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Abstract. A Verifiable Random Function (VRF) is a public key crypto-
graphic system with a public and private key pair (SK,PK), that for an
input value x uses SK to generate a “pseudorandom” value v together
with a proof π, that proves correctness of computation using PK. VRFs
must satisfy uniqueness of the output which requires that for any public
key PK and any input value x, a unique valid pair (v, π) (acceptable by
the verification algorithm using PK), can be constructed.
In this paper, we present an explicit deterministic attack on the unique-
ness property of X-VRF, a recently proposed post-quantum secure VRF
that was designed for Algorand’s sortition algorithm. The attack allows
a malicious user to increase their chance of success in being selected to
propose a block in a given round.

Keywords: Post-Quantum Verifiable Random Function · X-VRF · Hash-
based Signatures · WOTS+ one-time signature

1 Introduction

Verifiable Random Functions (VRFs) were first introduced in [9] to address
the challenge of generating “pseudorandom” values without the need to trust
the generation process. VRFs are public key cryptographic primitives with a
pair of secret and public key (SK,PK), that provide public verifiability for the
function output. For a secret key SK, the function value on an an input x can be
efficiently calculated, resulting in a pair (v, π), where v is the function value, and
π is a proof that can be used to prove correctness of v with respect to PK. An
important property of VRF is the uniqueness of the output, ensuring that even
with the knowledge of SK, it is not possible to produce two valid evaluations of
the function for a single input. That is for any public key PK, and any input x,
there is a unique (v, π) that satisfies the verification algorithm.

VRFs have found wide application in Proof of Stake (PoS) blockchains for
efficiently achieving consensus. As an example, in each round of Algorand, a user
uses a VRF to participate in a “lottery” that determines if they are part of the
committee that forms the block in that round [4]. Other important applications
of VRF are in key transparency [7] and DNS security [11].

Existing VRFs, including those used in PoS systems, rely on computational
hardness of problems such as Integer Factorization and Discrete Logarithm,
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which can be efficiently solved by quantum algorithms [12]. X-VRF [2] is the
first post-quantum VRF that can be used for many evaluations1.

X-VRF uses XMSS, a stateful post-quantum hash-based signature scheme
that is recently standardized by NIST [10], to construct a Verifiable Unpre-
dictable Function (VUF)(also known as unique signature [Footnote 5, [9]]), and
then uses a random oracle (RO) to obtain a pseudorandom output in RO model.
VUFs are the same as VRFs with the difference that their output is unpre-
dictable, instead of being pseudorandom. The uniqueness of X-VRF employs the
state of a blockchain as a counter for XMSS, to determine the state (index) of
the signature to be used for computing the function output. In other words X-
VRF requires a secure blockchain as a building block, and authors considered
application of X-VRF in Algorand.

Our work. We show that X-VRF fails to satisfy uniqueness property of
VRFs, by presenting a deterministic algorithm that produces two distinct valid
(successful verification) VRF outputs for any given input. Thus X-VRF, when
used as the VRF in sortition algorithm of Algorand, allows a malicious user to
double their chance of becoming a committee member. Our main contribution
is constructing an efficient (deterministic) algorithm for WOTS+, the one-time-
signature (OTS) scheme which is the main building block of XMSS, that gen-
erates a malicious public key for any secret key, that allows two valid WOTS+

signatures to be produced for any message. The attack directly extends to an
attack on the uniqueness of XMSS and so X-VRF. We note that the attack is
not a forgery attack against WOTS+; rather, it is an attack against uniqueness
of WOTS+ when used as a (one-time) VUF.

Our attack exploits collisions in the hash function that is used in WOTS+.
Our attack assumes there exist at least one function (from a family of functions)
with a known collision to an adversary. In practice the function family is real-
ized by using SHA-3 for which no collision is known and so the attack cannot
be launched until a collision can be found in SHA-3. Thus the attack is pri-
marily on the theoretical security proof of X-VRF (computational uniqueness)
that does not exclude existence of such function. The attack points out possibil-
ity of maliciously generating keys for WOTS+ and XMSS, that are important
(standardised) signatures, in applications that require uniqueness property for
signatures (see Definition 1).

Organization. Section 2 provides background and reviews the construction of
WOTS+. Section 3 describes malicious key generation for WOTS+ and shows
that it does not provide uniqueness property, and extend the results to XMSS
and finally breaking X-VRF uniqueness property. Section 4 concludes the paper.

2 Background

2.1 Hash-based Signatures

An important class of post-quantum signature schemes are hash-based signa-
ture schemes that do not use any hardness assumption. The Security of hash-

1 The first post-quantum VRF in [3] can only be used few times for a key pair.
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based signatures relies on the minimal assumption of the existence of One-Way-
Functions (OWFs).

Hash-based signatures were introduced by Lamport [6] as a One-Time Sig-
nature (OTS) for signing a single message. The scheme was later extended to a
digital signature scheme named MSS for signing 2N messages by using a Merkle
hash tree that combined the public keys of 2N OTSs into a single hash value that
serves as the public key of the scheme [8]. Security of hash-based signatures ini-
tially required collision-freeness of the hash function. This requirement was later
reduced to second-preimage resistance for one-time signatures in WOTS+ [5]
and for many-time signatures in XMSS [1]. In contrast to MSS, XMSS employs
WOTS+ as an OTS scheme and introduces randomization elements to eliminate
the need for assuming the presence of a collision-resistant hash function.

This section includes the construction of WOTS+ as explained in [5], while
the explanation of XMSS is omitted due to space constraints.

WOTS+ Construction [5] Consider n as security parameter, m as message

length, and w as Winternitz parameter. Set l1 = ⌈ m

logw
⌉, l2 = ⌊ log(l1(w − 1))

logw
⌋,

and l = l1 + l2.
WOTS+ uses a family of one-way, second pre-image, and undetectable func-

tions Fn : {fk : {0, 1}n → {0, 1}n|k ∈ Kn} where Kn denotes the key space.
Define the chaining function cik(x, r) as:

cik(x, r) =

{
fk(c

i−1
k (x, r)⊕ ri) if i > 0

c0k(x, r) = x if i = 0

Where x ∈ {0, 1}n is the input, r = (r1, ..., rj) ∈ {0, 1}n×j with j ≥ i are
the randomization elements, i ∈ N is the iteration number (N represents the set
of natural numbers), and k ∈ Kn is the key. ci−1

k (x, r) represents the chaining
function at the previous iteration, ri is the i-th element of the randomization
elements r, and ⊕ denotes bitwise XOR.

Key Generation ((PK,SK)← Kg(1n)): For security parameter n:

– Choose l n-bit strings uniformly at random as ski and set SK = (sk1, sk2, ..., skl).
– Choose w−1 n-bit strings uniformly at random as ri and set r = (r1, r2, ..., rw−1).
– Choose k uniformly at random from Kn.
– Set PK = (pk0, pk1, ..., pkl) = ((r, k), cw−1

k (sk1, r), ..., c
w−1
k (skl, r))

– Return (PK,SK)

Signature Algorithm (σ ← Sign(M,SK, r): On input of a m-bit message M ,
secret key SK, and randomization elements r:

– Compute base w representation of M = (M1, ...,Ml1).

– Compute checksum C =
l1∑
i=1

(w − 1 − Mi) and its base w representation

C = (C1, ..., Cl2).
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– Set B = M ||C = (b1, ..., bl).
– Return the signature σ = (σ1, ..., σl) = (cb1k (sk1, r), ..., c

bl
k (skl, r)).

Verification (Accept/Reject ← V er(1n,M, σ, PK)): On input of security pa-
rameter, message M , signature σ, and public key PK:

– Verifier first computes B as explained above.
– Verifier validates:

PK = (pk0, ..., pkl)
?
= ((r, k), cw−1−b1

k (σ1, rb1+1,w−1), ..., c
w−1−bl
k (σl, rbl+1,w−1))

ra,b denotes the subset ra, ..., rb of r.
– If euqality holds, verifier returns Accept, else Reject.

fk only requires to be one-way, second pre-image, and undetectable [theorem
1, [5]]. Security of WOTS+ does not rely on collision-resistance of fk.

2.2 VUF, VRF and Unique Signatures

Verifiable unpredictable functions, also known as unique signatures were intro-
duced in [9] and used to construct verifiable random functions.

Definition 1 (Verifiable Unpredictable Function [9]). A Verifiable Unpre-
dictable Function (VUF) scheme F consists of three algorithms (Gen,Eval, V er)
as follows:

1. (SK,PK)← Gen(1λ): On input the security parameter λ, this probabilistic
algorithm generates a public key and a secret key. The public key is known
to other users, but the private key must be kept private.

2. (v, π) ← Eval(SK,m): Given a secret key and a message m ∈ {0, 1}a(λ),
this algorithm calculates an output value v ∈ {0, 1}b(λ) and a proof π that
shows it is calculated correctly (a and b are polynomial functions).

3. Y es/No ← V er(PK,m, v, π): On input of the public key PK, input m,
output v, and proof π, this algorithm uses the proof, the input, and the public
key to verify whether the output is calculated correctly or not.

A secure VUF scheme must satisfy the following requirements:

– Provability: If (SK,PK)← Gen(1λ) and (v, π)← Eval(SK,m), then
V er(PK,m, v, π) = Y es.

– Computational Uniqueness: No probabilistic polynomial-time (PPT) adver-
sary should be able to output any v1, v2, π1, π2,m, pk such that v1 ̸= v2 and
V er(PK,m, v1, π1) = V er(PK,m, v2, π2) = Y es with a probability higher
than negl(λ).

– Unpredictability: Consider a PPT adversary A playing the following game
ExpUPR:

1. (SK,PK)← Gen(1λ)

2. (x, guess)← AOEval V UF (SK,.)
1 (PK)

3. A succeeds if (guess, .) = Eval(SK, x) and x was not queried before.
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OEval V UF (SK, .) is an oracle where the adversary can send a polynomial
number of inputs to the oracle and receive the VUF output and proof that
correspond to each input. We say that a VUF scheme is unpredictable if the
adversary wins ExpUPR game with a probability at most negl(λ).

We note that computational uniqueness property must be satisfied for any
well-formed PK, including those that are maliciously generated.

Definition 2 (Verifiable Random Function [9]). [Verifiable Random Func-
tion] A Verifiable Random Function (VRF) scheme F consists of three algo-
rithms (Gen,Eval, V er) in the same way as VUF, except that unpredictability
property is replaced with the following property:

– Pseudorandomness: Consider a PPT adversary A = (A1,A2) playing the
following game ExpRND:
1. (SK,PK)← Gen(1λ)

2. (x, st)← AOEval V RF (SK,.)
1 (PK)

3. (v0, .)← Eval(SK, x) and v1 ← {0, 1}b(λ)
4. Flip a coin b← {0, 1}, and send vb to the adversary.

5. Adversary outputs b′ ← AOEval(SK,.)
2 (vb, st)

OEval V RF (SK, .) is an oracle where the adversary can send a polynomial
number of inputs to the oracle and receive the VRF output and proof that
correspond to each input. The adversary wins the game if b′ = b. We say
that a VRF scheme is pseudorandom if the adversary wins ExpRND game

with a probability at most
1

2
+ negl(λ).

Construction of VRF from VUF in standard model was first proposed in [9]
and uses hardcore bit construction that results in a single output bit. This is then
extended to multibit VRF by repeated call to the hard core bit construction.
Efficient construction of VRF from VUF is in random oracle (RO) model, and
is obtained by applying an RO to the output of the VUF.

2.3 X-VRF: A Quantum-resistant VRF based on XMSS

X-VRF [2] is a quantum-resistant VRF scheme that uses XMSS and a blockchain
to construct a VUF that has proved verifiability and computational uniqueness,
and uses a random oracle to achieve pseudorandomness in the RO model.

XMSS does not satisfy the required uniqueness property of VUFs because
every leaf of the Merkle tree (corresponding to a distinct WOTS+ signature) can
be used to sign a message and so more than one signature can be generated on a
message. To achieve uniqueness in X-VRF, the state of a blockchain is used as a
counter that determines the leaf of Merkle tree that must be used for the current
block. Authors note that “In particular, the block number of a particular round
in the blockchain consensus can serve as a global counter.” [2]. X-VRF achieves
uniqueness with this restriction, and noting that WOTS+ is a unique signature
(Section 1.4, [2]).
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Theorem 1. (X-VRF Security). X-VRF is correct and satisfies the properties
of computational uniqueness and pseudorandomness in the random oracle model.
In particular, the uniqueness holds in the sense that the same ctr (or leaf index)
must be used in V RFEval.

3 Breaking X-VRF

In this section, we show that one can maliciously generate the public key of the
WOTS+ (and so XMSS) such that two signatures can be generated on the same
message, both verifiable under the same public key. Then we show that this
breaks the uniqueness property of X-VRF, and consequently rejects Theorem 1.
The algorithm exploits existence of a collision in fk, which is allowable according
to the WOTS+ assumptions [Section 3, [5]].

Lemma 1. Let the function family Fn in WOTS+ include a function fk ∈
Fn with a known collision. Then for any secret key SK, there is an efficient
(deterministic) algorithm that constructs a public key PK that corresponds to
SK such that for any message m, one can generate two valid signatures σ1 and
σ2 that can be correctly verified under PK.

This implies that WOTS+ does not satisfy uniqueness property of a one-time
VUF (i.e. is not a unique signature).

Proof. The proof is constructive. That is, in Algorithm 1, PKeyGen constructs
PK for any given SK, and Sign procedure constructs two legitimate signatures,
σ and σ′, for any message m. σ is generated by WOTS+ sign algorithm and the
second signature, σ′ only differs from σ in index i. ⊓⊔

We show that both generated signatures, σ and σ′, can be successfully veri-
fied. σ is generated byWOTS+ signing algorithm and will be verified with respect
to the definition of the digital signature scheme [Section 2.1, [5]]. Since σ′ differs
from σ only at index i, and WOTS+ verification algorithm is component-wise,
we need to only consider the verification step that corresponds to index i. The
following provides details of the steps of WOTS+ verification algorithm as de-
scribed in Section 2 (WOTS+ construction). The verification steps are: Step (1):
starts the verification process and states the equality that must be checked; Step
(2): expands the right-hand side (RHS) of (1). Note that rbi+1,w−1 is a sub-
vector of r and includes elements in the range [bi + 1, w − 1]. For instance, the
first element of rbi+1,w−1 corresponds to r1+(bi+1)−1 = rbi+1 ; Step (3): expands

cw−1−bi−1
k (., .), from Step (2). This process continues for w − 1 − bi steps. In
the final recursion step, we have c0k(σ

′
i, rbi+1,w−1) = σ′

i, and then computation
reverses and computes steps backward one after the other until it arrives at
cw−1−bi
k .
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cw−1
k (ski, r)

?
= cw−1−bi

k (σ′
i, rbi+1,w−1) (1)

cw−1−bi
k (σ′

i, rbi+1,w−1) = fk(c
w−1−bi−1
k (σ′

i, rbi+1,w−1)⊕ r(w−1−bi)+(bi+1)−1)

= fk(c
w−1−bi−1
k (σ′

i, rbi+1,w−1)⊕ rw−1) (2)

cw−1−bi−1
k (σ′

i, rbi+1,w−1) = fk(c
w−1−bi−2
k (σ′

i, rbi+1,w−1)⊕ rw−2) (3)

...

c
w−1−bi−(w−2−bi)
k (σ′

i, rbi+1,w−1) = fk(c
0
k(σ

′
i, rbi+1,w−1)⊕ rbi+1)

= fk(σ
′
i ⊕ rbi+1) (4)

Note that σi = cbik (ski, r) and σ′
i = o′ ⊕ rbi+1 (Sign procedure - Algorithm

1). Also, rbi+1 = o ⊕ cbik (ski, r) (line 5 of PKeyGen procedure, Algorithm 1).
Therefore, we have fk(σi ⊕ rbi+1) = fk(o) and fk(σ

′
i ⊕ rbi+1) = fk(o

′). Since
σ is generated using WOTS+ signing algorithm and fk(o) = fk(o

′), σ′ will be
verified successfully.

We also need to show that the two generated signatures are distinct. It suffices
to show that there exists at least one index i such that σi ̸= σ′

i. Select i as step 5
in Sign procedure in Algorithm 1. Using the Sign and PKeyGen procedures of
the algorithm, we have, σi = cbik (ski, r) and σ′

i = o′⊕ rbi+1 = o′⊕ o⊕ cbik (ski, r).

Since cbik (ski, r) is common in o and o′, we have σi ̸= σ′
i as long as o ̸= o′, which

hold due to the assumption. Therefore, σ and σ′ differs in at least one index i.

We note that the WOTS+ construction [5] does not require the function
family to be collision resistant and so as long as the hash function domain is
larger than its range, hash functions in Fn will have collisions, and the attack
requirement is satisfied if there is a hash function in Fn with a known collision.
The (computational) uniqueness property of VUF requires that an efficient ad-
versary cannot generate a public and secret key pair that results in two correctly
verifiable VUF outputs for the same input.

Corollary 1. XMSS signature scheme does not satisfy uniqueness property as
a many-time VUF (i.e. it is not a unique signature).

Proof. An XMSS signature on a message m consists of a WOTS+ signature,
together with an authentication path (AP) that authenticates WOTS+’s public
key with respect to the public key of the XMSS. For any message m, a mali-
cious user proposes two distinct XMSS signatures XMSS.σ = (WOTS+.σ, i, AP )
and XMSS.σ′ = (WOTS+.σ′, i, AP ). Since WOTS+.σ and WOTS+.σ′ share the
same public key and are legitimate OTS signatures (Lemma 1), the verification
algorithm of XMSS succeeds for both XMSS.σ and XMSS.σ′. ⊓⊔

Proposition 1. If XMSS signature scheme is not a unique signature, then the
uniqueness property of X-VRF will not hold. This is true even if the same
WOTS+ (same leaf index) is used in V RFEval.
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Proof. The X-VRF output is given by H(XMSS.σ, x) [Section 4.1, [2]]. Con-
sider a malicious user A who can output two XMSS signatures, XMSS.σ and
XMSS.σ′, for an input x. Then A can construct two distinct and correctly ver-
ifiable VRF outputs, using the same leaf index (same WOTS+ key pair). This
breaks the uniqueness property of X-VRF. ⊓⊔

Algorithm 1 (i) Malicious key generation algorithm; (ii) Generating two sig-
natures on the same message

1: procedure PKeyGen(1n, SK)
2: Input: Security parameter n and WOTS+ secret key SK
3: Output: Public key of the WOTS+ scheme
4: Select k such that there exist at least values (collisions) o and o′ such that

o ̸= o′ and fk(o) = fk(o
′).

5: Choose arbitrary i, and to compute r = (r1, ..., rw−1), set rj = o⊕ cj−1
k (ski, r)

for j ∈ [1, w − 1]. ▷ For ri, we need rj , 1 ≤ j ≤ i− 1
6: Set PK = (pk0, pk1, ..., pkl) = ((r, k), cw−1

k (sk1, r), ..., c
w−1
k (skl, r))

7: Return PK
8: end procedure

1: procedure Sign(SK, M)
2: Input: WOTS+ secret key SK and an m-bit message M
3: Output: Two distinct signatures σ and σ′

4: Calculate B = (b1, ..., bl). ▷ B is concatenation of message and checksum.
5: Calculate these two signatures with respect to the selected i. (only the i-th part

of these two are different):
– σ = (σ1, ..., σi, ..., σl) = (cb1k (sk1, r), ..., c

bi
k (ski, r), ..., c

bl
k (skl, r)).

– σ′ = (σ1, ..., σ
′
i, ..., σl) = (cb1k (sk1, r), ..., o

′ ⊕ rbi+1, ..., c
bl
k (skl, r)).

6: Return (σ, σ′)
7: end procedure

3.1 Consequence for Algorand

In the Algorand blockchain, users are chosen through a sortition algorithm (lot-
tery) to participate in a committee. From this committee, a single user is selected
to propose the next block containing transactions.

Each Algorand user commits to their VRF function by publishing their own
public key, which is knwon to others. In the creation of each new block, a common
random value (seed) is obtained from the previous block. In each block, all users
obtain the same seed. Users then compute the VRF output on this random seed
with their own secret keys (users commit to their VRFs by publishing the public
key in the first place). Users output a tuple (v, π, j), where v represents the VRF
output, π denotes the proof, and j is determined by the user’s stake in Algorand.

For 0 ≤ i ≤ j − 1, each user calculates H(v, i) and publishes (v, π, i) which
resulted in the highest value. Then, the user with the greatest value among the
received published values is selected as the proposer for the next block.
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It is important to note:

– Users with more stakes have a higher j, allowing them to compute more
hash functions and thereby increasing their chance of publishing the greatest
value.

– The value of j for each user can be verified by others, preventing users from
manipulating this value.

The uniqueness property ensures that a single input cannot yield more than
one VRF output. However, our research reveals that X-VRF fails to satisfy this
uniqueness property. This shows that X-VRF is unsuitable for use in Algorand,
as malicious users could calculate multiple outputs for a given input, allowing
them to selectively choose the output with a higher priority (hash value).

Although it is assumed that malicious users own less than
1

3
of the stakes,

our malicious algorithm (Algorithm 1) increases their chances of being block
proposer, without requiring them to increase their stakes.

X-VRF’s security is guaranteed based on XMSS security, assuming a second
pre-image resistant hash function. This implies that an adversary must find a
collision x′ for a random value x, such that f(x) = f(x′). However, our attack
demonstrates that even if an adversary discovers a collision for an arbitrary
value x, it can compromise the security of X-VRF.

Since Algorand uses a hash function that there is not collision pair for that
yet, even for arbitrary values, our attack is not applicable to Algorand readily.
However, based on our findings, now adversary needs to find a colliding value
x′ for an arbitrary value x, instead of finding a colliding value x′ for a random
value x.

4 Concluding Remarks

We presented a deterministic algorithm that compromises the uniqueness prop-
erty of X-VRF, by breaking the uniqueness property of the XMSS signature,
a post-quantum hash-based signature scheme, which is used as a VUF in the
construction of X-VRF.

Our attack algorithm generates malicious public keys for WOTS+, the one-
time signature scheme that is used in XMSS, resulting in two valid signatures for
a single input. This indicates that WOTS+ and XMSS do not meet the security
requirements of VUFs (one-time and many-time, respectively).

The attack exploits a known collision for a function in the function family
that is used in WOTS+, and breaks the theoretical guarantee of WOTS+ and
consequently XMSS, as VUFs, as well as X-VRF as a VRF. We note that in
practice WOTS+ uses SHA-3 as the chaining function, for which no collision is
currently known.

The attack raises interesting research questions. First, the effect of the attack
on Algorand sortition algorithm if X-VRF is used as the VRF, requires further
analysis. Algorand is shown to be secure as long as at least 2/3 of the stakes are
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owned by honest holders, and each node has a chance proportional to its stake
to suggest a block. The attack enables malicious users to double their chances
of becoming a committee member (or block proposer) without increasing their
investment (stake). Analysing the implications of such a doubling on the security
of Algorand is an interesting research question.

A second question is construction of a secure many-time VRF using many-
time hash-based signature schemes that satisfy the (computational uniqueness)
property of VUFs.
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