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Abstract

We study shared sequencing for different chains from an economic angle. We
introduce a minimal non-trivial model that captures cross-domain arbitrageurs’ be-
havior and compare the performance of shared sequencing to that of separate se-
quencing. While shared sequencing dominates separate sequencing trivially in the
sense that it makes it more likely that cross-chain arbitrage opportunities are re-
alized, the investment and revenue comparison is more subtle: In the simple la-
tency competition induced by First Come First Serve ordering, shared sequencing
creates more wasteful latency competition compared to separate sequencing. For
bidding-based sequencing, the most surprising insight is that the revenue of shared
sequencing is not always higher than that of separate sequencing and depends on
the transaction ordering rule applied and the arbitrage value potentially realized.

1 Introduction

Cryptocurrency trading is one of the biggest use cases of blockchains that support smart
contracts. Decentralized exchanges (DEXes) that run on different chains handle daily
exchange volumes of billions of dollars equivalent. A lot of (potential) trading volume in
DEXes is generated through arbitrage trading between different exchanges on the same
chain, as well as between exchanges on different chains or between DEXes and centralized
exchanges. While arbitrage opportunities on the same chain can be exploited through the
atomic execution of bundles of transactions, cross-domain arbitrage is generally riskier
(harder) to capture. We propose a game theoretic model that captures the different
nature of same-domain versus cross-domain arbitrage on blockchains. One of our main
motivation for the model is recent proposals around shared sequencing for rollups.

Rollup chains are layer-two chains built on top of Ethereum for the purpose of scaling
the Ethereum main chain. They are offering lower fees and faster execution of trans-
actions. Because of these properties, DEXes built on them already attract significant
trading volume. Rollups have a designated operator, called a sequencer, which receives
transactions from users and schedules these transactions for execution. Shared sequencing
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schemes propose to jointly process transactions for several rollups, with the ultimate aim
of improving user experience. For example, with a shared sequencer the users will be
able to schedule their transaction bundles atomically even if they include transactions on
different rollup chains: either all transactions will be scheduled and executed or none. A
secondary aim of shared sequencing is improved economics through lower operating and
maintenance costs and through collecting more of the increased arbitrage value captured
by traders. More specifically, users send bundles of transactions to the shared sequencer.
The sequencer distributes them to corresponding chains for execution. This gives flexi-
bility to cross-domain arbitrageurs to get their transactions scheduled on different chains
simultaneously. A proposed platform for shared sequencing is for example Espresso Sys-
tems, (7). One fundamental economic question that we address in this paper is whether
shared-sequencing services really lead to improved value capture as advertised by their
proponents.

As, in any trading activity, it is important how sequencers order transactions. Similarly
to traditional finance exchanges, rollup sequencers usually use a first come first serve
(FCFS) policy, see, e.g., (2). This often generates latency competition, where parties
invest into latency reduction to be competitive in arbitrage trading.1 FCFS competition
may even affect the sequencer’s operation. For example, Arbitrum’s sequencer distributes
its feed to other nodes in a fair (random) order, that is exploited by parties creating
many nodes. Recently, there have been proposals to extract some fraction of MEV for
rollups, see (3). In this approach, transaction senders bid per resource unit (in the case
of chains using Ethereum’s EVM, per-gas) that the transaction consumes. Our game-
theoretic model allows us to study FCFS-based transaction ordering, as well as bidding-
based ordering. We are interested, in particular, in the latency investment resp. bidding
expenditure by traders in the shared sequencers versus the multiple sequencer case and
derive these quantities in equilibrium.

We consider two versions of our model: the baseline version assumes that traders’
expenditure on executing a transaction is irreversible and independent of whether they
succeed in capturing the arbitrage. This is for example the case if traders compete in
latency investment with an FCFS policy. In other cases, it might be reasonable to assume
instead that traders can partially recoup their cost if their arbitrage trade fails. More
precisely, if bidding for inclusion is done per resource unit of the chain (per gas), the
user may save a significant fraction of their cost by adding conditional statements to the
transaction that check whether the price moved away from the target and not executing
the transaction if it does. This approach may save a significant portion of gas usage in
case of losing the race. However, it does (slightly) increase the overall cost by adding
one conditional statement, which is added independently of the outcome. If the race is
lost sufficiently often, which is the case in our model with few symmetric players, such
a strategy is dominant and will be applied. Therefore, we also consider a version of our
model where the loser of the race for the arbitrage trade only pays a fraction of the bid.

1While the latency focus of competition is special to rollups, the phenomenon of transaction-ordering
induced competition in blockchains is much broader and often described under the umbrella term of
MEV (1).
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1.1 Related Literature

Cross-domain extraction in the context of blockchains was first discussed in (5). The
authors argue that to extract value, arbitrageurs should execute trades on different chains
sequentially and bridge assets between them. While a useful abstraction for the formalism,
in a competitive setting trades should be executed in parallel, and assets may be bridged
between the chains after all trades are executed. (6) conduct an empirical analysis on
cross-domain MEV. We base our modeling on this assumption of competing for the fastest
execution of trades on all involved chains. A more recent survey article in the field of
cross-chain MEV is (4), which describes different approaches and implementation details.

2 Model and Results

There are two traders, indexed by i ∈ {1, 2}, who compete to execute an arbitrage trade.2

The trade, if successful, has a value of v > 0 to both of the traders. There are two
chains. Successful execution of the trade requires to have two transactions included in
the sequencer(s) earlier than the other trader. We consider two situations:

• In the first, both transactions are processed by the same sequencer, modeling the
scenario where the same sequencer serves both chains and DEXes on them. In this
case, the trader can send the transaction in a single message that arrives at the
sequencer with the same timestamp.

• In the second, the two transactions need to be sent to two independent sequencers,
serving the two different chains and therefore, DEXes on them.

The competition is modeled as follows: each trader i can invest into a signal si at a
cost of C(si), where C is a strictly increasing and strictly convex function, and receives a
random term ϵi. Trader i gets their transaction included earlier than j if and only if

si + ϵi > sj + ϵj.

The interpretation of si and ϵi can be different, depending on the choice of the cost
function C(si). We have in particular the following scenarios in mind:

1. The sequencer applies an FCFS transaction ordering policy. The signal si represents
an investment into latency reduction that leads to a timestamp t(si + ϵi), where t
is a strictly decreasing function. Here ϵi represents random fluctuations in the
timestamps around the average.

2. The sequencer uses a combination of bidding and timestamp-based ordering such as
the TimeBoost proposal in (3), where si is the monetary bid, ϵi is the timestamp
(assuming that the latency technology is fixed).

2We comment on the case of more than two traders and of more than two sequencers in the discussion
section.
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3. The sequencer runs a competitive block-building market similar to the one on
Ethereum. The term si represents expenditure on fees, tips, and direct or indi-
rect payments to intermediaries (searchers, builders, etc.) and the random term ϵi
represents frictions and other uncertain factors in the market.

Since our model is additive in the random terms, it suffices to specify a distribution for
the difference in signals. Define the random variable ∆ij = ϵi − ϵj. Then, the probability
of winning the single sequencer competition for i is

F∆(si − sj),

where F∆ is the distribution of ∆ij. We assume that F∆ is symmetric around 0 and
uni-modal with F∆(0) = 1/2. That is, players are symmetric conditional on making equal
investments in the signal. Therefore, the probability of winning the single sequencer
competition for player j is:

F∆(sj − si).

For the two sequencer case, if the delta in the first sequencer ∆1
ij and the delta in the second

sequencer ∆2
ij are independent and identically distributed, and each bidder produces the

same signal si for both sequencers, we have accordingly that the probability of winning
the two sequencer competition for i is:

F∆2(si − sj) = F 2
∆(si − sj),

where F∆2 is the distribution of the maximum of ∆1
ij and ∆2

ij.

Symmetric Pure Strategy Equilibria

Since our model is symmetric for the two traders (F∆ is symmetric, and the value v is the
same for both), we are interested in symmetric pure strategy Nash equilibria, which means
that the two traders choose equal average signals si = sj which are mutual best responses
to the other player’s strategy. For the one sequencer case, a trader’s best response solves

max
si≥0

F∆(si − sj)v − C(si).

Assuming that the optimal signal is characterized by the first order condition and that
the equilibrium is symmetric, we have candidates for equilibrium signals s∗ characterized
by:

C ′(s∗) = f∆(0)v.

The equation is obtained by deriving the expected payoff function with respect to the
signal si, setting si = sj, and equating it to zero. Then, the equilibrium signal is

s∗ = s∗i = s∗j = (C ′)−1(f∆(0)v). (1)

Similarly for the two sequencer case, we have the optimization problem
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max
si≥0

F 2
∆(si − sj)v − 2C(si). (2)

Assuming that the optimal signal is characterized by the first order condition and that
the equilibrium is symmetric, we have candidates for equilibrium signals s∗ characterized
by:

C ′(s∗) = f∆(0)F∆(0)v = f∆(0)v/2. (3)

Then, the equilibrium signal is

s∗ = (C ′)−1(f(0)v/2). (4)

In the following subsections, we consider different specifications of C based on different
sequencer designs.

2.1 Latency Competition

First, we consider a scenario where the platform uses an FCFS policy to order transactions.
This is a standard choice in traditional financial exchanges as well as in most rollup
sequencers. FCFS policies often lead to latency competition. That is, players invest in
latency improvement. The interpretation of our model in this case is as follows: the
signal can be interpreted as an average latency that can be improved by investment. The
random noise gives fluctuation around the average.

A straightforward parametric specification of the cost function is to assume constant
cost elasticity (which can be estimated from data), C(s) = sβ, where β > 1 is the
cost elasticity. The timestamp ti is a decreasing function (lower timestamps win the
competition) of investment and the random term, ti(si + ϵi). For example we can choose
t(si + ϵi) =

1
si+ϵi

so that i wins if ti < tj ⇔ si + ϵi > sj + ϵj.

Proposition 1. For the single sequencer case with a high enough value of the trade,

v ≥ 2
(

β
2f(0)

)β

, there exists a unique pure strategy Nash equilibrium where both players

invest (
f(0)v

β

)β/(β−1)

into latency reduction. For low value of the trade, v < 2
(

β
2f(0)

)β

, both players in equilib-

rium do not invest in latency reduction.

Proof. Using the previously derived Equation 1 for the optimal signaling strategy, we
obtain:

s =

(
f(0)v

β

)1/(β−1)

.

This induces an investment cost of:

C(s) =

(
f(0)v

β

)β/(β−1)

,
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which is smaller than the expected value from the arb v/2 if and only if

v

2
≥

(
f(0)v

β

)β/(β−1)

⇔ v ≥ 2

(
β

2f(0)

)β

.

By the same kind of proof for the case of two sequencers, we obtain:

Proposition 2. For the two sequencer case with a high enough value of the trade, v ≥
8
(

β
4f(0)

)β

, there exists a unique pure strategy Nash equilibrium where both players invest

2

(
f(0)v

2β

)β/(β−1)

into latency reduction. For low value of the trade, v < 8
(

β
4f(0)

)β

, both players in equilib-

rium do not invest in latency reduction.

From the protocol perspective, investment in latency can be seen as a waste, as it
is not captured by the protocol e.g. to fund protocol development and/or other users’
subsidies.

A straightforward calculation shows that this waste with a shared sequencer is always
larger than with two separate sequencers as long as the value of trade is large enough so
that investing into latency happens in the two sequencer case.

Proposition 3. For a high enough value of trade v (so that traders invest in latency at
all), the waste with a shared sequencer is always higher than the waste with two separate
sequencers.

Proof. From the previous two propositions, the cost is higher under the shared sequencer

if and only if 1 ≥ 2−
1

β−1 , which holds for any β > 1.

One particularly natural case is that ∆ is normally distributed with mean 0 and
standard deviation σ, in which case f(0) = 1√

2πσ
.

Example 1. For the normally distributed case, the investment into latency in the one
sequencer case is (

v√
2πβσ

)β/(β−1)

,

and for the two sequencer case is

2

(
v

2
√
2πβσ

)β/(β−1)

.

Thus, investment is increasing in the value v, decreasing in the standard deviation of noise
σ, and decreasing in cost elasticity β.
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2.1.1 Constant Cost Elasticity for Bidding

The previously analyzed cost function can be given a different interpretation as the cost
of bidding in a bidding-based transaction ordering scheme. This could for example be
a block-based system where bidders bid for positions in the block, but random factors
in the block building market perturb the ranking. Alternatively, it could be a hybrid
bidding scheme, similar to TimeBoost (which we analyze in the next section) in which
time advantage is bought. In the latter case, we would need to impose an upper bound on
bidding needed for the liveness of the protocol. In the case of bidding instead of latency
investment, expenditure by traders is captured by the protocol so that the comparison
flips (revenue instead of waste) and a shared sequencer is preferable.

Proposition 4. For constant cost elasticity and high enough value of trade v (so that
traders invest in latency at all), the bidding revenue with a shared sequencer is always at
least as high as the bidding revenue with two separate sequencers.

The previous result assumed that there is no upper bound on the signal that bidders
can produce. A natural variant is a cap s̄ on s. For low values of U we have an opposite
result, in particular, the following holds:

Proposition 5. For s̄ <
(

vf(0)
2β

)1/(1−β)

, the revenue with a shared sequencer is lower than

the total revenue with separate sequencers.

Proof. In the case of a low enough value of s̄, the only pure Nash equilibrium of the single
sequencer game is for both players to bid s̄ in which case the revenue per bidder is s̄β.
In the case of shared sequencers, the revenue per bidder is the minimum of 2(f(0)v

2β
)β/(β−1)

and 2s̄β which is larger than s̄β if s̄ is small enough.

2.2 TimeBoost

In this section, we consider the TimeBoost proposal, (3). In the proposal, transactions
are ordered by a combination of time stamps and bids. More precisely, transactions are
ordered by a score:

s− t,

where t is the timestamp of the arrival of a bid at the sequencer and 0 ≤ s < g is the
”time boost” which is a function of a bid submitted together with the transaction. Here
the parameter g > 0 bounds the maximal time boost to guarantee the finality of the
ordering policy. Following the formula of the original TimeBoost proposal (3), we get the
following fee for producing a boost of s:

C(si) =
csi

g − si
,

where c > 0 is a parameter representing an approximate normalized marginal cost. Given
the cost function for the TimeBoost proposal, the marginal cost is

C ′(si) =
cg

(g − si)2
,
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so that our equilibrium condition becomes:

cg

(g − s∗)2
= f(0)v ⇒ s∗ = g −

√
cg√

f(0)v
,

which for the normal distribution becomes

s∗ = g −
√√

2πcgσ√
v

.

To guarantee the existence of a pure strategy symmetric Nash equilibrium, we need to
make sure that the candidate for the optimal signal through the FOC is positive, and
gives positive profit (otherwise the best response to s∗ would be 0 instead of s∗). This
gives the following conditions:

Proposition 6. For the single sequencer case with parameters f(0), c, g, v such that

1 + c
v
+ v

4c
≥ gf(0)

there exists a pure strategy Nash equilibrium where both players produce a signal of

s∗ =

g −
√

cg
vf(0)

, if v > c
gf(0)

0, if v ≤ c
gf(0)

with cost
max{

√
cgf(0)v − c, 0}.

Proof. From Equation 1 with C ′(s) = cg
(g−s)2

we obtain the expression for the optimal

signal s∗. Substituting the optimal signal in the cost function C(s) = cs
g−s

gives the
expression for the cost. The parameter restriction comes from the requirement that in
equilibrium profit v/2− C(s∗) needs to be non-negative.

By the same logic for the case two sequencers

Proposition 7. For the two sequencer case with parameters f(0), c, g, v such that

1 + c
v
+ v

4c
≥ gf(0)

2

there exists a pure strategy Nash equilibrium where both players produce a signal

s∗ =

g −
√

2cg
vf(0)

, if v > 2c
gf(0)

0, if v ≤ 2c
gf(0)

in each of the two sequencers with cost

max{
√
2cgf(0)v − 2c, 0}.
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Example 2. For the normally distributed case, the revenue in the one sequencer case is√
cgv√
2πσ

− c,

and for the two sequencer case is √
2cgv√
2πσ

− 2c.

Thus, investment is increasing in the value v, increasing in the standard deviation of noise
σ, increasing in the time boost parameter. The effect of an increase in the parameter c > 0
is increasing for small c and decreasing for large c.

It is interesting to compare the expenditure on signaling in both cases. We can inter-
pret the fraction c

g
as an approximation to the marginal cost of bidding. The following

proposition then states that the expenditure is larger in the two sequencer case, if the
marginal cost of bidding is low, the variance in noise is small or the valuation is large.
In these cases, the two sequencer case produces more revenue. Otherwise, the shared
sequencer produces more revenue.

Proposition 8. For the time boost policy with normally distributed ∆, the bidding revenue
for two separate sequencers is larger than the revenue under a shared sequencer if and only

0.068447
v

σ
≥ c

g
,

i.e. if the marginal cost of bidding is small, the value of the trade is high or the variance
in timestamps is low.

Proof. We have√
2

cgv√
2πσ

− 2c ≥
√

cgv√
2πσ

− c ⇔ 0.414214

√
cgv√
2πσ

≥ c ⇔ 0.068447
v

σ
≥ c

g
.

The previous analysis took the parameter c as given. Next, we consider the revenue
when choosing the parameter in an optimal way. The assumption is that the sequencer
sets these parameters ex-ante assuming v is distributed according to a CDF G on the
non-negative reals.3

Proposition 9. Under time boost, assuming 4 ≥ gf(0), the ex-ante revenue for a shared
sequencer is the same as the revenue from two separate sequencers if the parameter c > 0
is optimally chosen.

3The same analysis can be conducted for the optimal choice of g. However, choosing g differently has
other implications beyond revenue as it influences the time until the finality of a transaction.
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3 Proof of Proposition 9

Proof. The parameter restriction 4 ≥ gf(0) guarantees that a pure strategy Nash equi-
librium exists for any c > 0 in both cases. Let G be the distribution of values v. For the
shared sequencer case the revenue optimisation problem is the following:

max
c>0

∫ ∞

c
gf(0)

(
√
cgf(0)v − c)dG(v).

For the two sequencer case, the optimisation problem is:

max
c>0

∫ ∞

2c
gf(0)

(
√
2cgf(0)v − 2c)dG(v).

Now note that with the substitution c̃ := 2c the second problem becomes equivalent to
the first problem and therefore has the same objective value.

4 Extensions

In this section, we consider extensions to the base model presented in the paper so far.

4.1 More than 2 Players and Chains

The results can be straightforwardly extended to the case of multiple chains, as long as
the distributions of deltas are independent between chains. In that case the probability
of winning for player i is given by F n

∆(si − sj) and an analogous argument as previously
the first order condition

C ′(s∗) = f∆(0)F
n−1
∆ (0)v = f∆(0)v/2

n−1.

which leads to the equilibrium signal

s∗ = (C ′)−1(f(0)v/2n−1). (5)

Note that the signal is exponentially decreasing in n.
The generalization to more than two players is more complicated, as now the proba-

bility of winning does not only depend on the difference of two signaling strategies, but
rather on all marginal distributions of signals. However, qualitatively we expect similar
results as in the two player case.

4.2 Smaller cost in case of losing

We have assumed that in case the trader does not win, he still incurs the full cost of
bidding. It is natural to consider the extension where in case of losing, the player pays
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only an α fraction of the total bid. Then, the optimization problem with one sequencer
becomes:

max
si≥0

F∆(si − sj)(v − C(si)) + (1− F∆(si − sj))(−αC(si)). (6)

The first summand corresponds to the expected gains of winning the race, and the
second summand corresponds to the expected losses of losing the race. The first order
condition on (6) with respect to s gives:

f∆(si − sj)v − (1− α)(f∆(si − sj)C(si) + F∆(si − sj)C
′(si))− αC ′(si) = 0.

Plugging in si = sj and F∆(0) =
1
2
gives an equation from which we can solve for si:

f∆(0)v − (1− α)(f∆(0)C(si) + 1/2C ′(si))− αC ′(si) = 0. (7)

Note that the case α = 1 corresponds to the equilibrium condition (1). For the
constant cost elasticity previously analyzed in Section 2.1, C(s) = sβ, we can show that
the equilibrium solution is decreasing in α provided that the cost elasticity is large enough.
In particular, the signal with positive α is always higher than the solution from (1):

Proposition 10. The equilibrium signal s is decreasing in α for β ≥ 2.

Proof. Without loss of generality, assume that f∆(0) = 1 and v = 1, a normalization.
After plugging in the values for f∆(0), v and simplification, the equation (7) becomes

T (α, si) := 1− (1− α)(sβi + 1/2βsβ−1
i )− αβsβ−1

i = 0. (8)

By the implicit function theorem, we get:

∂T/∂si
∂T/∂α

=
−(1− α)βsβ−1

i − 1/2(1− α)β(β − 1)sβ−2
i − αβ(β − 1)sβ−2

i

sβi + 1/2βsβ−1
i − βsβ−1

i

.

The nominator of the right-hand side of the above expression is always negative. The
denominator: sβi − 1

2
βsβ−1

i is negative for β large enough, since si ≤ β/2 holds for any
β ≥ 2. The reason is that if the value is v = 1, the investment in the equilibrium can not
be more than 1. That is, si that solves (8) equation is decreasing in α parameter.

Similarly to the shared sequencer case, we can show that the equilibrium solution for
the two separate sequencers is decreasing in α if the cost elasticity is large enough. The
optimization problem in case of 2 sequencers is:

max
si≥0

F 2
∆(si − sj)(v − 2C(si))− 2F∆(si − sj)(1− F∆(si − sj))(1 + α)C(si)−

(1− F∆(si − sj))
22αC(si).

The first term corresponds to the expected gains of winning both races and therefore,
obtaining an arbitrage value. The second term corresponds to the expected losses of

11



winning one race and losing the other. In this case, full cost in the first race and fractional
cost in the second race are incurred. The third term corresponds to the expected losses
of losing both races. In this case, fractional costs in both races are incurred. The first
order condition is:

2F∆(si − sJ)f∆(si − sJ)(v − 2C(si)) + F 2
∆(si − sj)(−2C ′(si))−

(2f∆(si − sj)− 4F∆(si − sj)f∆(si − sj))(1 + α)C(si)−
2(F∆(si − sj)− F 2

∆(si − sj))(1 + α)C ′(si)−
2(1− F∆(si − sj))(−f∆(si − sj))2αC(si)− (1− F∆(si − sj))

22αC ′(si) = 0,

which after plugging in si = sj and F (0) = 1
2
becomes

f∆(0)(v − 2C(si))− (1 + α)C ′(si) + 2αf∆(0)C(si) = 0. (9)

Note that the case α = 1 corresponds to the equilibrium condition (3). A similar cal-
culation as before establishes the monotonicity of the equilibrium signal. Comparing
the equilibrium cost between shared and separate sequencing in this extended model is
less tractable than in the baseline model. However, we can obtain numerical comparison
results by solving equations (7) and (9), for given C, F and α.

Other Cost Functions, Noise Models and Empirical Work

We currently explore other extensions of the model as well. A common design proposal for
transaction ordering is frequent ordering auction design where transactions are processed
in batches according to bids attached to the transactions. Randomness comes into play
because whether or not a transaction makes it into the batch is determined by time stamps.
Towards the end of a batch, this introduces randomness about which transactions make
it into the current or the next batch. An ordering auction formulation would require
a different cost function specification, as well as a non-additive noise model. Another
extension of our model that we currently explore is to calibrate the parameters of our
model according to real-world data. This gives a precise sense of the magnitude of the
effects studied.
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