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Abstract. A growing number of products use layer 2 solutions to ex-
pand the capabilities of primary blockchains like Ethereum, where com-
putation is off-loaded from the root chain, and the results are published
to it in bulk. Those include optimistic and zero-knowledge rollups, in-
formation oracles, and app-specific chains. This work presents an anal-
ysis of layer 2 blockchain strategies determining the optimal times for
publishing transactions on the root chain. There is a trade-off between
waiting for a better layer 1 gas price and the urgency to finalize layer
2 transactions. We present a model for the problem that captures this
trade-off, generalizing previous works, and we analyze the properties of
optimal publishing strategies. We show that such optimal strategies hold
a computable simple form for a large class of cost functions.

Keywords: Blockchain · Layer 2 · Rollup · Online Algorithms

1 Introduction

Layer 2 (L2) blockchains are designed to scale and upgrade primary and secure
blockchain networks such as Ethereum [26] and Bitcoin [18] (often called the base
layer, root chain or layer 1 ). They operate by off-loading computation from the
base layer, enabling faster transaction times, lower fees, higher volume, and extra
functionality. By publishing on the root chain, L2 chains extend the existing root
chain (almost) without sacrificing security and availability of information.

The most common are rollup chains that are designed to increase transaction
throughput while decreasing their cost by batching many transactions into a
single compressed transaction that can be efficiently published on the base layer.
Examples include optimistic rollups like Optimism [19] and Arbitrum [8] and,
more recently, zero-knowledge rollups such as Starknet and zkSync [28].

Another example is networks that provide functionality that does not exist
on the root chain, such as oracles. Oracles such as Chainlink [2], are designed to
securely provide the base layer with off-chain data, like token pricing or weather
data, which normally is not accessible from base layer applications.

In all those cases, there is a trade-off between the price of publishing on
the root chain and the cost of delaying publication. The cost of publishing on
secure root chains (gas price) varies and depends on network congestion and
transaction complexity. On the other hand, waiting a long time for the price to
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be low may also be costly. In rollups, for example, transactions should be treated
as pending until posted on the root chain since the security and reliability of
the L2 infrastructure are less trusted. Hence there is an explicit cost of waiting
for transaction finalization and a more implicit cost of a reliability issue with
the rollup. For oracles, a delay can cause on-chain information to be outdated,
which can have devastating effects on, e.g., pricing oracles.

1.1 Our Contributions

This paper proposes a general model for the decision problem of deciding when
to publish L2 information on the root chain. This model encapsulates both the
cost of publishing, which varies with the L1 gas price, and the cost of waiting
(which we call the delay cost). We make a few simplifying assumptions that,
while potentially limiting the practical applicability of the results in their current
form, offer valuable insights into the fundamental methodologies that are useful
in practice.

We then give a solution for the optimal strategies for a couple of classes of
cost functions.

For constant publishing cost functions, which do not depend on the amount
of published information, we show that a greedy policy that tries to balance
between the delay and publishing cost is near-optimal.

For homogeneous publishing cost functions, which do not have a fixed over-
head cost, we prove the optimal strategy is simply a threshold policy - meaning
we publish only below a certain gas price.

We simulate our policies and validate they hold well empirically as well.

1.2 Related Works

To the best of our knowledge, the only prior work on the publishing time deci-
sion problem is [15]. In their work, the authors looked at a specific cost function
with quadratic delay cost suitable for optimistic rollups. They used a Q-learning
method to empirically observe the optimal MDP strategy properties and com-
pared it with other strategies used for the Arbitrum blockchain.

Our model generalizes this work, encapsulating more cost functions suitable
for a wider array of layer 2 solutions, like oracles. Moreover, we give a closed-form
solution for their model, and our theory proves properties empirically observed
by their research.

Rollup chains are surveyed in [22], and some prominent layer 2 blockchains
include [8,9,2,19,28].

The L2 publication problem can also be considered as an expansion on the
long-studied inventory policy problem [1,24,7,4], where the inventory demand is
dual to the publishing cost. We, however, do not assume a specific form for the
delay cost, where most of these works use a constant delay, with some considering
a linear delay (albeit a deterministic demand) [11,12,23]. Similarities to our work
can be found in [3] which shows the optimality of a threshold policy in certain
cases, and [27] which considers a martingale demand.
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When discussing a constant publication cost, there are similarities with se-
quential buy-or-rent problems (also known as ski rental problems) [10,5,21],
where an agent needs to decide how long to rent each resource before buy-
ing it - similar to deciding how long to hold a transaction before publishing it.
However, a key difference is that in our problem, publishing does not stop paying
for resources since new transactions keep coming.

Also relevant is the dynamics of L1 gas prices, explored in [20,13,14], which
analyzes gas prices on Ethereum after the introduction of EIP-1559 [25].

1.3 Outline

We start in the next section by giving a formulation for the L2 publishing prob-
lem and presenting the notation and assumptions we will use. In Section 3, we
present a near-optimal strategy for constant publishing costs. We then classify
the optimal strategy for homogeneous cost publishing costs in Section 4. Sec-
tion 5 applies the analysis on a specific problem instance representing optimistic
rollups, justifying why our formulation generalizes previous formulations. We
show simulations in Section 6 and conclude in Section 7. All proofs are deferred
to Appendix A for clarity.

2 Preliminaries

We consider an infinite horizon decision problem. At each time step t, a new
transaction Ht is created that encapsulates L2 information to be published on
the base layer. This can be an actual transaction or some aggregated informa-
tion encapsulating a single atomic update to the base layer. An agent that is
responsible for publishing needs to decide if to publish the transaction given the
current gas price Pt of the root chain or wait for a future time step and incur
a delay cost. Note that in practice the agent might not know the next effective
gas price, but can only estimate it.

We model the problem as a Markov Decision Process (MDP). At time t,
the state is (t, Pt, Qt), for some gas price Pt of the base layer and a set Qt of
unpublished transactions. The agent needs to pick a subset Nπ

t ≜ π(t, Qt, Pt) ⊆
Qt of transactions to publish using policy π, incurring a non-negative cost of

Ct(Pt, Qt, N
π
t ) ≜ PtC

(p)
t (Nπ

t ) + C
(d)
t (Qt \Nπ

t )

where C
(p)
t is the publishing cost (in terms of gas) and C

(d)
t is the delay cost.

The next state is updated with a new transaction Qπ
t+1 = (Qt \ Nπ

t ) ∪ {Ht},
and with the next base layer fee Pt+1 = R (Pt), where R is a random function
that models the fee fluctuations. The goal of the agent is to find a policy that
minimizes the expected cost:

Definition 1. Policy π∗ is optimal if C(π∗) = minπ C(π), where C(π) is the
expected total cost of policy π. In particular, for the publishing problem, we have:

C(π) ≜ E

[∑
t

γtCt(Pt, Q
π
t , N

π
t )

]
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using a discount factor 0 < γ < 1.

During this work, we assume the agent knows the cost function, including
the distribution of R.

2.1 Cost

Publishing cost The cost of publishing a single transaction is usually constant

in terms of the amount of gas needed, so we can assume that C
(p)
t (N) is linear

in |N | (where N is the set of published transactions), and we will define

C
(p)
t (N) ≜ α|N |+ β1[N ̸= ∅]

for some parameters α, β ≥ 0. Note that in the case where |N | = 0, we do not
incur any publishing cost since no interaction with the base layer is needed.

Delay cost For the delay cost, we assume each transaction incurs a cost inde-
pendently, using its own cost function. Thus, we define

C
(d)
t (N) ≜

∑
Hτ∈N

C
(d)
Hτ

(t− τ)

where C
(d)
Hτ

is the independent delay cost of Hτ as a non-negative function of the
waiting time.

In some cases, we assume a global delay cost that does not depend on the

specific transaction, i.e., C
(d)
Hτ

= C
(d)
Hµ

for all τ, µ. In such cases, we remove the

transaction from the notation and denote the delay cost by C(d).

Examples To illustrate the flexibility of this model, we will see a few different
possible cost functions that can be seen as idealized models for different scenarios.

Optimistic rollups Optimistic rollups gather transaction batches that are final-
ized on L1. Each batch is published separately and has the same urgency. This
can be modeled by using a linear delay cost with coefficient c and a homogeneous
publishing cost:

C
(p)
t (N) = α|N | C(d)(i) = ci.

Zero-knowledge rollups Somewhat similar to optimistic rollups, ZK rollups also
gather transaction batches. The core difference is that only a short ZK validity
proof needs to be published on L1, and thus, we can use a constant publishing
cost.

C
(p)
t (N) = β1[N ̸= ∅].
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Oracles Oracles are specifically designed to publish certain information on L1
(like token prices), and this information needs to be updated frequently. Hence,
the delay cost may be exponential, with different possible rates cHτ for each
transaction (more volatile prices must be updated more frequently). The pub-
lishing cost depends on the specific implementation, so we will leave it in the
generic form.

C
(d)
Hτ

(i) = exp (i cHτ ) .

3 Constant Publishing Cost

We start by looking into the case where the publishing cost is constant, i.e., α = 0

and C
(p)
t (N) = β1[N ̸= ∅]. This is common in cases where the base layer only

contains short proofs of the information from layer 2, such as zero-knowledge
proofs for ZK rollups, as previously discussed. Another interesting use-case is
Merkle tree roots for proof of deposits [16], used to bridge funds between the
layers.

An immediate observation is that, in this case, there is no reason to publish
only some of the transactions - since publishing all of them will cost the same.

Lemma 1. If C
(p)
t (N) = β1[N ̸= ∅], there is an optimal policy π∗ that always

publishes all available transactions or none of them, i.e., either Nπ∗

t = Qπ∗

t or
Nπ∗

t = ∅.

In the following, we assume a global delay cost C(d). Using Lemma 1, we
get that the amount of non-published transactions at each step is the number of
steps since the last publication.

Hence, we get that the total delay cost in the interval between two pub-
lications depends only on the interval’s length. This leads us to the following
definition:

Definition 2. In the case of a global delay and a constant publishing cost, we
define the aggregated delay cost F (d) as:

F (d)(n) ≜
n−1∑
t=1

t∑
i=1

γt−1C(d)(i)

Using this definition, the total delay cost between two publications is γtF (d)(n)
where t is the first step of the interval, and n is the length of the interval.

3.1 Constant Gas Price

To gain more intuition on the problem, we will start with the case where the
prices are constant, i.e., R(P ) = P with probability 1. In this case, the optimal
policy is to publish in constant intervals, as we prove in the following theorem.
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Theorem 1. If the delay cost is global, the gas price is constant and equals to
P , and the publishing cost is constant and equals to β, an optimal policy is to
publish in constant intervals of size n∗, chosen to minimize the average cost of
a single interval:

n∗ = argmin
n

F (d)(n) + γn−1βP

1− γn
.

To see how we can use Theorem 1 to obtain a specific solution, we can use a
linear delay cost C(d)(i) = 6i and approximate γ ≈ 1 for simplicity. Using this
delay function, the aggregated delay cost becomes:

F (d)(n) =

n−1∑
t=1

t∑
i=1

6i =

n−1∑
t=1

3t(t+ 1) = n(n2 − 1),

and thus we get:

n∗ = argmin
n

n(n2 − 1) + γn−1βP

1− γn
.

When taking γ → 1, the minimum is obtained over the reals for n = 3

√
1
2βP

(can be shown by differentiating), so we get n∗ by rounding that number to a
near integer.

We notice that if we assign the minimal value to the cost, we get that the

delay cost is n∗(n∗2 − 1) = βP
2 − 3

√
1
2βP , in the same order of magnitude as the

publishing cost.

3.2 Near-Optimal Policy

Trying to generalize Theorem 1, one can hypothesize that it is a common case
that an optimal policy has about the same delay and publishing cost, even if the
gas price is not constant. In the following, we show that for certain delay costs,
it is indeed near-optimal.

We start by defining the class of delay costs for which our strategy works:

Definition 3. An aggregated cost function F (d) is said to be σ-sub-additive if
for all n1, n2 ≥ 1:

F (d)(n1 + n2) ≤ σ
(
F (d)(n1 + 1) + γn1F (d)(n2)

)
.

Intuitively, it means that adding a publishing step does not reduce the delay
cost too much (more than σ). As an example, consider the aggregated delay cost
we used previously (ignoring γ): F (d)(n) = n(n2 − 1). It is easy to verify this
function is 4-sub-additive.

To keep the delay and publishing costs similar, we suggest the following strat-
egy: keep track of the amount of delay cost incurred since the last publication
(this can be computed from the number of available transactions) and publish
when the current publication cost is lower.
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Theorem 2. Assume the delay cost is global such that the aggregated cost func-
tion is σ

2 -sub-additive, and the publishing cost is constant and equals β. Let π be
the policy as described above:

π(t, Qt, Pt) =

{
Qt γ|Qt|−1βPt ≤ F (d)(|Qt|+ 1)

∅ else
.

Then π is σ-optimal, i.e., C(π) ≤ σC(π∗) where π∗ is an optimal policy.

It is important to note that we did not assume how gas prices are distributed,
making this result useful for many cases.

4 Homogeneous Publishing Cost

We now consider the case where the publishing cost is homogeneous, i.e., β = 0

and C
(p)
t (N) = α|N |. We notice that, in this case, we can treat each transaction

independently.
Consider an independent MDP for transaction Hτ with state (t, P ) at time

t and price P . We define the independent publishing cost function of Hτ to be:

C
(p)
t,Hτ

(P ) ≜ αP,

and the independent delay cost to be:

C
(d)
t,Hτ

(P ) ≜ C
(d)
Hτ

(t− τ).

At each step, the agent chooses whether to publish the transaction or wait.

Definition 4. An independent policy πHτ
(t, P ) ⊆ {Hτ} for transaction Hτ

decides if to publish the transaction at step t with price P (πHτ (t, P ) = {Hτ})
and incur cost C

(p)
t,Hτ

(P ) or wait (πHτ
(t, P ) = ∅) and incur cost C

(d)
t,Hτ

(P ).

Note that for transaction sets N,Q:∑
Hτ∈N

C
(p)
t,Hτ

(P ) +
∑

Hτ∈Q\N

C
(d)
t,Hτ

(P )

= α|N |P +
∑

Hτ∈Q\N

C
(d)
Hτ

(t− τ)

= Ct(P,Q,N),

and thus, finding the optimal strategy for each transaction independently is
equivalent to finding the optimal strategy for all transactions, summarized in
the following:

Lemma 2. Let π∗
Hτ

(t, P ) be an optimal independent policy for transaction Hτ .
Then:

π∗(t, P,Q) =
⋃

Hτ∈Q

π∗
Hτ

(t, P )

is an optimal policy for the publishing problem with a homogeneous publishing
cost.
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4.1 Price Threshold

The optimal independent policy takes a relatively simple form for a certain class
of price fluctuation distributions called monotonically non-expansive.

Definition 5. A random function R(P ) is monotonically non-expansive if E [R(P )]
is both non-expansive and monotonically increasing, i.e., for all P2 ≥ P1:

0 ≤ E [R(P2)]− E [R(P1)] ≤ P2 − P1.

The requirement for monotonicity is fairly intuitive since, as the current price
is higher, we expect the next price to be higher as well. The non-expansion
requirement can mean that either the prices change as a random walk or that
there is some fixed price that the prices gradually move towards (due to the
Banach fixed-point theorem). Both are common assumptions (see, e.g., [17]),
and as we will see, they also hold for Ethereum gas prices.

We can now provide a classification of optimal independent policies.

Theorem 3. If the price fluctuation function R is monotonically non-expansive,
there exists a monotonically increasing price threshold λHτ

(x) such that:

π∗
Hτ

(t, P ) =

{
{Hτ} P ≤ λHτ

(t− τ)

∅ P > λHτ
(t− τ)

is an optimal independent policy for transaction Hτ . Moreover, any two trans-
actions with the same delay cost will have the same price threshold.

Hence, an optimal policy is simply to check if the price is above or below
a certain threshold that depends on the specific instance parameters and the
amount of time a transaction is waiting.

Using Lemma 2, we can also classify the general problem.

Corollary 1. If the price fluctuation function R is monotonically non-expansive,
there exists monotonically increasing price thresholds λHτ

(x) for any transaction
Hτ such that:

π∗(t, P,Q) = {Hτ | Hτ ∈ Q ∧ P ≤ λHτ
(t− τ)}

is an optimal policy for a homogeneous publishing cost.

This result is a theoretical confirmation of the empirical observations made
in [15], where minHτ∈Q λHτ (t− τ) is the price threshold for publishing all trans-
actions, and maxHτ∈Q λHτ (t − τ) is the price threshold for not publishing any
transaction.

5 Rollup Cost Function

We now explore the case where the delay cost function is global and monotonic.
Intuitively, in this case, there is no reason to publish a new transaction before an
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old one, and we expect the optimal algorithm to publish transactions by order
of arrival. Hence, we can simplify our MDP such that the agent only needs to
choose the number of transactions to publish rather than which transactions to
publish (given the amount, it is always the earliest ones).

We start by formalizing and proving the intuitive claim.

Lemma 3. If the delay cost function is global and monotonically increasing,
the earliest transactions are published when using an optimal policy π∗. In other
words, for all Hτ ∈ Nπ∗

t and Hν ∈ Qπ∗

t \Nπ∗

t , we have τ < ν.

Let us now define a modified MDP with the state at time t being (t, Pt, Q̂t)
where Q̂t denotes the number of unpublished transactions at time t. The agent
only needs to choose N̂ π̂

t ∈ [0, Q̂t] and the state updates with Q̂π̂
t+1 = Q̂t−N̂ π̂

t +1
(the price changes as before). The agent then incurs a cost of:

Ĉt(Pt, Q̂t, N̂
π̂
t ) ≜ Pt(αN̂

π̂
t + β) +

Q̂t−N̂ π̂
t∑

i=1

C(d)(i).

Using Lemma 3, it’s easy to see the modification does not change the optimal
strategy:

Corollary 2. Let π∗ be an optimal policy for the original MDP. Then

π̂∗(t, Pt, |Qπ∗

t |) = |π∗(t, Pt, Q
π∗

t )|

is an optimal policy for the modified MDP.

Hence, a model with the following parameters:

C(d)(i) = 2ci, α = 1, β = 0

for some unit conversion factor c > 0 (which implies a homogeneous publishing
cost), is equivalent to the simplified model with

Ĉt(P, Q̂, N̂) = PN̂ +

Q̂−N̂∑
i=1

2ci

= PN̂ + c(Q̂− N̂)(Q̂− N̂ + 1).

This is the same quadratic model presented in [15] for rollup chains. This can
be justified by thinking of the risk in rollup chains to be malicious actions due
to unpublished transactions. These actions may occur with a small, constant
probability at each time step and thus result in a delay cost that increases linearly
over time. We can use our analysis to solve this specific problem instance.

5.1 Price Dynamics

We want to model R similar to how the Ethereum base fee behaves. Since EIP-
1559, each block changes the base fee depending on transaction load and multi-
plies the base fee by a factor between 7

8 and 9
8 . We let Xi ∈

[
7
8 ,

9
8

]
be a random
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variable that models the base fee factor after block i. Assuming k blocks are
produced between two time steps, we get Pt+1 = Pt

∏k
i=1 Xi. Assuming the sim-

ple (although not realistic) case where Xi’s are i.i.d, for a large enough k we

can approximate
∏k

i=1 Xi as a log-normal distribution due to the Central Limit
Theorem. Hence, we will define:

R(P ) ≜ PeN (µ,σ2)

where N (µ, σ2) is a normal distribution with mean µ and variance σ2.

We have E
[
eN (µ,σ2)

]
= eµ+

σ2

2 , so for µ ≤ −σ2

2 we get thatR is monotonically

non-expansive.
In Figure 1, we show the empirical Ethereum minutely base fee factor dis-

tribution and compare it to a log-normal distribution, making the case they are
very similar in practice. Note there is a small outlier for large factors, which can
be explained in some theoretical setups [6].

Fig. 1. Empirical minutely Ethereum base-fee factor distribution, taken from block
15M to 17M, next to a log-normal distribution.

5.2 Optimal Policy

Since the rollup model has homogeneous publishing cost and monotonically non-

expansive price fluctuations (when µ ≤ −σ2

2 ), we can use Corollary 1 and get
the optimal policy by finding the price threshold.
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Theorem 4. If µ ≤ −σ2

2 , using

λ(x) =
2c

1− γ
inf
n≥1

(1− γn)(x+ γ
1−γ )− nγn

1− γnen(µ+
σ2

2 )
(1)

as a price threshold for all transactions is an optimal strategy for the rollup
model.

We can interpret Eq. 1 by considering n to be the number of future time
steps we wait before publishing the transaction. The price threshold is then the
best total cost possible by waiting in the current step. It can be easily computed
using numeric methods, or one could choose to approximate it optimistically by
using n = 1:

λ(x) ≤ 2cx

1− γeµ+
σ2

2

.

Using this approximation, the policy considers waiting a single step as the only
alternative to publishing.

Note the special case µ = −σ2

2 that implies that R is a martingale process,
i.e., E [R(P )] = P ; meaning the expected future price is the current price.

We can get an analytical solution for the price threshold using Theorem 4.

Corollary 3. If µ = −σ2

2 , using

λ(x) =
2cx

1− γ

as a price threshold is an optimal strategy for the rollup model.

6 Simulations

To see how our strategies hold in practice, we ran simulations and compared the
results to the trivial strategy of publishing at every step. In all experiments we
used γ = 1− 10−7 and a global delay cost of C(d)(i) = (1− γ)i.

6.1 Homogeneous Publishing Cost

We start with simulating the case where α = 1 and β = 0 as in the rollup
case. Assuming the gas price dynamic is martingale, we use the price threshold
λ(x) = x, which, according to Corollary 3 is optimal.

Figure 2 shows the aggregated difference between the trivial and the optimal
policies using historical Ethereum minute base fees over about nine months. The
maximal waiting time of our strategy was 46 minutes. Notice that our policy
consistently outperforms the trivial one and that in cases where the gas price is
more volatile, the performance is even better.

In Figure 3, we show the mean difference between the policies using random

log-normal values (such that µ = σ2

2 ) over experiments with 1000 steps each.
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Here, we can see that the performance is much better, fitting our theory and
hinting at the need to improve the Ethereum gas price distribution model. The
average maximal waiting time was 35.79 steps, and we show the maximal waiting
time distribution in Figure 4. We can see that the waiting time is usually low,
but there is a long tail of longer waiting times.

Fig. 2. The difference of the total cost over time for the price threshold policy and the
trivial policy, on minutely Ethereum base fees taken from block 15M to 17M.

6.2 Constant Publishing Cost

We now simulate using α = 0 and β = 1. We use our near-optimal policy from
Theorem 2 and again compare it to the trivial policy.

As before, we show the aggregated difference between our and trivial policies
in Figure 5, using historical Ethereum minute base fees. The maximal waiting
time of our strategy this time was 7 minutes. Again, our policy consistently
outperforms the trivial one, but this time, the performance is more consistent
and does not change drastically when the gas price is more volatile.

Our policy does not assume anything about the price distribution. Hence,

we try it with random log-normal values both when µ > σ2

2 (Figure 6) and

when µ < σ2

2 (Figure 7). We show the mean difference between the policies
over experiments with 1000 steps each. As expected, our policy outperforms the
trivial policy in both cases. However, it is interesting to see that for the negative
drift, the difference is negligible. This makes sense since, eventually, the prices
are low enough such that the optimal policy is the trivial policy of publishing
every step.
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Fig. 3. The mean difference of the total cost over time for the price threshold and
trivial policies, using a log-normal martingale price distribution.

Fig. 4. The distribution of the maximal waiting time for the price threshold policy
using a log-normal martingale price distribution.
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Fig. 5. The difference of the total cost over time for the near-optimal constant pub-
lishing cost policy and the trivial policy, on minutely Ethereum base fees taken from
block 15M to 17M.

Fig. 6. The mean difference of the total cost over time for the near-optimal constant
publishing cost policy and the trivial policy, using a log-normal price distribution with
a positive drift.
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Fig. 7. The mean difference of the total cost over time for the near-optimal constant
publishing cost policy and the trivial policy, using a log-normal price distribution with
a negative drift.

7 Conclusion

We expand previous work on the decision problem of publishing transactions in
the root chain, where the gas fees can vary depending on publication time. We
focus on a theoretical formulation for the problem, generalizing it for many po-
tential instances and finding the optimal strategy for a given class of parameters.

Layer 2 blockchains are becoming increasingly common, and more work needs
to be done to optimize publishing strategies for more realistic scenarios. Future
work may expand on our model by finding optimal policies for a larger class
of cost functions, including non-homogeneous publishing cost, adversarial delay
cost, and more realistic gas price fluctuation models.
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A Proofs

A.1 Lemma 1

Proof. Assume π is an optimal policy such that in some step t we have ∅ ≠
Nπ

t ⊂ Qπ
t , and let Hτ ∈ Qπ

t \Nπ
t . Define π′ to be the same policy as π with two

differences: Nπ′

t = Nπ
t ∪ {Hτ} and Nπ′

t̃
= Nπ

t̃
\ {Hτ} for all t̃ > t.

Since Nπ
t ̸= ∅ and the publishing cost is constant, adding Hτ does not incur

an extra cost. Also, removing Hτ from Nπ
t̃

can only reduce the total cost since
the delay cost is non-negative. Thus, π′ has a total cost at least as low as π,
meaning it is optimal as well. In summary, we can always move transactions to
be published in the first publication step of π where they are available and still
have optimal total cost. We thus get that publishing all the available transactions
during π’s publication steps is an optimal policy. ⊓⊔

A.2 Theorem 1

Proof. From Lemma 1, we get that there is an optimal policy π∗ where all of
the available transactions are published in a publication step. Hence, the policy
is defined by the lengths of intervals between publications. The cost of interval
i, which we denote by C(n1,n2,... )(i) for interval lengths (n1, n2, . . . ), is then:

C(n1,n2,... )(i) = γ
∑i−1

j=1 nj (F (d)(ni) + γni−1βP )

https://community.optimism.io/docs/protocol/2-rollup-protocol/
https://community.optimism.io/docs/protocol/2-rollup-protocol/
https://eips.ethereum.org/EIPS/eip-1559
https://eips.ethereum.org/EIPS/eip-1559
https://docs.zksync.io/userdocs/tech/#zk-rollup-architecture
https://docs.zksync.io/userdocs/tech/#zk-rollup-architecture
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Let (n∗
1, n

∗
2, . . . ) be the interval lengths of π

∗. For it to be optimal, it is sufficient
to have:

(n∗
1, n

∗
2, . . . )

= argmin
(n1,n2,... )

∑
i

C(n1,n2,... )(i)

= argmin
(n1,n2,... )

C(n1,n2,... )(1) + γn1

∑
i

C(n2,n3,... )(i).

Since C(n∗
1 ,n2,... )(1) depends only on the first interval size, we get:

(n∗
2, n

∗
3, . . . )

= argmin
(n2,n3,... )

C(n∗
1 ,n2,... )(1) + γn∗

1

∑
i

C(n2,n3,... )(i)

= argmin
(n2,n3,... )

γn∗
1

∑
i

C(n2,n3,... )(i)

= argmin
(n2,n3,... )

∑
i

C(n2,n3,... )(i)

= (n∗
1, n

∗
2, . . . ).

We thus get that all the interval sizes are the same. Let then n∗ be the constant
interval size of π∗. We obtain:

n∗

= argmin
n

∑
i

C(n,n,... )(i)

= argmin
n

∑
i

γn(i−1)(F (d)(n) + γn−1βP )

= argmin
n

(F (d)(n) + γn−1βP )
∑
i

γn(i−1)

= argmin
n

F (d)(n) + γn−1βP

1− γn

as desired. ⊓⊔

A.3 Theorem 2

Proof. Let t1, t2 be two consecutive publishing steps for π. The delay cost in-
curred by π during the interval between those steps is γt1F (d)(t2−t1). Let t

∗ < t2
be the last publishing step of π∗ before t2.

Since F (d) is monotonically increasing, if t∗ ≤ t1, we get that the delay cost
for π∗ during this interval is larger then the delay cost for π:

γt∗F (d)(t2 − t∗) ≥ γt∗F (d)(t2 − t1) ≥ γt1F (d)(t2 − t1).
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Otherwise, π∗ published during this interval. From the definition of π and
the fact that it did not publish in t∗, we get that π∗’s publishing cost was higher
than π’s delay cost up to this step:

γt∗−t1−1βPt∗ ≥ F (d)(t∗ − t1 + 1)

We can now use sub-additivity and show that the delay cost of π during this
interval holds:

γt1F (d)(t2 − t1)

≤ γt1σ

2

(
F (d)(t∗ − t1 + 1) + γt∗−t1F (d)(t2 − t∗)

)
≤ σ

2

(
γt∗−1βPt∗ + γt∗F (d)(t2 − t∗)

)
.

In both cases, we get that the delay cost of π in the interval is lower than
the total cost (both delay and publishing) of π∗ in the interval, up to a factor of
σ
2 . Since the total cost of π is at most twice the delay cost (the publishing cost
is at most the delay cost), we get that C(π) ≤ σC(π∗) as needed. ⊓⊔

A.4 Theorem 3

Proof. An optimal independent policy π∗
Hτ

, by definition, publishes at state
(t, P ) only if waiting for n steps incurs an expected larger cost than publish-
ing for all n ≥ 1. Specifically, if for all n ≥ 1 we have:

αP ≤ αγnE
[
R[n](P )

]
+

n−1∑
i=0

γiC
(d)
Hτ

(t− τ + i) (2)

where R[n] denotes composing R with itself n times.
Let P2 > P1. Since R monotonically increases, we have that R[n](P2) ≥

R[n](P1) for all n. Using this fact, since R is non-expansive, we get:

R[n](P2)−R[n](P1) ≤ R[n−1](P2)−R[n−1](P1) ≤ · · · ≤ P2 − P1.

Now, assume the optimal policy publishes at state (t, P2). We have that for
all n ≥ 1:

0 ≤ α
(
γnE

[
R[n](P2)

]
− P2

)
+

n−1∑
i=0

γiC
(d)
Hτ

(t− τ + i)

= α
(
γn

(
E
[
R[n](P2)

]
− E

[
R[n](P1)

])
+ P1 − P2

)
+ α

(
γnE

[
R[n](P1)

]
− P1

)
+

n−1∑
i=0

γiC
(d)
Hτ

(t− τ + i)

≤ α
(
γnE

[
R[n](P1)

]
− P1

)
+

n−1∑
i=0

γiC
(d)
Hτ

(t− τ + i)



20 Bar-On & Mansour

and thus the optimal policy publishes at state (t, P1) as well.
Define λHτ

(t − τ) to be the maximal price such that the optimal policy
will publish the transaction at time t. We get that for all P ≤ λHτ (t − τ) the
transaction is published. Otherwise, by the definition of λHτ , the transaction is
not published for all P > λHτ

(t− τ) as desired. ⊓⊔

A.5 Lemma 3

Proof. Let π be a policy such that at some step t̃, there exists a batch Hτ ∈ Nπ
t̃

and transaction Hν ∈ Qπ
t̃
\Nπ

t̃
such that τ > ν. Also denote by t̂ the time step

where Hν ∈ Nπ
t̂
. Now, let π′ a policy equal to π except that we switch the two

transactions:
Nπ′

t̃ = (Nπ
t̃ \ {Hτ}) ∪ {Hν}

Nπ′

t̂
= (Nπ

t̂
\ {Hν}) ∪ {Hτ}.

Note it means that for all t ≤ t̃ and t > t̂, Qπ′

t = Qπ
t . For all other t̃ < t ≤ t̂,

we have Qπ′

t = (Qπ
t \ {Hν}) ∪ {Hτ}.

Hence Nπ
t ⊆ Qπ′

t for all t /∈ {t̃, t̂} and so π′ is properly defined. Moreover,
since the actions are equal except those two times, we get |Nπ

t | = |Nπ′

t | for all t.
Thus we get:

Ct(Pt, Q
π
t , N

π
t )

= PtC
(p)
t (Nπ

t ) + C
(d)
t (Qπ

t \Nπ
t )

= Pt(α|Nπ
t |+ β) +

∑
Hi∈Qπ

t \Nπ
t

C(d)(t− i)

= Pt(α|Nπ′

t |+ β) +
∑

Hi∈Qπ
t \Nπ

t

C(d)(t− i).

So for all t < t̃ and t > t̂ we have:

Ct(Pt, Q
π
t , N

π
t )

= Pt(α|Nπ′

t |+ β) +
∑

Hi∈Qπ′
t \Nπ′

t

C(d)(t− i)

= Ct(Pt, Q
π′

t , Nπ′

t ),

and for t̃ ≤ t ≤ t̂:

Ct(Pt, Q
π
t , N

π
t )

= Pt(α|Nπ′

t |+ β) +
∑

Hi∈((Qπ′
t \{Hτ})∪{Hν})\Nπ′

t

C(d)(t− i)

= Pt(α|Nπ′

t |+ β) +
∑

Hi∈Qπ′
t \Nπ′

t

C(d)(t− i)− C(d)(t− τ) + C(d)(t− ν).
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Since C(d) is non decreasing and τ > ν, we get C(d)(t − ν) > C(d)(t − τ).
Hence:

Ct(Pt, Q
π
t , N

π
t )

> Pt(α|Nπ′

t |+ β) +
∑

Hi∈(Qπ′
t \Nπ′

t )

C(d)(t− i)

= Ct(Pt, Q
π′

t , Nπ′

t ).

Altogether, we got

C(π)

= E

[∑
t

γtCt(Pt, Q
π
t , N

π
t )

]

> E

[∑
t

γtCt(Pt, Q
π′

t , Nπ′

t )

]
= C(π′)

and thus π is not an optimal policy. ⊓⊔

A.6 Theorem 4

Proof. First, note that:

E
[
R[n](P )

]
= E

[
P

n∏
i=1

eN (µ,σ2)

]

= P

n∏
i=1

E
[
eN (µ,σ2)

]
= Pen(µ+

σ2

2 ).

Substituting all parameters in Eq. 2, we get the following optimal criteria for
publishing transaction Hτ at state (t, P ):

0 ≤ α
(
γnen(µ+

σ2

2 ) − 1
)
P + 2c

n−1∑
i=0

γi(t− τ + i)

= α
(
γnen(µ+

σ2

2 ) − 1
)
P +

2c

1− γ

(
(1− γn)(t− τ +

γ

1− γ
)− nγn

)
,

and thus,

P ≤ 2c

α(1− γ)

(1− γn)(t− τ + γ
1−γ )− nγn

1− γnen(µ+
σ2

2 )

for all n ≥ 1, as desired. ⊓⊔
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A.7 Corollary 3

Proof. Substitute µ = −σ2

2 in Theorem 4 and get:

λ(x)

=
2c

1− γ
inf
n≥1

(1− γn)(x+ γ
1−γ )− nγn

1− γn

=
2c

1− γ

(
x+

γ

1− γ
− sup

n≥1

nγn

1− γn

)
If we show that f(n) ≜ nγn

1−γn is decreasing, then the maximum over n ≥ 1 is

obtained at the border n = 1, and thus λ(x) = 2cx
1−γ .

To show that f(n) is decreasing, we will first find the derivative:

f ′(n) =
γn (1− γn + ln(γn))

(1− γn)2
.

Since ln(γn) ≤ γn− 1, we get that f ′(n) ≤ 0 and thus f is decreasing as needed.
⊓⊔
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