value (2023)
7. Babel, K., Daian, P., Kelkar, M., Juels, A.: Clockwork finance: Automated analysis

of economic security in smart contracts. In: 2023 IEEE Symposium on Security and
Privacy (SP). pp. 2499–2516. IEEE (2023)

8. Babel, K., Javaheripi, M., Ji, Y., Kelkar, M., Koushanfar, F., Juels, A.: Lanturn:
Measuring economic security of smart contracts through adaptive learning. Cryp-
tology ePrint Archive (2023)

9. Barbon, A., Ranaldo, A.: On the quality of cryptocurrency markets: Centralized
versus decentralized exchanges (2023)

10. Bentov, I., Breidenbach, L., Daian, P., Juels, A., Li, Y., Zhao, X.: The cost of
decentralization in 0x and etherdelta. http://hackingdistributed.com/2017/08/
13/cost-of-decent/ (2017)

11. Buterin, V.: Let’s run on-chain decentralized exchanges the way we run pre-
diction markets. https://www.reddit.com/r/ethereum/comments/55m04x/lets_
run_onchain_decentralized_exchanges_the_way (2016)

12. Buterin, V.: Proposer/block builder separation-
friendly fee market designs. https://ethresear.ch/t/

proposer-block-builder-separation-friendly-fee-market-designs/9725

(2021)
13. Buterin, V., Hernandez, D., Kamphefner, T., Pham, K., Qiao, Z., Ryan, D.,

Sin, J., Wang, Y., Zhang, Y.X.: Combining ghost and casper. arXiv preprint
arXiv:2003.03052 (2020)

17

https://transparency.flashbots.net
https://0x.org/post/measuring-the-impact-of-hidden-dex-costs
https://0x.org/post/measuring-the-impact-of-hidden-dex-costs
https://github.com/Uniswap/v4-core/blob/ffa4af8759aa416497c94c1693dc53c6e9961f89/whitepaper-v4-draft.pdf
https://github.com/Uniswap/v4-core/blob/ffa4af8759aa416497c94c1693dc53c6e9961f89/whitepaper-v4-draft.pdf
https://uniswap.org/whitepaper-v3.pdf
http://hackingdistributed.com/2017/08/13/cost-of-decent/
http://hackingdistributed.com/2017/08/13/cost-of-decent/
https://www.reddit.com/r/ethereum/comments/55m04x/lets_run_onchain_decentralized_exchanges_the_way
https://www.reddit.com/r/ethereum/comments/55m04x/lets_run_onchain_decentralized_exchanges_the_way
https://ethresear.ch/t/proposer-block-builder-separation-friendly-fee-market-designs/9725
https://ethresear.ch/t/proposer-block-builder-separation-friendly-fee-market-designs/9725

14. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. white paper 3(37), 2–1 (2014)

15. Cachin, C., Mićić, J., Steinhauer, N., Zanolini, L.: Quick order fairness. In: Inter-
national Conference on Financial Cryptography and Data Security. pp. 316–333.
Springer (2022)

16. Caparros, B., Chaudhary, A., Klein, O.: Blockchain scaling and liquidity concen-
tration on decentralized exchanges. Available at SSRN 4475460 (2023)

17. Chen, Y., Pennock, D.M.: A utility framework for bounded-loss market makers.
arXiv preprint arXiv:1206.5252 (2012)

18. Chiyachantana, C.N., Jain, P.K., Jiang, C., Wood, R.A.: International evidence
on institutional trading behavior and price impact. The Journal of Finance 59(2),
869–898 (2004)

19. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L.,
Juels, A.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability. In: 2020 IEEE Symposium on Security
and Privacy (SP). pp. 910–927. IEEE (2020)

20. Damg̊ard, I.B.: Collision free hash functions and public key signature schemes.
In: Workshop on the Theory and Application of of Cryptographic Techniques. pp.
203–216. Springer (1987)

21. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory (1976)

22. Domowitz, I., Glen, J., Madhavan, A.: Global equity trading costs. ITG White
Paper, May 8 (2001)

23. Domowitz, I., Glen, J., Madhavan, A.: Liquidity, volatility and equity trading costs
across countries and over time. International Finance 4(2), 221–255 (2001)

24. Domowitz, I., Steil, B.: Automation, trading costs, and the structure of the secu-
rities trading industry. Brookings-Wharton papers on financial services 2, 33–92
(1999)

25. flashbots: flashbots/mev-boost: Mev-boost. https://github.com/flashbots/

mev-boost/, accessed in 2023.
26. Gandal, N., Hamrick, J., Moore, T., Oberman, T.: Price manipulation in the bitcoin

ecosystem. Journal of Monetary Economics 95, 86–96 (2018)
27. Hasbrouck, J., Rivera, T.J., Saleh, F.: The need for fees at a dex: How increases

in fees can increase dex trading volume. Available at SSRN (2022)
28. Heimbach, L., Wattenhofer, R.: Sok: Preventing transaction reordering manipula-

tions in decentralized finance. arXiv preprint arXiv:2203.11520 (2022)
29. Hu, E.: Modelling realised extractable value in proof of stake ethereum - an

update of validator return post-merge. https://collective.flashbots.net/t/
modelling-realised-extractable-value-in-proof-of-stake-ethereum/290

(2022)
30. Kelkar, M., Deb, S., Kannan, S.: Order-fair consensus in the permissionless setting.

In: Proceedings of the 9th ACM on ASIA Public-Key Cryptography Workshop. pp.
3–14 (2022)

31. Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for byzantine con-
sensus. In: Advances in Cryptology–CRYPTO 2020: 40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21,
2020, Proceedings, Part III 40. pp. 451–480. Springer (2020)

32. Kursawe, K.: Wendy grows up: More order fairness. In: Financial Cryptography
and Data Security. FC 2021 International Workshops: CoDecFin, DeFi, VOTING,
and WTSC, Virtual Event, March 5, 2021, Revised Selected Papers 25. pp. 191–
196. Springer (2021)

18

https://github.com/flashbots/mev-boost/
https://github.com/flashbots/mev-boost/
https://collective.flashbots.net/t/modelling-realised-extractable-value-in-proof-of-stake-ethereum/290
https://collective.flashbots.net/t/modelling-realised-extractable-value-in-proof-of-stake-ethereum/290

33. Liao, G., Robinson, D.: The dominance of uniswap v3 liquidity (2022)
34. Livnev, L.: Github issues, ethereum/go-ethereum: Random ordering of

equally-priced transactions incentivises competitive spam. https://github.com/
ethereum/go-ethereum/issues/21350 (2020)

35. Lu, A., Köppelmann, M.: Building a decentralized ex-
change in ethereum. (mar. 2017). https://blog.gnosis.pm/

building-a-decentralized-exchange-in-ethereum-eea4e7452d6e (2017)
36. Malkhi, D., Szalachowski, P.: Maximal extractable value (mev) protection on a

dag. arXiv preprint arXiv:2208.00940 (2022)
37. Marshall, B.: The false narrative of MEV protection: How private transactions can

result in a poorer settlement than sending publicly. Blocknative (2023), https:
//www.blocknative.com/blog/mev-protection-negative-settlement

38. McMillan, A.: The inside story of Mt. Gox, Bitcoin’s $460 million disaster. Wired
(2014), https://www.wired.com/2014/03/bitcoin-exchange/

39. Micali, S., Goldreich, O., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth ACM Symp. on Theory of Computing, STOC. pp.
218–229. ACM New York, NY, USA (1987)

40. Milionis, J., Moallemi, C.C., Roughgarden, T.: Automated market making and
arbitrage profits in the presence of fees. arXiv preprint arXiv:2305.14604 (2023)

41. Milionis, J., Moallemi, C.C., Roughgarden, T., Zhang, A.L.: Automated market
making and loss-versus-rebalancing. arXiv preprint arXiv:2208.06046 (2022)

42. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized busi-
ness review (2008)

43. Perold, A.F.: The implementation shortfall: Paper versus reality. Journal of Port-
folio Management 14(3), 4 (1988)

44. Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value: How dark
is the forest? In: 2022 IEEE Symposium on Security and Privacy (SP). pp. 198–214.
IEEE (2022)

45. Qin, K., Zhou, L., Livshits, B., Gervais, A.: Attacking the defi ecosystem with flash
loans for fun and profit. In: International conference on financial cryptography and
data security. pp. 3–32. Springer (2021)

46. Rabin, M.O.: Digitalized signatures and public-key functions as intractable as fac-
torization (1979)

47. Torres, C.F., Camino, R., et al.: Frontrunner jones and the raiders of the dark
forest: An empirical study of frontrunning on the ethereum blockchain. In: 30th
USENIX Security Symposium (USENIX Security 21). pp. 1343–1359 (2021)

48. Wahrstätter, A., Zhou, L., Qin, K., Svetinovic, D., Gervais, A.: Time to bribe:
Measuring block construction market. arXiv preprint arXiv:2305.16468 (2023)

49. Wan, X., Adams, A.: Just-in-time liquidity on the uniswap protocol. https://
blog.uniswap.org/jit-liquidity (2022)

50. Weintraub, B., Torres, C.F., Nita-Rotaru, C., State, R.: A flash (bot) in the pan:
measuring maximal extractable value in private pools. In: Proceedings of the 22nd
ACM Internet Measurement Conference. pp. 458–471 (2022)

51. Xavier Ferreira, M.V., Parkes, D.C.: Credible decentralized exchange design via
verifiable sequencing rules. In: Proceedings of the 55th Annual ACM Symposium
on Theory of Computing. pp. 723–736 (2023)

52. Yaffe-Bellany, D., Goldstein, M., Flitter, E.: Prosecutors say FTX was engaged in
a ‘massive, yearslong fraud’. The New York Times (2022), https://www.nytimes.
com/2022/12/13/business/ftx-sam-bankman-fried-fraud-charges.html

53. Yao, A.C.C.: How to generate and exchange secrets. In: 27th annual symposium
on foundations of computer science (Sfcs 1986). pp. 162–167. IEEE (1986)

19

https://github.com/ethereum/go-ethereum/issues/21350
https://github.com/ethereum/go-ethereum/issues/21350
https://blog.gnosis.pm/building-a-decentralized-exchange-in-ethereum-eea4e7452d6e
https://blog.gnosis.pm/building-a-decentralized-exchange-in-ethereum-eea4e7452d6e
https://www.blocknative.com/blog/mev-protection-negative-settlement
https://www.blocknative.com/blog/mev-protection-negative-settlement
https://www.wired.com/2014/03/bitcoin-exchange/
https://blog.uniswap.org/jit-liquidity
https://blog.uniswap.org/jit-liquidity
https://www.nytimes.com/2022/12/13/business/ftx-sam-bankman-fried-fraud-charges.html
https://www.nytimes.com/2022/12/13/business/ftx-sam-bankman-fried-fraud-charges.html

54. Zhang, Y., Setty, S., Chen, Q., Zhou, L., Alvisi, L.: Byzantine ordered consensus
without byzantine oligarchy. In: 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). pp. 633–649 (2020)

55. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-frequency trading
on decentralized on-chain exchanges. In: 2021 IEEE Symposium on Security and
Privacy (SP). pp. 428–445. IEEE (2021)

A Background

A.1 Decentralized Exchanges

The primary exchange that we analyze, Uniswap v3 [4,3], is an example of an
Automated Market Maker (AMM) [11], where liquidity providers amass liquidity
reserves (x, y) ∈ R+ × R+ into a pool, where x denotes the amount of the first
asset and y the amount of the second asset, and traders trade against the pool.
In Uniswap v2, the pool reserves are constrained by the function

xy = k

for some constant k. Thus, a trader who wishes to purchase y′ units of the second
asset, must deposit x′ units of the first asset s.t.

(x+ x′) · (y − y′) = k

in addition to paying settlement fees and additional fees set by the pool (which is
30 bps in Uniswap v2 or between 5 bps and 100 bps in Uniswap v3, which is then
distributed pro-rata to liquidity providers, also known as the ‘LP fee’). Uniswap
v3 additionally allows liquidity providers to specify a price range in which to
deposit liquidity. For this paper, it suffices to note that the liquidity available
to trade depends on the price; holding the available liquidity fixed, the protocol
behaves like Uniswap v2. Automated market makers are typically implemented
using a blockchain (in our case Ethereum), which manage the execution of the
pool and keeps track of its state in a decentralized way. To trade with the pool, or
deposit/withdraw liquidity, users send transactions to the underlying blockchain;
their actions are realized only when the corresponding transaction is finalized
on the blockchain.

A.2 Anatomy of a Swap

A trade is a tuple comprising the input token, or the ERC20 token that a user
wishes to sell to the pool; the output token, or the ERC20 token that the user
wishes to receive in exchange from the pool; the fee tier, identifying which pool to
swap with; and one of either the input amount or the output amount, specifying
the amount of the input token/output token that the user wishes to exchange
(the amount of the other asset is then determined by the pool).

A transaction for trading with a Uniswap pool is called a ‘swap’, and com-
prises a trade with two additional fields specified: one of the minimum amount

20

out or the maximum amount in, which is the worst case amount of the out-
put/input asset that the user is willing to receive/spend; and a deadline, speci-
fying a deadline by which the swap must be completed, after which the swap is
invalid. Even if a transaction is finalized on the blockchain, the underlying swap
may fail due to a violation of the minimum amount out (resp. maximum amount
in). For any given block B in a blockchain, the trades contained in B are defined
to be the trades specified by the swaps in B that succeed.

When transacting on the Uniswap Labs interface, users are shown a quoted
output amount (resp. input amount) for the input amount (resp. output amount)
that they entered into the interface, in the form of a quoted average execution
price. After seeing the quoted price, users can then decide whether to sign and
broadcast the swap transaction. The slippage tolerance of a swap is defined as
the ratio of the quoted amount out over the minimum amount out (resp. the
quoted amount in over the maximum amount in), minus 1, expressed in basis
points (bps). The price impact of a swap is defined as the ratio of the quoted
price over the market mid price minus 1, expressed in bps.

A.3 The MEV Ecosystem

In order to make MEV extraction more transparent, Flashbots introduced the
mev-boost library [25], which is open source software that block proposers can
run to connect them to a market of ‘block builders’. Block builders (which may
eventually become enshrined in Ethereum through enshrined ‘proposer-builder
separation’ [12]) find the most profitable ways to sequence blocks of transactions,
and bid for proposers to propose their blocks. The market is run by trusted
relays, who send the block headers of the best bids to the block proposer; the
proposer then replies with a signature of the winning block header, after which
the relay sends the proposer the block (with the payment contained within).
If the proposer later proposes a different block header than the one it signed
initially, then it must have signed two different block headers and will be slashed.
Additionally, block builders accept bundles of transactions from ‘searchers’ (users
who want to avoid using the public mempool), and promise not to frontrun or
unpack the transactions within bundles. Bundled transactions are also referred
to as private transactions.

Over 80% of Ethereum validators today run a version of mev-boost [1]. Note
that mev-boost today requires many trust assumptions: proposers must trust
relays to send them winning blocks, builders must trust relays to propagate their
blocks/bids without publishing or frontrunning them, and searchers must trust
builders not to publish or frontrun their private transactions.

B Tables and Regressions

In this section, we present additional tables that are used in Section 4.

21

Table 3: Factors Affecting Slippage (PEPE-WETH 30 bps)

Slippage
(1)

AdversarialSlippage
(2)

CollisionSlippage
(3)

ReorderingSlippage
(4)

TopOfBlockSlippage
(5)

LiquiditySlippage
(6)

orderSize -240.5533∗∗∗ -298.8950∗∗∗ 3.3267 -407.8857∗∗∗ -2.2687 66.8170∗∗∗

(22.8863) (10.4824) (20.8326) (12.6344) (18.4876) (3.2512)
gasPrice -0.0427∗∗∗ 0.0038∗ -0.0479∗∗∗ -0.0060∗∗ -0.0333∗∗∗ 0.0014∗

(0.0040) (0.0018) (0.0036) (0.0022) (0.0032) (0.0006)
logLatency -0.7973∗∗∗ 0.0882 -0.8462∗∗∗ 0.4903∗∗∗ -1.6148∗∗∗ -0.0589+

(0.2324) (0.1064) (0.2116) (0.1283) (0.1877) (0.0334)
slippageTolerance -0.0117∗∗∗ -0.0053∗∗∗ -0.0067∗∗∗ -0.0058∗∗∗ -0.0058∗∗∗ 0.0002∗∗

(0.0004) (0.0002) (0.0004) (0.0002) (0.0004) (0.0001)
lastHourReturn -0.0142∗∗∗ -0.0011∗∗∗ -0.0137∗∗∗ -0.0015∗∗∗ -0.0103∗∗∗ 0.0007∗∗∗

(0.0004) (0.0002) (0.0004) (0.0002) (0.0004) (0.0001)
liquidity 21.8502∗∗∗ 3.8909∗∗∗ 20.3436∗∗∗ 6.9135∗∗∗ 13.8188∗∗∗ -2.1611∗∗∗

(2.4339) (1.1150) (2.2160) (1.3436) (1.9661) (0.3442)
volatility -0.0259∗∗∗ -0.0019∗∗∗ -0.0244∗∗∗ -0.0051∗∗∗ -0.0177∗∗∗ 0.0007∗∗∗

(0.0010) (0.0005) (0.0009) (0.0006) (0.0008) (0.0001)
Intercept -26.8079∗∗∗ -12.1405∗∗∗ -12.9395∗∗∗ -15.4330∗∗∗ -8.6243∗∗∗ -0.7573∗∗

(1.7050) (0.7809) (1.5520) (0.9413) (1.3773) (0.2469)

Obs 170417 170405 170405 170417 170417 162493
Adj. R2 0.0309 0.0123 0.0257 0.0158 0.0179 0.0049
F-stat 237.0294 93.4615 196.3155 120.1161 136.0163 35.6470

Every regression includes weekly fixed effects. ***, **, *, and + denote statistical significance at the 0.1%, 1%, 5%, and 10%
levels. The methodology is the same as for the USDC-WETH analysis in Table 2. The number of observations is less than
reported in our summary statistics, due to some rows with missing latency or slippage tolerance information, inherited from
the quality of our interface data.

22

Table 4: Comparing PEPE-WETH with USDC-WETH

(AdverseSlippagei < −5)
USDC only (1)

(AdverseSlippagei < −5)
PEPE only (2)

(AdverseSlippagei < −5)
combined (3)

orderSize 7.0657∗∗∗ 37.1310∗∗∗ 7.1853∗∗∗

(0.1335) (0.9355) (0.2973)
gasPrice -0.0011+ 0.0003 0.0031

(0.0006) (0.0003) (0.0025)
logLatency -0.0624 -0.0451+ 0.0354

(0.0430) (0.0246) (0.1012)
slippageTolerance -0.0006∗∗ -0.0001 -0.0041∗∗

(0.0002) (0.0000) (0.0015)
lastHourReturn -0.0006+ 0.0003∗∗∗ 0.0017

(0.0004) (0.0000) (0.0010)
liquidity -0.1109∗∗∗ -4.2594∗∗∗ -0.1175∗∗∗

(0.0102) (0.2938) (0.0217)
volatility 0.0087∗∗∗ 0.0003∗∗∗ 0.0121∗

(0.0017) (0.0001) (0.0055)
isPepe 2.0327∗

(0.9200)
isPepe:orderSize 29.9457∗∗∗

(0.9816)
isPepe:gasPrice -0.0027

(0.0025)
isPepe:logLatency -0.0805

(0.1042)
isPepe:slippageTolerance 0.0040∗∗

(0.0015)
isPepe:lastHourReturn -0.0014

(0.0010)
isPepe:liquidity -4.1419∗∗∗

(0.2946)
isPepe:volatility -0.0117∗

(0.0055)
Intercept -4.6234∗∗∗ -4.5203∗∗∗ -6.5530∗∗∗

(0.2830) (0.1342) (0.9101)

Obs 258906 170405 276177
Adj. R2

F-stat

This table presents the coefficients of running a logistic regression to estimate the following model:

yi =

{
1 if wi > 0

0 otherwise

wi = β0 + β1 · orderSizei + β2 · gasPricei + β3 · logLatencyi + β4 · slippageTolerancei
+ β5 · lastHourReturni + β6 · liquidityi + β7 · volatilityi + biweekFE+ ei,

where wi is an unobserved latent variable. Here, yi is a dummy variable that is equal to 1 if
AdversarialSlippagei < −5 and is 0 otherwise. Model (1) shows the results for only swaps in the
USDC-WETH 5 bps pool. Model (2) shows the results for the PEPE-WETH 30 bps pool. In model
(3), we further interact every term with a dummy variable isPepei denoting whether a swap came
from the USDC or the PEPE dataset. Models (1) and (2) include biweekly fixed effects (for every
two weeks). Model (3) includes a fixed effect for each pool/biweek pair. The variables are defined as
in Table 2.

23

Table 5: Evaluating Private RPCs

Slippage
USDC only (1)

AdversarialSlippage
USDC only (2)

CollisionSlippage
USDC only (3)

Slippage
PEPE only (4)

AdversarialSlippage
PEPE only (5)

CollisionSlippage
PEPE only (6)

Public -0.3179∗∗ -0.1892∗∗∗ -0.1472+ -10.2028∗∗∗ -4.3599∗∗∗ -6.8655∗∗∗

(0.0969) (0.0460) (0.0876) (1.4884) (0.6817) (1.3548)
orderSize -14.0278∗∗∗ -12.3789∗∗∗ -2.2425∗∗∗ -254.0085∗∗∗ -304.6394∗∗∗ -5.7190

(0.1671) (0.0793) (0.1511) (22.9679) (10.5195) (20.9075)

gasPrice -0.0043∗∗∗ -0.0004∗ -0.0038∗∗∗ -0.0432∗∗∗ 0.0036+ -0.0482∗∗∗

(0.0004) (0.0002) (0.0003) (0.0040) (0.0018) (0.0036)
logLatency -0.0285∗ 0.0020 -0.0267∗ -1.0264∗∗∗ -0.0098 -1.0006∗∗∗

(0.0142) (0.0067) (0.0128) (0.2348) (0.1075) (0.2137)
slippageTolerance 0.0000 -0.0001∗∗∗ 0.0001∗∗∗ -0.0120∗∗∗ -0.0054∗∗∗ -0.0069∗∗∗

(0.0000) (0.0000) (0.0000) (0.0004) (0.0002) (0.0004)
lastHourReturn -0.0115∗∗∗ 0.0008∗∗∗ -0.0123∗∗∗ -0.0142∗∗∗ -0.0011∗∗∗ -0.0137∗∗∗

(0.0002) (0.0001) (0.0002) (0.0004) (0.0002) (0.0004)
liquidity 0.0244∗∗∗ 0.0110∗∗∗ 0.0144∗∗∗ 21.9822∗∗∗ 3.9439∗∗∗ 20.4271∗∗∗

(0.0034) (0.0016) (0.0030) (2.4342) (1.1149) (2.2159)
volatility -0.0051∗∗∗ -0.0004 -0.0046∗∗∗ -0.0259∗∗∗ -0.0019∗∗∗ -0.0244∗∗∗

(0.0007) (0.0003) (0.0007) (0.0010) (0.0005) (0.0009)
Intercept 0.0295 0.1294 -0.1553 -16.1428∗∗∗ -7.5826∗∗∗ -5.7623∗∗

(0.2380) (0.1129) (0.2153) (2.3081) (1.0571) (2.1011)
Obs 258906 258906 258906 170405 170405 170405
Adj. R2 0.0471 0.0899 0.0236 0.0311 0.0126 0.0258
F-stat 347.1956 691.8020 169.8065 229.1725 91.2927 189.2329

In this table, we present coefficients for regressions following Equation 1 but with an extra dummy variable Publici which
denotes whether swap i is first seen in the public mempool (else we consider it a private swap). Models (1), (2), and
(3) are run for the USDC-WETH dataset, and models (4), (5), and (6) are run for the PEPE-WETH dataset. Every
regression includes weekly fixed effects. ***, **, *, and + denote statistical significance at the 0.1%, 1%, 5%, and 10%
levels.

24

Table 6: Evaluating Builder Trust

Slippage
USDC only (1)

AdverseSlippage
USDC only (2)

ReorderingSlippage
USDC only (3)

Slippage
PEPE only (4)

AdverseSlippage
PEPE only (5)

ReorderingSlippage
PEPE only (6)

Public -18.5635 -22.4139 -37.7070+ -6.1565 -15.5461∗ -27.1810∗∗

(15.3030) (15.9791) (20.3006) (9.3542) (7.8429) (10.4917)
Flashbots 15.0277 10.7688 19.4199 5.4474 -1.4634 1.0724

(16.4966) (17.2254) (21.8839) (9.7062) (8.1380) (10.8865)
beaverbuild.org 7.3803 4.1018 7.8514 8.2964 10.5983 25.4452∗

(16.6729) (17.4096) (22.1179) (10.0328) (8.4119) (11.2529)
builder0x69 6.5001 1.9146 2.9617 1.2382 11.8918 24.1788∗

(17.0873) (17.8423) (22.6677) (10.1194) (8.4845) (11.3501)
rsync-builder.xyz 3.4111 -0.9587 -1.1272 6.0898 4.7847 17.1691

(17.2274) (17.9886) (22.8534) (10.2704) (8.6111) (11.5194)
Titan Builder 0.4353 -2.2372 -3.7383 -0.7663 -0.8555 -0.6282

(22.1798) (23.1598) (29.4232) (13.8219) (11.5889) (15.5028)
Public:Flashbots -18.9569 -14.5283 -25.3347 -6.4908 -1.0603 -2.7282

(16.5873) (17.3202) (22.0043) (9.7748) (8.1955) (10.9635)
Public:beaverbuild.org 8.7047 11.7424 20.8716 -10.5897 -13.7707 -24.6458∗

(16.7521) (17.4922) (22.2229) (10.0834) (8.4543) (11.3097)
Public:builder0x69 -19.3083 -12.9409 -18.5683 -5.7843 -18.1672∗ -28.5244∗

(17.1636) (17.9219) (22.7688) (10.1669) (8.5244) (11.4033)
Public:rsync-builder.xyz -7.5911 -1.8739 -5.5371 -4.8459 -4.7420 -18.6074

(17.3371) (18.1031) (22.9990) (10.3242) (8.6562) (11.5797)
Public:Titan Builder -9.4851 -6.3563 -11.3852 0.3029 0.1535 -2.4457

(22.5443) (23.5404) (29.9068) (13.9849) (11.7255) (15.6856)
orderSize -2222.1129∗∗∗ -2107.8426∗∗∗ -3676.2999∗∗∗ -1835.8060∗∗∗ -3179.3877∗∗∗ -6503.4761∗∗∗

(6.0287) (6.2951) (7.9975) (27.0581) (22.6866) (30.3487)
gasPrice 0.0148 0.0540∗∗∗ 0.1377∗∗∗ -0.0284∗∗∗ 0.0354∗∗∗ 0.0573∗∗∗

(0.0129) (0.0135) (0.0172) (0.0047) (0.0039) (0.0053)

logLatency -0.9401+ -0.4698 -1.5135∗ -0.3921 -0.2385 -0.2213
(0.5130) (0.5357) (0.6805) (0.2785) (0.2335) (0.3124)

slippageTolerance -0.0137∗∗∗ -0.0140∗∗∗ -0.0238∗∗∗ -0.0051∗∗∗ -0.0063∗∗∗ -0.0113∗∗∗

(0.0009) (0.0009) (0.0011) (0.0005) (0.0004) (0.0006)
lastHourReturn 0.0196∗∗ 0.0714∗∗∗ 0.0904∗∗∗ -0.0036∗∗∗ 0.0000 -0.0000

(0.0071) (0.0074) (0.0094) (0.0005) (0.0004) (0.0006)

liquidity -0.1217 0.1090 -0.3161∗ 4.9746+ 4.7885+ 8.8098∗∗

(0.1211) (0.1265) (0.1607) (2.9144) (2.4436) (3.2688)
volatility 0.0951∗∗∗ 0.1199∗∗∗ 0.2654∗∗∗ -0.0081∗∗∗ -0.0025∗ -0.0038∗∗

(0.0265) (0.0277) (0.0351) (0.0012) (0.0010) (0.0013)
Intercept 44.2156∗ 39.5196∗ 76.3465∗∗∗ 14.1824 20.6180∗∗ 34.1672∗∗

(17.1715) (17.9302) (22.7793) (9.5459) (8.0036) (10.7068)
Obs 258370 258370 258370 169903 169903 169903
Adj. R2 0.3487 0.3059 0.4527 0.0292 0.1046 0.2139
F-stat 2944.2481 2423.2304 4548.6162 151.5305 585.0631 1360.5539

In this table, we present coefficients for regressions for the model in Equation 1, but where the endogenous variables are
dollar notion of slippage, namely yi := Slippagei ·orderSizei. We also add two new variables. First, Publici is a dummy variable
that denotes whether swap i is first seen in the public mempool. Second, Builderi is set to the name of the builder that built
the block containing swap i, if the builder is one of the top 5 builders by total number of private transactions in the sample,
else it is set to ‘Other’. We further interact Public with Builder. Note that most swaps do not experience adversarial slippage,
so here we use a dollar notion of slippage may help to amplify the effect of adversarial slippage. Models (1) and (2) are run
for the USDC-WETH dataset, whereas models (3) and (4) are run for the PEPE-WETH dataset. All regressions include
weekly fixed effects. ***, **, *, and + denote statistical significance at the 0.1%, 1%, 5%, and 10% levels.

25

C Additional Charts

In this section, we present some additional charts that we did not have a chance
to present in the main body. They characterize overall confirmation times, as
well as transaction cost breakdowns, and may be useful as a reference.

Table 7: Transaction Confirmation Time Percentiles

Percentile Seconds

50th 6.2
80th 10.2
90th 12.1
95th 17.9
97th 24.1
99th 104.0
99.5th 259.9

The transaction confirmation time is defined as the difference between user signature
time and the timestamp of the block in which the transaction is realized. For context,
the time interval between two consecutive blocks in Ethereum (assume no missing

block) is 12 seconds. So roughly 90% of all transactions get confirmed immediately in
the next block after the users sign and broadcast their transaction.

.

26

Fig. 1: Transaction Cost Composition For Different Transaction Types

(a) Full Sample (b) WETH-USDC Swaps

(c) WETH-PEPE Swaps (d) Large-sized Swaps (≥$100k)

(e) Medium-sized Swaps ($1k - $100k) (f) Small-sized Swaps (≤$1k)

Here we show the percentage composition of the transaction costs within different
groups.

27

	The Costs of Swapping on Decentralized Exchanges

