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Abstract. Automated Market Makers (AMMs) are major centers of
matching liquidity supply and demand in Decentralized Finance. Their
functioning relies primarily on the presence of liquidity providers (LPs)
incentivized to invest their assets into a liquidity pool. However, the prices
at which a pooled asset is traded is often more stale than the prices on
centralized and more liquid exchanges. This leads to the LPs suffering
losses to arbitrage. This problem is addressed by adapting market prices
to trader behavior, captured via the classical market microstructure
model of Glosten and Milgrom. In this paper, we propose the first optimal
Bayesian and the first model-free data-driven algorith m to optimally
track the external price of the asset. The notion of optimality that we use
enforces a zero-profit condition on the prices of the market maker, hence
the name ZeroSwap. This ensures that the market maker balances losses
to informed traders with profits from noise traders. The key property of
our approach is the ability to estimate the external market price without
the need for price oracles or loss oracles. Our theoretical guarantees on
the performance of both these algorithms, ensuring the stability and
convergence of their price recommendations, are of independent interest
in the theory of reinforcement learning. We empirically demonstrate the
robustness of our algorithms to changing market conditions.

1 Introduction
Market making is an essential service that is used to satisfy liquidity demand

in any financial system. Efficient market making in traditional finance involves
providing bid and ask quotes for an asset that are as close to each other as
possible, while accurately reflecting the price of the asset on a limit order book
and thus providing a slight profit to the market maker. This efficiency is achieved
by using increasingly complex models for trader behavior [29,35,31] and then
inferring the underlying hidden price from the observed trader behavior. These
models have now become canonical knowledge in the domains of microeconomics
and market microstructure.

More recently, the problem of market making has come to the forefront
in Decentralized Finance. DeFi uses Automated Market Makers, specifically
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Constant Function Market Makers (CFMMs) [16], as an alternative to limit order
books. This decreases the computational load required in satisfying trades, while
also providing deep markets for infrequently traded tokens. Additionally, the
liquidity required to satisfy trades is also provided in a decentralized manner
by liquidity providers (LPs), who pool their tokens to help satisfy the liquidity
demand.

Markets in DeFi come with a variety of differing characteristics. The main
differences are along market depth (or liquidity), and price volatility. For instance,
stablecoin trading volume (≈ $11.1 trillion) recently surpassed that of the amount
transacted via centralized services such as MasterCard and PayPal [11]. Some
of the deepest markets in terms liquidity also happen to be those containing
stablecoins [15]. These markets also do not face much volatility, and their depth
ensures that the price impact of retail trades is small. On the other hand, DeFi
also has hundreds of tokens that do not trade frequently and hence need liquid
markets. Because of lack of liquidity, such markets are volatile and the price is
sensitive even to retail trades. In this work, we focus on the former type of DeFi
market.

The main problem that a CFMM faces is to incentivize the LPs to pool their
tokens. To do that, the CFMM needs to ensure they do not face losses on an
average. However, it is common knowledge that LPs do indeed face various kinds
of losses due to changing reserves [36] and their lack of information about the
market conditions [40]. In the current paper, we focus on mitigating the loss
that arises due to this lack of information. In particular, CFMMs with static
curves often lead to LPs suffering losses due to arbitrageurs. These losses are
supposed to be compensated with the fees charged on each trade. This is because
centralized exchanges are characterized by high liquidity and trading volume,
and lesser fees. For instance the daily trading volume on the centralized exchange
Binance is around $ 15 B, much larger compared to a volume of $ 1.1 B on the
largest decentralized exchange Uniswap [1]. A less liquid exchange like Uniswap
gives rise to a staler price, and hence is prone to loss due to arbitrage.

This arbitrage loss can be quantified for a special case as loss-versus-rebalancing
(LVR) [40], and persists even after the introduction of fees [38]. For a general
market maker that offers to sell and buy a risky asset at the ask and bid prices
respectively, the arbitrage loss is specified with respect to the external true price
of the asset. The arbitrageur does a buy trade when the external price exceeds
the ask price and does a sell trade when it is below the bid price. The loss to the
market maker can be quantified as the difference between the two prices times
the amount of asset being traded.

In traditional finance, this arbitrage loss has been modeled as the adverse
selection cost arising because of interaction with informed traders (traders that
know the external price - same as arbitrageurs). An optimal market maker exactly
balances this cost with the profits arising from interaction with uninformed traders
(or noise traders). This condition for optimality was first proposed by Glosten
and Milgrom [29]. In DeFi, this classification of traders has been termed as
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toxic and non-toxic order flow corresponding to informed and uninformed trade
respectively [10,3].

For CFMMs, this loss also stems from the fact that it needs to incentivize a
trader to truthfully indicate their belief about the price, via their trades. This
implies that, to track the external price accurately, the CFMM ends up paying
the informed traders, in return for their information. This fact is also apparent
from the connection between CFMMs and information eliciting market scoring
rules used in prediction markets [28].

Naively, the loss to arbitrageurs can be minimized by simply setting the
marginal price to be equal to the external price. This would need access to a price
oracle, and has indeed been tried in some market making protocols [4]. However,
coupling a market maker to an oracle opens the door to frontrunning attacks
[7] and places trust in an external centralized entity [26,6] that may itself be
manipulated. To avoid this, the main constraint we impose is the absence of any
access to oracles. The challenge is to infer the hidden price simply by observing
the history of trades, in as sample-efficient manner as possible.

The current work formulates this challenge using the Glosten-Milgrom model
of trader behaviour, which specifies the proportion of informed and uninformed
traders, their sequential interaction with the market maker and the evolution of
the external price. We further assume that the jumps in the hidden price happen
on the same time scale as the trades, and that the jump sizes are limited, since we
focus on liquid and less volatile markets such as those involving stablecoins.The
objective of the market maker is to adaptively set the ask and bid prices so
that the loss to arbitrageurs is as close to zero as possible, which is why we
call the market maker ZeroSwap. The market maker turning a profit would
be undesirable since this would allow a competitor to undercut its prices and
take away their order flow. In other words, the market maker should quote an
efficient and competitive market price, given only the information it has in form
of the trading history. Keeping this objective in mind, we make the following key
contributions:
Model-based Bayesian algorithm. When the parameters of the trader and
price behaviour model are known, we provide a Bayesian algorithm to update
the ask and bid prices. We theoretically guarantee that the bid-ask spread of this
algorithm is stable in presence of trades, and converges to the external market
price. We empirically demonstrate that the loss to the market maker using this
algorithm is zero, and it can hence be used as a benchmark for an optimally
efficient market maker (Section 4).
Model-free data-driven algorithm. When the model parameters are unknown,
we design a randomized algorithm which depends only on the trade history
visible to the market maker. We empirically demonstrate that it tracks the
hidden external price even under rapidly changing market conditions, and incurs
a similar loss as a market maker that has access to an oracle. We give a first-
of-its-kind theoretical guarantee that maximizing the corresponding cumulative
reward ensures that the external price is tracked by the market maker efficiently;
this is of independent interest in the theory of reinforcement learning (Section 5).
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On-chain implementation. The market-making logic driven by the reinforce-
ment learning engine is straightforward to implement as a smart contract on a
blockchain, but entirely impractical due to the associated gas fees. We specify
how to implement ZeroSwap as an application-specific rollup, in the context of
the Ethereum blockchain (Section 6). The actual implementation is on-going
work and outside the scope of this paper.

2 Related work

In this section, we reprise relevant literature surrounding the problem formu-
lated in this paper. Although the motivation of the problem stems from literature
studying AMMs in DeFi, our formulation derives heavily from classical works in
market microstructure. The data-driven algorithm we present is motivated from
canonical reinforcement learning literature.

Automated Market Makers: Automated Market Makers, in their most
popular form as Constant Function Market Makers [47,42], have been known
to incentivize trades that make prices consistent with an external, more liquid
market [17]. It is also known that doing this incurs a cost to the liquidity providers
of the CFMMs, and a profit to the arbitrageurs [27,32,45]. This profit can be
quantified as “loss-versus-rebalancing” in the case of a market maker with only
arbitrageurs (informed traders) trading with it [40], and is seen to be proportional
to external price volatility. Several works propose to capture this loss, either via
an on-chain auction [37] or using auction theory to generate a dynamic ask and
bid price recommendation for an AMM [39]. Another recent work [30] proposes
an optimal curve for a CFMM based on the LP beliefs over prices, however, the
work does not consider a dynamic model where the trader reacts based on the
market maker setting their prices. Our work is related closest to [39], where a
dynamic model of trading is indeed considered, and optimal ask and bid prices
are derived. However, the price recommendations require the market maker to
know underlying model parameters, and thus the solution is not model-free or
data-driven. Additionally, we look at a competitive market maker, while [39] look
at the monopolistic case. Data-driven reinforcement learning algorithms to adapt
CFMMs have also been used in another recent work [22], albeit the objective
there is to control fee revenue and minimize the number of failed trades.

Optimal market making: The trader behavior model that we use derives
from the Glosten-Milgrom model [29] used extensively in market microstructure
literature, however we modify it to have a continuously changing external price.
Several followup works [24,25] derive optimal market making rules under a
modified Glosten-Milgrom framework, but they assume that underlying model
parameters are known, and that external price jumps are notified to the market
maker. A more data-driven reinforcement learning approach is followed in [21],
but the reward function they assume contains direct information about the
external hidden price, while we assume no price oracle access. Another thread
of optimal market making in traditional market microstructure literature deals
with inventory management [33,20] as opposed to the information asymmetry
between traders and market makers. However, we seek to design a market maker
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that covers losses from information asymmetry as in the Glosten-Milgrom model,
assuming no constraints on the inventory. The Glosten-Milgrom model has already
been considered for AMMs in DeFi, albeit only for single trades [19,18].

POMDPs and Q-Learning: Partially Observable Markov Decision Pro-
cesses (POMDPs) are used to model decision making problems where an un-
derlying state evolves in a Markovian manner, but is invisible to the agent.
Q-learning [46] is a standard model-free method that is guaranteed to learn an
optimal decision making policy for Markov Decision Processes (MDPs). Here, the
optimality is in terms of maximizing expected cumulative reward. We formulate
the optimal market making problem as a POMDP. We then adapt the algorithm
for the POMDP defined by our model, and design a reward that helps us achieve
the goal of optimal market making.

3 Price and trader behaviour model
We now describe the framework used for modeling trader behavior in response

to the evolution of a hidden price process and prices set by the market maker.
We also state the objective that the market maker seeks to optimize, and provide
the motivation behind it. The model and the objective are based on the canon-
ical Glosten-Milgrom model [29] studied extensively in market microstructure
literature. In this work, we consider a discrete time model indexed by t.
External price process: The external price process ptext of a risky asset is
assumed to follow a discrete time random walk, where probability of a jump at
any t is given by σ. That is, we have

pt+1
ext =


ptext + 1 w.p. σ/2

ptext − 1 w.p. σ/2

ptext w.p. 1− σ

(1)

This process can represent either the price of the asset in a larger and much
more liquid exchange, or some underlying “true” value of the asset. In either case,
we assume that it is hidden from the market maker. We use the same notation
(σ) as the continuous-time volatility for our jump probability since they both
represent a qualitative measure of the change in the external price.
Market Maker: The market maker publishes an ask pta and a bid ptb price in
every time slot. Any trader can respectively buy and sell the asset at these prices.
Trade actions: We assume that the traders arrive at a constant rate of λ. This
means that for time slots which are multiples of 1/λ, a trader comes in to interact
with the market maker by performing an action dt. It can choose to either buy
(dt = +1), sell (dt = −1) or do neither (dt = 0). What the trader chooses to do
depends on what they believe the value of the external price is.
Trader behavior: We assume two types of traders - informed and uninformed.
The informed trader is assumed to know the external price exactly, while the
uninformed trader does not know it at all. The informed trader buys a unit
quantity of asset if ptext > pta and sells a unit quantity of asset if ptext < ptb, thus
acting as an arbitrageur between the market maker and the external market. The
uninformed trader randomly buys or sells a unit quantity of asset with equal
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probability. We assume that the trader arriving in time slot t is informed w.p.
α and an uninformed w.p. 1− α. We make this trader model more nuanced in
Section 5.5.
Objective: Our objective is to design an algorithm to set ask and bid prices for
the market maker, such that the expected loss with respect to the external market
is minimized and the market maker stays competitive. Glosten and Milgrom [29]
express this objective mathematically as follows.

pta = E[ptext|Ht−1, dt = +1] (2)

ptb = E[ptext|Ht−1, dt = −1] (3)

where Ht−1 = ⟨(di, pia, pib)⟩
t−1
i=0 is the history of trades and prices until time t− 1.

Interpreting the objective: Monetary loss of the market maker is defined as

lt = (ptext − pta)I{dt=+1} + (ptb − ptext)I{dt=−1} (4)

where I{.} is the indicator function, and the loss is for a unit trade of the asset.
Setting bid and ask prices as per (2) and (3) makes the expected loss of the
market makers vanish, since E[(ptext − pta)I{dt=+1} + (ptb − ptext)I{dt=−1}] = 0.

The market maker can thus obtain a strictly positive profit by increasing
pta or decreasing ptb from their values in (2) and (3). However, doing this would
make it less competitive, since any other market maker with slightly greater
bid or a slightly lesser ask would offer a better price and take away the trade
volume. Although we do not explicitly model other market makers, their presence
is implicit in setting prices according to (2) and (3). These equations represent
ideal conditions for capital efficiency, where both the trader gets the best price
possible while the market maker avoids a loss.

Also, note that the market maker incurs a loss in every trade made by an
informed trader. Thus, to make the expected loss vanish, it should learn to set
prices so that the loss to informed traders is balanced by the profit obtained from
uninformed traders. The equations (2) and (3) can also be interpreted as striking
this balance.

4 Bayesian algorithm for known parameters
4.1 Details and intuition

First, let us suppose that the market maker knows the underlying model of
price evolution and trader behavior. That is, σ (price jump probability) and α
(trader informedness) are known. Then, the objectives specified in Section 3 can
be achieved by an algorithm based on tracking the market maker’s belief over
the external price ptext and updating these beliefs using Bayes rule after each
trade. Algorithm 1 outlines this approach.

Algorithm 1 keeps track of a belief of the market maker bt(p) over prices
p ∈ Z. It then hypothesizes two other distributions bta(p, pa) and btb(p, pb) that
represent the Bayesian posterior if the incoming trade is a buy (with the ask
price being pa) and a sell (and the bid price being pb) respectively. Note that
K1,K2,K3 are normalizing constants for the posteriors. The optimal values of
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Algorithm 1 A Bayesian algorithm to set ask and bid prices
Require: Known α, σ ∈ [0, 1]
1: t← 0
2: T ← Number of total time slots
3: Prior belief over prices b0(p) : Z→ [0, 1]
4: while t ≤ T do
5: bta(p, pa)← (αI{p>pa} + 1−α

2
)bt(p)/K1 ▷ Belief over prices if incoming trade is

a buy
6: btb(p, pb)← (αI{p<pb} + 1−α

2
)bt(p)/K2▷ Belief over prices if incoming trade is a

sell
7: pta ← Solve(pa =

∑
p pb

t
a(p, pa))▷ Solve fixed point equation to get optimal ask

price
8: ptb ← Solve(pb =

∑
p pb

t
b(p, pb)) ▷ Solve fixed point equation to get optimal bid

price
9: Observe incoming trader action dt

10: if dt = +1 then
11: Update belief bt+1(p)← bta(p, p

t
a) ▷ Belief update after a buy trade

12: else if dt = −1 then
13: Update belief bt+1(p)← btb(p, p

t
b) ▷ Belief update after a sell trade

14: else if dt = 0 then
15: Update belief bt+1(p)← αI{pa>p>pb}b

t(p)/K3 ▷ Belief update after no trade
16: end if
17: bt+1(p)← (1− σ)bt+1(p) + σ

2
bt+1(p− 1) + σ

2
bt+1(p+ 1) ▷ Belief update to

account for price jump
18: end while

the ask and bid prices are the solutions of the fixed point equations (7) and (8),
where we have simply restated the conditions (2) and (3). After the trade happens
according to the optimal ask and bid prices, beliefs are updated to account for
the trade and the price jump. In subsequent sections, we use this algorithm as a
benchmark to compare with our model-free approach. For the purposes of our
experiments, we assume that the initial price p0 is known, so that the prior b0(p)
is such that b0(p0) = 1 and is zero everywhere else. We demonstrate empirical
results in comparison to other algorithms in Section 5.5.

4.2 Theoretical guarantees

We first present results on the spread behaviour of the Algorithm 1 in the case
of a single jump in the external price. The assumption under this simpler case is
same as those made by Glosten-Milgrom [29], that the external price jumps only
once at t = 0, with the size of the jump being drawn from a known distribution.
The special case of a single jump is especially important in blockchains where
we have a batch of trades being collected as part of a block and the AMM is
supposed to use them to estimate the external price of the asset when the block
is released. Our theoretical results show that the jump in the price of the asset
that takes place between any two blocks can be estimated with exponentially
vanishing error in the number of trades present in the successive block.
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Theorem 1. Let the external price pext ∼ D jump to the value p∗ext only once
at t = 0, where the distribution D of the jump is known to the market maker.
Then the Bayesian algorithm 1 recommends ask and bid prices pta, p

t
b such that

lim
t→∞

pta − ptb = 0 (5)

where the rate of convergence is exponential in t. Further, we also have

lim
t→∞

Pr[|pta − p∗ext| > 0] = 0 (6)

lim
t→∞

Pr[|ptb − p∗ext| > 0] = 0 (7)

This result guarantees that the Bayesian policy indeed approaches the correct
value of the hidden external price, with its spread going to zero in the limit.
The proof of the above statement is given in Section A.1, where we first prove
that the spread goes to zero and in Section A.2, where we prove that the ask
and bid prices converge to the correct value. Similar results were derived by
Glosten-Milgrom [29], but we further prove an exponential rate of convergence.

For the more difficult case where the external price follows a random walk as
described in Section 3, we provide guarantees on the expected spread behaviour
for different trader arrival rates λ. To our knowledge, theoretical guarantees for
this case have not been given before. We find that even for a small positive rate
of arrival of traders, the spread reaches a constant steady state value, thus losing
any dependence on time.

Theorem 2. When the external price pext follows a random walk (according to
(1)) with jump probability σ > 0 and a known initial value p0ext, the dependence
of expected spread on time varies with the trader arrival rate λ as follows :

– For λ = 0, σ > 0, α ∈ (0, 1), we have

E[pTa − pTb ] = Θ(
√
σT ) (8)

– For λ > 0, σ > 0, α ∈ (0, 1), we have

E[pTa − pTb ] = Θ
(σ
λ

)
(9)

– For λ > 0, α ∈ (0, 1) with a single jump in pext to a value p∗ext, we have

E[pTa − pTb ] = Θ(e−DKL(q||r)T ) (10)

where q = [ 1−α
2 , 1+α

2 ], r = [ 1+α
2 , 1−α

2 ]

The key intuition behind the proof of Theorem 2 is recognising that the
spread signifies how precisely the market maker is able to estimate the external
price. The wider the spread, the more uncertain it is about ptext. When there
are no trades, uncertainty only increases at a square root rate with time. This
is a direct consequence of the belief update that corresponds to the price jump



ZeroSwap 9

(Line (17) in Algorithm 1). On the other hand, uncertainty tends to decrease
after a trade because of the new information that is obtained about the external
price. Firstly, we derive the rates of spread increase and decrease in the respective
cases. This gives us the first part of the theorem. Secondly, we observe that if
the spread is large enough, the decrease in uncertainty after a trade is always
more than the increase after a price jump. This helps us prove the second part of
the theorem. The last part of the theorem follows from the proof of Theorem 1
directly. The detailed proof has been provided in Section A.3.

5 Data-driven algorithm for unknown parameters
In the model-free case (parameters α, σ are unknown), the only information

that the market maker can use are the trades coming in. The guiding principle
for our approach is that when the market maker publishes prices that align with
the external market price, the expected number of buy and sell trades should be
the same. Any deviation from this equilibrium suggests an imbalance in buy or
sell trades. The objective is to minimize the short-term “trade imbalance” while
retaining a minimal spread. This, we conjecture, is a good proxy for solving the
explicit efficient market conditions ((2) and (3)).

For formulating the problem, we utilize the Partially Observable Markov
Decision Process (POMDP) framework. A POMDP is a tuple consisting of a
state space S, an action space A, a state transition probability distribution
P (s′|s, a) : S × S ×A → R, an observation space O, an observation probability
distribution O(o|s′, a) : O × S × A → R, and a reward function r(s, a, s′) :
S×A×S → R. The objective of an agent is to maximize the expected cumulative
reward by choosing actions from A at each time step. The underlying state is
not directly visible to the agent, but can only be inferred through observations
that depend on the state via the observation probability. The state transition
probability governs how the state evolves stochastically, given the agent’s last
state and chosen action.

In our scenario, the POMDP allows the market maker to derive optimal
actions (prices) based on a probabilistic belief over the states, given the limited
observations at hand. The problem is formulated as a POMDP with a tailored re-
ward structure, hypothesizing a policy that relates the short-term trade imbalance
to the bid-ask prices for optimal outcomes.

5.1 POMDP formulation

We now define the POMDP for our case as follows. The state encapsu-
lates the external price and a history of trader actions, and is defined as
st = (ptext, dt, dt−1, · · · , dt−H) ∈ S. An action at = (pta, p

t
b) ∈ A, is the tuple of

ask and bid prices to be set by the market maker. An observation ot = dt ∈ O, the
trader’s decision, being the sole observable fragment of the state for the market
maker. Further, we define the policy, πt : (O ×A)t−1 → A, which translates all
preceding trade observations and price data to an ask/bid price pairing. The
state and observation probabilities derived from the Glosten-Milgrom model in
Section 3, affirming its Markovian nature. The reward function now remains to
specified, which we do in the following section.
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5.2 Reward design

The primary objective of the market maker is to find an algorithm that
maximizes the expected cumulative discounted reward E[

∑∞
t=0 γ

trt], where γ =
0.99 is a discount factor. We hypothesize that an algorithm achieving this would
effectively track the concealed external price.

We now break down the individual components of the reward. To promote
balanced trading, we define the trade imbalance nt as nt =

∑t
τ=t−H dτ . Here, H

signifies a constant window size over which this trade imbalance is calculated.
Rewarding the agent with −n2

t encourages a balance between the number of buy
and sell trades, acting as an indirect indicator of properly tracking the external
price.

Nevertheless, an agent could easily exploit this reward by setting pta = ∞
and ptb = −∞, since this ensures no informed trades and only uninformed trades,
maintaining the trade imbalance close to 0. This would give us a market maker
that balances the trades well, but is not competitive at all. Thus, it becomes
crucial to penalize the agent for a wide spread, leading to the reward formulation:

rt(st, at) = −n2
t − µ(pta − ptb)

2 (11)

where µ is a constant.
Still, there exists a potential for the agent to exploit this reward by alternating

its values between pta = ptb = ∞ and pta = ptb = −∞ in every iteration. This would
render the spread zero, attracting only uninformed traders. To counteract this,
we enforce a limitation on the algorithm design, allowing it to only output finite
changes in ask and bid prices (|pta − pt−1

a |, |ptb − pt−1
b | < ∆max, given a positive

and finite ∆max), rather than determining the ask and bid prices directly.

5.3 Algorithm design and intuition

Algorithm 2 shows the method to set prices in this model-free setting. It is
based on the tabular Q-learning algorithm developed for MDPs [46]. We first
explain why it works in the case of MDPs and argue why it is also a reasonable
algorithm for our case. The key intuition in the algorithm is to keep track of
a table Q(n, a), where the rows represent values of trade imbalance n and the
column represent an action that consists of a tuple a = (a1, a2). These are not
the ask and bid prices directly, but they represent the changes in the mid price
and spread respectively. The ask and bid prices are themselves derived from the
mid price and spread as shown on lines (15) and (16). Each Q(n, a) is supposed
to be the market maker’s best estimate of the expected future cumulative reward,
starting with an imbalance n, and performing an action a. More formally, Q(n, a)
estimates r0(n, a)+max⟨at⟩ E[

∑∞
t=1 Q(nt, at)]. To do this, the fixed point update

equation shown on line (20) is followed, where λ represents the learning rate
of the algorithm. Since the algorithm obtains better estimates as time goes on,
it can use those estimate to follow the optimal policy a = argmaxa′ Q(nt, a

′)
more confidently. Thus, we have a parameter ϵ that controls how many random
actions are sampled for “exploration” as opposed to “exploitation”. Making the
probability of exploration decay with time ensures more exploitation as data is
accumulated and more exploration earlier on.
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Algorithm 2 A reinforcement learning algorithm for setting ask and bid prices
Require: Algorithm parameters ϵ, λ, µ, γ ∈ [0, 1]
1: t← 0
2: T ← Number of total time slots
3: Initialize Q(n, a) = 0, where n ∈ {−H, · · · , H}, a ∈ {−1, 0,+1} × {−1, 0,+1}
4: Initialize p0m = p0ext, δ0 = 0
5: Initialize n0 = 0
6: while t ≤ T do
7: Sample uniformly u← [0, 1]
8: if u < ϵt then ▷ Exploration - probability decays with time
9: Choose at = (a1, a2) uniformly at random

10: else ▷ Exploitation
11: Choose at = (a1, a2) = argmaxa′ Q(nt, a

′)
12: end if
13: ptm ← pt−1

m + a1

14: δt ← δt−1 + a2

15: Set ask price pta ← ptm + δt
16: Set bid price ptb ← ptm − δt
17: Observe trader action dt+1

18: Set imbalance nt+1 ←
∑t+1

τ=t+1−H dτ

19: Reward rt ← n2
t − µ(pta − ptb)

2

20: Update Q(nt, at)← Q(nt, at) + λ(rt + γmaxa Q(nt, a)−Q(nt, at)) ▷ Update
estimate of expected future value of the imbalance

21: end while

The above intuition would be sufficient had the trader behavior and external
price were completely deterministic one-to-one functions of the imbalance (in
other words, if the problem was an MDP). But because of noise trading and the
stochastic nature of the price jumps, the trade imbalance is a noisy observation
of the underlying hidden external price. However, the presence of informed
traders is what couples the noisy observation with the hidden price. Therefore, we
conjecture, that given a non-zero informed trader proportion, it should be possible
to infer the underlying external price just by observing the trade imbalance, and
more generally, the trading history. While making this conjecture, we assume
that the price jumps and the changes in ask and bid prices that the market maker
can make are of the same scale. We explore what happens if these assumptions
are violated in Section 5.7.

5.4 Theoretical guarantees

The reward formulation above was based on the intuition of tracking the
external price using the trade imbalance as a signal while maintaining a reasonable
spread. We now justify the exact form of the reward by providing guarantees on
the performance of the optimal RL policy that maximizes this reward. We do
this for the simpler case of a single jump in price at t = 0 (same as Theorem 1).

Theorem 3. In the case of a single jump in the external price pext to the value
p∗ext at t = 0, for some constant C that depends on the parameters α,H, the
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optimal policy corresponding to the reward function rt (11) is such that

Rπ∗
≲ CRπB

where π∗, πB represent the optimal policy and the Bayesian policy respectively,
and Rπ = E[

∑T
i=1 ρt] where ρt := (p∗ext − pat )

2 + (p∗ext − pbt)
2.

The above result implies that the spread induced by the optimal policy
maximizing the reward as defined in (11) incurs an expected squared deviation
from the external price that is at most a constant multiple of the same squared
deviation of the Bayesian policy discussed in Section 4.

The key intuition behind this result is defining a risk function Rπ that the
Bayesian policy minimizes implicitly. The objective then is to prove that the risk
of the optimal RL policy is only a constant multiple of the risk of the Bayesian
policy. This is done by establishing a relation between the risk and the expected
cumulative reward of any policy. It turns out that a policy with a higher risk has
a lower cumulative reward and vice versa. Thus, we effectively show that the
reward proposed in (11) is a indeed a good proxy for the risk, which is just the
squared deviation of the external price from the price at which trades occur. The
full proof is given in Section A.4. Combining the above result with Theorem 1
immediately gives us the following corollary.

Corollary 1. In the case of a single jump in the external price to the value p∗ext
at t = 0, the optimal policy π∗ for maximizing the reward (11) is such that

lim
t→∞

|pta − ptb| = 0 (12)

where pta, p
t
b are the ask and bid prices recommended by π∗. Further, the rate of

convergence in (12) is exponential.

5.5 Simulation results

In this section, we test the algorithms 2 and 1 on the model described in
Section 3. We demonstrate their robustness to market scenarios and compare
their performance with previous work4.
Fixed market conditions. First, we fix different values of α and σ, and see how
well the hidden external price is tracked by the algorithms. The key metrics used
to compare their performances is the deviation of the mid-price (= pask+pbid

2 ) from
the external price and the bid-ask spread. One such example, for α = 0.9, σ = 0.5,
is shown in the Figure [5] in Appendix B. Note that the algorithm learns to track
the external price completely online, without any prior training required.
Sudden price jumps. Secondly, we observed what happens when there is a
sudden jump in the external market price. In that case as well, as shown in
Figure [6] in Appendix B, the algorithm tracks the external price correctly.
Changing market conditions. Thirdly, we check the robustness of the algo-
rithm to changing market conditions. This is the key to verifying its model-free
4 All code used for simulation in this section and Appendix B can be viewed anony-

mously at this link

https://anonymous.4open.science/r/ZeroSwap-FC64
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nature. To do that, we vary the trader informedness α and underlying price
volatility σ with time by making them follow a driftless random walk in the
range [0, 1]. We find that the algorithm obtains near zero spread and mid-price
deviation in this situation as well, as shown in Figure [1].
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Fig. 1: Even in the presence of erratic changes in the market conditions (Figure
(a)), our data-driven algorithm for market making tracks the external hidden
price with no prior training (Figure(b))
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Fig. 2: Algorithm 2 gives us comparable monetary loss per trade as running the
algorithm with an oracle. The Bayesian algorithm 1 gives loss close to zero, which
is optimally efficient. All plots are averaged over values of informedness α.

Comparing monetary loss. We compared the percentage monetary loss per
trade for each of our market makers, with the algorithm in [21]. This work also
uses Q-learning, but for a reward that has direct access to the hidden external
price pext and hence acts like a loss oracle. The reward function in [21], is of the
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form rt = −lt−µ(pta−ptb)
2, where lt is the monetary loss as defined in (4). In our

case, despite no access to such a loss oracle, we find that the average monetary
loss per trade (around 0.2%) is comparable with that of [21] for all values of
volatility σ (Figure [2a]). As expected, the Bayesian algorithm 1 is better than
either of the others, giving us the optimally efficient zero loss. We also observe
that, due to access to less information about pext than [21], algorithm 2 has to
resort to a larger spread (Figure [2b]).
Robustness of performance to block latency: The current algorithms
assume that the market maker can change the bid and ask prices immediately
after every trade. However, this is only possible if the latency between blocks is
lower than the time between two trades. If not, then the market maker would
have to react to multiple trades in a single block. Empirically, we observe that
doing this does not change the monetary loss faced by the LPs for any algorithm
(Figure [12]).
Augmenting the algorithm with inventory: Assuming the same access to
liquidity for the algorithms 1 and 2, we compare the monetary loss of the market
makers with that of Uniswap. Instead of directly setting the ask pa and bid pb
according to the operating price pcurve of a constant product curve [13], we set
these prices as recommended by the algorithms (palga , palgb ), and use the curve
only as a boundary condition to avoid running out of inventory. This can be
achieved by setting the ask price to be pa = max(palga , pcurve) and the bid price
to be pb = min(palgb , pcurve). Doing this avoids the loss to arbitrageurs and thus
gives the liquidity providers a slight profit with both the algorithms we have
proposed across different levels of liquidity (initial amount of the asset in the
inventory). This has been shown in Figure [11] in Appendix B.

5.6 General trader behavior

The model of trader behavior as outlined in Section 3 is restrictive, in the sense
that real traders lie on a spectrum of “informedness” about the external price,
instead of being purely informed or uninformed. To remedy this, we modify the
environment to have traders that see a noisy version of the hidden price. This kind
of trader behavior is supported by the data collected from on-chain exchanges
such as Uniswap v3 (Figure [13]). That is, every trader sees an observation
pttrader = ptext + ηt where ηt is i.i.d noise (note that the model in Section 3 is just
a special case of this). Then, the trader buys if pttrader > pta, sells if pttrader < ptb
and does neither otherwise. We experimented with three types of noise - additive
Gaussian, additive Laplace, and log-Normal.

Because the model to be estimated becomes more complex, we replace the
Q−table with a neural network [41]. The neural network takes the trade history
(dt−H , · · · , dt) as a vector input instead of treating the sum (nt =

∑t
τ=t−H dτ )

of the trade history as a scalar input. Using this approach , we found that the
market maker could handle even more sophisticated forms of trader behavior
(Figure [7] in Appendix B).

We observe that the algorithm trained on any one form of them is robust to
a change in underlying trader distribution. In particular, Figure [7a] shows the
ask and bid prices for an optimal Bayesian trader as per Algorithm 1. We then
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train the DQN on traders with Gaussian noise, which reach spread and mid-price
deviation values similar to the Bayesian case, as shown in Figure [7b]. We observe
that the same agent then effectively tracks the external price when the types of
noise that traders see is changed to Laplace and log-Normal in Figure [7c] and
Figure [7d] respectively.

5.7 Limitations of the current model
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Fig. 3: Limitations of the proposed algorithms

The main assumption in the Glosten-Milgrom model is that of the rational
behavior of traders. It is possible that there are some other underlying motivations
for traders and they change drastically without being known to the market
maker. Even if the traders are rational, we have assumed that the timescale of
their arrival and the jumps in price are the same. However, it is possible that
traders arrive at a much higher or lower frequency than jumps in price. It is
also possible that the price jumps happen on a larger scale than the changes
in price that the AMM algorithm is constrained to make. In all such cases,
it is difficult to give theoretical or empirical guarantees on the performance
of a Reinforcement Learning algorithm. These limits stem from the practical
considerations of the Q-learning algorithm (such as having small action space for
computational tractability). In fact, Theorem 2 guarantees that as long there is
some information in the trades (α > 0), the efficient market objective of having
zero loss can always be achieved by a Bayesian market maker with a finite spread
when the statistics underlying the model are known. In the most general case
where the underlying distribution of price jumps and trader informedness are
unknown and can be arbitrary, tracking the hidden price amounts to tracking the
hidden state of a hidden markov model with unknown transition and emission
statistics. This is still a fundamental open question in the study of HMMs and
RL theory [43].

Having said that, in Figure [3], we check the limits of the data-driven algorithm
empirically. We observe there are limits to this successful tracking if we increase
the jump size or the frequency of price jumps for the external hidden price. Indeed,
if these variables take on larger values, the prices recommended by the algorithm
become more unfair and inefficient for the traders, but stay profitable for LPs.
However, the AMMs stay largely robust to changes in trader informedness.
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6 System design for an on-chain implementation

We propose that the data-driven market maker described in Algorithm 2 can
be implemented in a manner similar to an optimistic rollup scheme [9]. We now
give details of the implementation, and refer to Figure [4] for an overview.
Smart contract: The main part of this implementation is the ZeroSwap smart
contract, which would store the latest version of the Q-table used to execute
trades. The blockchain that the contract resides on can be a Layer 1 such as
Ethereum, or a Layer 2 rollup, such as Arbitrum [34] or Optimism [8]. The
contract performs trade execution based on solutions posted, and also resolves
any challenges to those solutions. We explain these terms in what follows.
Agents: The smart contract interacts with three types of agents: traders, valida-
tors and challengers. Traders wish to have their trades executed by the protocol.
Validators put up stake in the protocol (i.e. lock up a specific token in the smart
contract), and in return, get selected to run Algorithm 2 off-chain and post
solutions. The stake also acts as a security deposit to deter validators from mis-
behaving. Challengers ensure the security of the protocol by verifying the validity
of the posted solutions and post challenges if they can find better solutions.
Trading protocol: Firstly, traders post trade requests as part of a block of
transactions on the blockchain. These indicate their intent to buy or sell the asset
from the market maker. Next, the validators collect all trade requests in a block.
A chosen validator, called a proposer, then runs one iteration of Algorithm 2 for
each trade, and posts the solution on the next block. This solution comprises of
the prices at which the trades are to be executed, and an update to the on-chain
Q-table. The protocol smart contract would receive this solution from a valid
proposer, and execute the trades optimistically along with updating the on-chain
Q-table according to the solution. We see that, in this blockchain implementation,
the trades are processed in batches (corresponding to blocks). This implies that
only the external price jump that happens from one block to the next matters.
Thus, we have a situation where a price jump has happened, and that jump is
to be inferred from a given batch of trades that was collected in a block. We
know that this can be done with exponentially vanishing error (in the number of
trades) as shown in Corollary 1.
Challenge protocol: The execution of trades outlined above is made secure
by the presence of challengers. A challenger can post a challenge on-chain to be
processed by the smart contract. The challenge consists of a reference to a trade
request the challenger thinks was executed incorrectly, and an alternate solution
pointing to the (nt, a) pair (see line (11) of Algorithm 2) that corresponds to
an entry of the Q-table providing a better solution. The smart contract verifies
in just one step whether this challenge is valid by querying the lookup table
and comparing the values, thus checking if the argmax operation was executed
correctly by the proposer. A fault in the Q-table update on line (20) can be
challenged in a similar manner. In this case as well, the challenger only posts an
alternate solution (an (nt, a) pair) to the max operation used in the update, and
the smart contract verifies its validity by looking it up in the Q-table.
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Note that the main advantage of this protocol over existing price oracles is
that the source of the data used by our algorithm is the chain itself, which is
decentralized. This means that the process of challenge resolution only uses on-
chain data and does not need trust in an external source. The primary objective,
therefore, only boils down to recommending prices in a data driven way.

Block t + 2Block t + 1

1. Post trade requests

Buy

Buy

Sell
Sell

2. Collect trade requests
3. Post solutions : ΔQ, Δpa, Δpb

4. Execute trades optimistically

Q, pa, pb

Buy

Buy

Sell
Sell

ZeroSwap

Traders

Validators

Block t

Challengers

Q, pa, pb

ZeroSwap

6. Post challenge for invalid solution

Challenge

7. Slash validator if challenge valid

5. Check solution validity

Fig. 4: Design for an on-chain implementation of ZeroSwap.

Computational costs: In the smart contract, the main state variable to be
tracked is the Q−table, which is of the size |O|×|A|. In our case, the cardinality of
the observation space O equals the difference between the maximum and minimum
trade imbalance, which is 2H. The action space A is just {−1, 0,+1}×{−1, 0,+1}.
Thus, the direct implementation of the RL model would involve tracking and
updating a table with 18H entries. Even for a trade history size H = 100, the
Q−table size (1800) is much smaller than the liquidity vector tracked in AMMs
such as Uniswap-v3 [14] for a single pool (which is of size 170, 000). Processing a
single trade in Q-learning involves only modifying a single entry of the Q-table
with a convex combination operation. This incurs similar computational cost as
the simple addition operations required to update the liquidity vector after a
trade in Uniswap-v3. Doing the argmax operation off-chain lowers the gas usage
of Q-learning considerably, since only algebraic operations remain to be done
on-chain. However, note that these calculations are for only a toy model with
fixed trade size and no inventory constraints.
Incentives: In the case that an invalid execution is detected by the smart contract
through the challenges posted, the proposer whose solution was challenged would
get their stake slashed. The staking infrastructure and the slashing conditions
can be enforced using restaking services such as Eigenlayer [5]. This allows the
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validators to stake the native token of the underlying blockchain without the
need to create ZeroSwap-specific tokens for managing incentives.
Potential MEV: There is a strong incentive for the miners of the underlying
blockchain to to extract MEV [23] from ZeroSwap. Because the Q-table and
corresponding algorithm are public, the miner can calculate the optimal trade
requests to frontrun and hence make a profit from other trades. This can be
avoided by adding a batching operation that the validator of ZeroSwap must
perform before running the iteration of the Q-learning algorithm. A simple solution
is to match buy and sell trades first, and then satisfy the surplus (which would
be a single large buy trade or sell trade) as per the ask/bid recommendations
of the algorithm [2,44]. Furthermore, our algorithm is not susceptible to Just-
In-Time liquidity attacks on LPs. This is because, for the high liquidity case we
are considering, our algorithm does not take into account inventory constraints
anyway so these attacks would not affect the bid and ask prices that the algorithm
would recommend.

7 Discussion
Exploiting information present in trades for efficiency: In Section 5, we
observed that a model-free algorithm can be obtained to solve optimal market
making by looking just at the incoming trades, and provided theoretical guarantees
on its performance. The static curves used in AMMs today do not take into
account recent past history of trades, while we propose to have a dynamically
adjusting ask and bid prices to make use of the information available to us
through those trades as much as possible.
Generalizing to variable trade size: The model-free algorithm specified in this
work does not take into account variable trade size. Our ongoing work involves
deriving an algorithm for that case by using a dynamic CFMM bonding curve
(instead of dynamic ask and bid prices), which is parametrized. An adaptive
algorithm is then used to control the curve parameters, so as to satisfy the
conditions analogous to (2) and (3) for optimal market making.
Inventory considerations: Our algorithms do not take into account constraints
on the inventory of the market maker. The inventory preference of the LPs can
be encoded as utility functions, which can be mapped to a family of bonding
curves [30,28]. Our method can help decide which particular curve in that family
should be used to offer the most efficient price given trading history.
Adding data-driven adaptivity to DeFi: This work further makes a case
for data-driven adaptive algorithms for DeFi in general. Future work would
include bringing algorithms from reinforcement learning and stochastic control
to applications such as lending protocols, treasury management and tokenomic
monetary policy.
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A Theoretical guarantees
In this section, we provide proofs for the following results

1. Bounds on the performance of the Bayesian algorithm
2. Bounds on the performance of the data-driven algorithm with the conjectured

reward function

A.1 Proof of Theorem 1 for a special case

At time t = 0, assume that the external price jumps up to pu with probability
1 − σ and jumps to pl with probability σ. After this, assume that the market
maker follow the Glosten-Milgrom policy using the Bayes’ rule.

At time t, we have a trading history ⟨di⟩ti=1 along with a history of prices
⟨(pia, pib)⟩ti=1. Define qi = Pr[di = +1|pia, pib, pext = pl] and ri = Pr[di =
+1|pia, pib, pext = pu]. Note that, given the external price and the sequence of
ask and bid prices, the trades di are independent, with their probabilities being
completely determined by the GM model in terms of α and σ. Thus, given a
sequence of trades, we have

Pr[⟨di⟩ti=1|pext = pl, ] =
∏

i:di=1

qi
∏

i:di=−1

(1− qi). (13)

This gives, using Bayes’ rule

Pr[pext = pl|Ht] =
σ
∏

i:di=1 qi
∏

i:di=−1(1− qi)

σ
∏

i:di=1 qi
∏

i:di=−1(1− qi) + (1− σ)
∏

i:di=1 ri
∏

i:di=−1(1− ri)
,

(14)

where Ht consists of the history ⟨di⟩ti=1, ⟨(pia, pib)⟩ti=1.
The above equation tells us the market maker’s posterior belief about the

external price at time t, given the history of trades and prices. Now consider the
log-likelihood ratio

log

(
Pr[pext = pl|Ht]

Pr[pext = pu|Ht]

)
= log

(
σ
∏

i:di=1 qi
∏

i:di=−1(1− qi)

(1− σ)
∏

i:di=1 ri
∏

i:di=−1(1− ri)

)
. (15)

We know that pl ≤ E[pext|Ht] ≤ pu, which implies that the GM policy always
recommends bid and ask prices between pl and pu. This simplifies things further,
since now we have qi =

1−α
2 := q and ri =

1+α
2 := r. This gives us

log

(
Pr[pext = pl|Ht]

Pr[pext = pu|Ht]

)
= log

(
σqb(1− q)s

(1− σ)rb(1− r)s

)
(16)

= log
σ

1− σ
+ b log

q

r
+ s log

1− q

1− r
, (17)

where b and s are the number of buy and sell trades respectively.
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Dividing both sides by the total number of trades b+ s and taking the limit
as b+ s → ∞, we get that, as b+ s → ∞,

1

b+ s
log

(
Pr[pext = pl|Ht]

Pr[pext = pu|Ht]

)
−→ DKL(q||r) if pext = pl (18)

−→ −DKL(r||q) if pext = pu, (19)

where q = [ 1−α
2 , 1+α

2 ], r = [ 1+α
2 , 1−α

2 ]. Thus, for a non-trivial number of informed
traders (α > 0), the KL-divergence would be always strictly positive. This implies
that the posterior (Pr[pext = pl|Ht], P r[pext = pu|Ht]) converges to either (1, 0)
or (0, 1) depending on whether pext is pl or pu respectively. This proves that
both bid and ask converge to the right price as well. The only case where the
convergence does not happen is when the KL divergence is exactly zero, which
happens when α = 0 (no informed traders).

Suppose the actual price is pl. Then, the explicit bid and ask at each time t
evolves as

pa =
plσq

b+1(1− q)s + pu(1− σ)rb+1(1− r)s

σqb+1(1− q)s + (1− σ)rb+1(1− r)s
(20)

→ (1− α)pl + (1 + α)pue
−DKL(q||r)t

(1− α) + (1 + α)e−KL(q||r)t . (21)

Similarly, the bid price evolves as

pb →
(1 + α)pl + (1− α)pue

−DKL(q||r)t

(1 + α) + (1− α)e−KL(q||r)t , (22)

where we see that both ask pa and bid pb converge exponentially to the actual
price pl.

A.2 Proof of Theorem 1 for the general case

For a general single jump, we use propositions from [29] as guidance to prove
that the ask and bid converge to the true price. Assume that the true price jumps
to p∗ext, with the p.d.f. of the jump being known to the market maker as f(pext).
We denote the ask and bid price recommendations of the Bayesian algorithm by
pta, p

t
b respectively.

The first lemma we prove guarantees convergence of the spread.

Lemma 1. If we define S̄T = 1
T

∑T
t=0 E[(pta − ptb)

2], then for α < 1, we get

S̄T ≤ 8var(pext)

(1− α)2T
. (23)

Proof. First, we prove that the spread goes to zero. The key idea used here is
the fact that the variance of a random variable decreases on conditioning.
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Define pt = E[pext|Ht]. Note that pt is a martingale w.r.t. Ht, since E[pt|Ht−1] =
pt−1. Thus, we have

var(pext) ≥ var(pt) (24)

= var

(
T∑

t=0

(pt − pt−1)

)
where p0 = E[pext], p−1 = 0 (25)

=

T∑
t=0

E[(pt − pt−1)
2] +

T∑
t=0

∑
k<t

E[(pt − pt−1)(pk − pk−1)] (26)

=

T∑
t=0

E[(pt − pt−1)
2], (27)

since E[(pt − pt−1)(pk − pk−1)] = E[E[(pt − pt−1)(pk − pk−1)|Ht−1]] = E[(pk −
pk−1)E[(pt − pt−1)|Ht−1]] = 0 by the martingale property.

Now, note that

(pta − ptb)
2 ≤ 2(pta − pt−1)

2 + 2(ptb − pt−1)
2 (28)

≤ 2(pta − pt−1)
2

Pr[dt = −1|Ht−1]
+

2(ptb − pt−1)
2

Pr[dt = +1|Ht−1]
(29)

=
2(pta − pt−1)

2Pr[dt = +1|Ht−1] + 2(ptb − pt−1)
2Pr[dt = −1|Ht−1]

Pr[dt = −1|Ht−1]Pr[dt = +1|Ht−1]
(30)

≤ 2
E[(pt − pt−1)

2|Ht−1](
1−α
2

)2 . (31)

=⇒ E[(pta − ptb)
2] ≤ 8E[(pt − pt−1)

2]

(1− α)2
. (32)

=⇒ 1

T

T∑
t=0

E[(pta − ptb)
2] ≤ 8var(pext)

(1− α)2T
. (33)

■

Next, we show that the ask and bid indeed converge to the true external
price.

Lemma 2. If p∗ext denotes the value that the external price pext jumps to, then
we have

Pr[|p∗ext − pta| ≥ ϵ] → 0 (34)

Pr[|p∗ext − ptb| ≥ ϵ] → 0, (35)

as t → ∞. This shows that the Bayesian policy converges to the true price
eventually.
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Proof. We have that

pta = E[pext|Ht−1, dt = +1] (36)

= αE[pext|Ht−1, pext > pta] + (1− α)pt−1 (37)
≥ αE[pext|Ht−1, pext > pt−1] + (1− α)pt−1. (38)

=⇒ pta − pt−1 ≥ αE[pext − pt−1|Ht−1, pext > pt−1] (39)
≥ αϵPr[pext − pt−1 ≥ ϵ|Ht−1, pext > pt−1] (40)
≥ αϵPr[pext − pt−1 ≥ ϵ|Ht−1]. (41)

We know that since pta ≥ pt−1 ≥ ptb and the spread goes to zero, we have
pta − pt−1 → 0. Thus, for any ϵ > 0, we get Pr[pext − pt−1 ≥ ϵ|Ht−1] → 0.
Similarly, we get Pr[pext − pt−1 ≤ −ϵ|Ht−1] → 0.

■

For proving the exponential rate of decay in spread, we use equation (94),
which shall be proven in later sections, under the assumption that p2

a

var(p) ≥ ϵ > 0

at any time. This is a valid assumption since the E[pa] is assumed to be equal to
0 while deriving (94). Thus, conditioning on a buy trade would only increase the
ask price. Therefore, we have that pa = E[pa|dt = +1] > 0.

Rewriting (94) by replacing the total variance K0 + σT with var(pT ) gives us

var(pT+1) ≤ var(pT )

1− α/2

(
1−

√
1− 1− α

α
ϵ

)2
 . (42)

Since there are no price jumps and only trades in the time steps before T + 1,
this implies that

var(pT+1) ≤ var(p1)

1− α/2

(
1−

√
1− 1− α

α
ϵ

)2
T

, (43)

which confirms that the variance of the belief goes down exponentially with time.
Since the expected squared spread p2a is upper bounded by the variance, we have
that the spread also decays exponentially with time.

A.3 Proof of Theorem 2

When the price pext follows a random walk, we observe empirically that the
GM ask and bid prices manage to track pext closely, but always with a non-zero
spread. What we now prove is that the spread does not diverge, given that the
traders bring in some useful information. We introduce a constant trader arrival
rate λ, i.e. a trader arrives every 1/λ time steps.

Let pTa − pTb = O(g(T |σ, α, λ)).
In this case, we want to answer the following three questions :

1. What is g when λ = 0? (Empirically this is O(
√
T ))
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2. What is g when λ > 0? (Empirically this is O(1) even for a small λ)

3. What is g when λ ≫ σ? (= O(e−kT ) from Section A.1)

In this section, we prove that in the absence of trades, the spread diverges at
a rate of

√
T . Furthermore, we formalize the intuition that even sparse trading

activity narrows down the support of the belief and keeps the spread from
diverging.

Spread behavior in the absence of trades We derive the spread divergence
rate in case of an external price following a simple random walk with jump
probability σ and no trades taking place. We denote the belief over external price
at time t by ft(.)

Lemma 3. In the absence of any trades, the variance of the Bayesian belief ft(.)
over the external price obeys the following rule

var(ft) = var(ft−1) + σ (44)

Proof.

var(ft) =
∑
p

p2ft(p) (45)

=
∑
p

p2((1− σ)ft−1(p) + σ/2ft−1(p− 1) + +σ/2ft−1(p+ 1)) (46)

= (1− σ)
∑
p

p2ft−1(p) + σ/2
∑
p

(p− 1 + 1)2ft−1(p− 1) + σ/2
∑
p

(p+ 1− 1)2ft−1(p+ 1)

(47)

=

[
(1− σ)

∑
p

p2ft−1(p) + σ/2
∑
p

(p− 1)2ft−1(p− 1) + σ/2
∑
p

(p+ 1)2ft−1(p+ 1)

]
(48)

+

[
σ/2

∑
p

ft−1(p− 1) + σ/2
∑
p

ft−1(p+ 1)

]
(49)

+

[
σ/2

∑
p

(p− 1)ft−1(p− 1) + σ/2
∑
p

(p+ 1)ft−1(p+ 1)

]
(50)

= [var(ft)] + [σ] + [0] . (51)

■
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We now derive an upper bound on the ask price.

E2
t [p|dt = +1] ≤ Et[p

2|dt = +1] (52)

=
∑
p

ft(p|dt = +1)p2 (53)

=
∑
p

(1− α) + 2α1p≥pt
a

(1− α) + 2αPr[p ≥ pa]
ft(p)p

2 (54)

≤
∑
p

1 + α

1− α
ft(p)p

2 (55)

=
1 + α

1− α
σt. (56)

=⇒ pta ≤
√

1 + α

1− α
σt. (57)

Note that the above argument is valid when 1− α > 0. For α = 1, we get pta = t.
We can get the following tighter upper bound than the above by using the

definition of the ask price.

Lemma 4. Assume that the expected initial price E[p0ext] = 0. Then, the ask
price of the Bayesian market maker is upper bounded as

pta ≤
√

α

2(1− α)
σt. (58)

Proof. We know that

pta = E[p|dt = +1]. (59)

Using the Bayes rule, and that E[p0ext] = 0, we can write the RHS as

pta =
2α

1− α+ 2αPr[p ≥ pta]

∑
p

1{p≥pt
a}pft(p) (60)

≤ 2α

1− α+ 2αPr[p ≥ pta]
(
∑
p

1{p≥pt
a}ft(p))

1/2(
∑
p

p2ft(p))
1/2 (61)

=
2α

1− α+ 2αPr[p ≥ pta]
(Pr[p ≥ pta])

1/2(σt)1/2. (62)

=⇒ (1− α+ 2αPr[p ≥ pta])p
t
a ≤ 2α

√
σt
√
Pr[p ≥ pta]. (63)

=⇒ (2αpta)Pr[p ≥ pta]− 2α
√
σt
√

Pr[p ≥ pta] + pta(1− α) ≤ 0. (64)

The roots of the quadratic expression (in
√
Pr[p ≥ pa]) on the LHS of (64) are{√

σt

2pta
−

√
σt

4(pta)
2
− 1− α

2α
,

√
σT

2pta
+

√
σt

4(pta)
2
− 1− α

2α

}
(65)
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Because the quadratic expression has a positive coefficient of the squared term,
these roots must be real for the expression to ever be negative. This gives us the
result.

■

From the above proof, we notice that the following must also hold for the
quadratic expression in (64) to be ≤ 0. We shall use this inequality in the
subsequent section. In fact, we see from the above proof that we have the
following lemma

Lemma 5. If the initial belief of the market maker over the external market
price is such that E[p0ext] = 0, then in the absence of trades, we have

√
var(pText)

2pa
−

√
var(pText)

4p2a
− 1− α

2α
≤
√

Pr[p ≥ pTa ] ≤
√
var(pText)

2pa
+

√
var(pText)

4p2a
− 1− α

2α
,

(66)

where var(pText) is the variance of the market maker’s belief at time T .

We now show a lower bound on the ask price, which completes the proof on
the rate of growth of the spread in absence of trades.

Lemma 6. Assuming that the expected initial price E[p0ext] is zero for simplicity.
The ask price of the Bayesian market maker is lower bounded as

pta ≥ α

1 + 2α

√
2σt

π
(67)
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Proof.

pta =
2α

1− α+ 2αPr[p ≥ pta]

∑
p

1{p≥pa}pft(p). (68)

=⇒ pta ≥ 2α

1 + α

T∑
p=pt

a

pft(p) (69)

=
2α

1 + α

 T∑
p=0

pft(p)−
pt
a∑

p=0

pft(p)

 (70)

=
2α

1 + α

E[|p|]
2

−
pt
a∑

k=1

Pr[pta ≥ p ≥ k]

 (71)

≥ 2α

1 + α

E[|p|]
2

−
pt
a∑

k=1

Pr[p ≥ k]

 (72)

≥ 2α

1 + α

(
E[|p|]
2

− pta
2

)
. (73)

=⇒ pta ≥ α

1 + 2α
E[|p|]. (74)

=⇒ pta ≥ α

1 + 2α

√
2σt

π
, (75)

where we have used the formula for the expected absolute deviation for a simple
random walk [12].

■

Thus, the ask price is upper and lower bounded by terms that grow with√
σt, which proves the first part of the theorem.

Spread behavior in the presence of trades In the previous section, we
proved that the spread diverges exactly at a rate of

√
T when α < 1 and at the

rate of T when α = 1, in the absence of trades. In this section, we derive results
on spread behavior in presence of trades. Empirically, we see that even for very
sparse trading, the spread does not diverge (is O(1)).

First, let us calculate the variance of the belief after T + 1 time steps, where
T = 1/λ. That is, we have T time steps where no trades occur and the T+1th time
step where a single trade occurs. Let the ask, bid and external prices just before
the trade be pa, pb, pext respectively. We drop the T superscript for simplicity.
Also, assume that the variance of the initial belief distribution is K0, and that
the mean of the belief is 0 for simplicity. What we aim to prove is that, if the K0

is large enough, then the variance of the belief just after the trade at T + 1 steps
is less than K0. Let the trade that happens at T + 1 be denoted by d.
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Then, the expected variance of the belief just after the last time step (when
the trade happens) is given by

E[E[(pext − E[pext|d])2|d]] = E[(pext − E[pext|d])2]. (76)

Now, we write this variance as the difference between two terms, as shown in the
following lemma.

Lemma 7. The expected variance of the belief just after a trade can be written
as

E[(pext − E[pext|d])2] = E[(pext − E[pext])
2]− E[(E[pext|d]− E[pext])

2]. (77)

Proof. We first start with the expression for the variance just before the trade,
and then write it as the sum of the variance just after the trade and another
non-negative term.

E[(pext − E[pext])
2] = E[(pext − E[pext|d] + E[pext|d]− E[pext])

2] (78)

= E[(pext − E[pext|d])2 + E[(E[pext|d]− E[pext])
2] (79)

+ 2E[(pext − E[pext|d])(E[pext|d]− E[pext])] (80)

= E[(pext − E[pext|d])2 + E[(E[pext|d]− E[pext])
2] (81)

+ 2E[ pextE[pext|d] + E[pext|d]E[pext]− E2[pext|d]− pextE[pext] ].
(82)

The last term in the above equation can be written as

E[pextE[pext|d]] + E[E[pext|d]E[pext]]− E[E2[pext|d]]− E[pextE[pext]]. (83)

Observe that using E[E[pext|d]] = E[pext], the second and fourth terms cancel
out. We now group the first and third terms together, which gives us

E[pextE[pext|d]]− E[E2[pext|d]] = E[ E[pextE[pext|d]|d] ]− E[E2[pext|d]] (84)

= E[E2[pext|d]]− E[E2[pext|d]] (85)
= 0. (86)

Thus, from (82), we get

E[(pext − E[pext])
2] = E[(pext − E[pext|d])2 + E[(E[pext|d]− E[pext])

2]. (87)

■

Now, we evaluate each of the terms on the RHS of (77). Note that the first
term is just the variance of the belief just before the trade. Since no trades have
happened for the T time slots, we can use Lemma 3 to get

E[(pext − E[pext])
2] = K0 + σT. (88)
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Furthermore, the second term on the RHS of (77) can be lower bounded as

E[(E[pext|d]− E[pext])
2] ≥ (pa − 0)2 ×

(
1− α

2
+ αPr[pext ≥ pa]

)
, (89)

where we have one term in the expectation on the LHS, namely the case where
the incoming trade d is a buy order.

We now use (88) and (89) to write

E[(pext − E[pext|d])2] = E[(pext − E[pext])
2]− E[(E[pext|d]− E[pext])

2] (90)

≤ [K0 + σT ]−
[
p2a

(
1− α

2
+ αPr[pT+1 ≥ pa]

)]
(91)

≤ K0 + σT − (1− α)p2a/2− α/2

(√
K0 + σT

2
−
√

K0 + σT

2
− 1− α

2α
p2a

)2

(92)

≤ K0 + σT − α
K0 + σT

4

1−

√
1− 1− α

α

p2a
K0 + σT

2

,

(93)

where we have used Lemma 5 to obtain the inequality in (92).
Assuming the square root lower bound on the ask price as obtained in (67),

we have that pa ≥ β
√
K0 + σT , where β = α

√
2

(1+2α)
√
π
. Substituting this, we get

E[(pext − E[pext|d])2] ≤ K0 + σT − α
K0 + σT

4

(
1−

√
1− 1− α

α
β

)2

. (94)

Thus, we have that

E[(pext − E[pext|d])2] ≤ K0 ∀K0 ≥ K∗, (95)

where K∗ =
4− αγ

αγ

σ

λ
and γ =

(
1−

√
1− 1− α

α
β

)2

, (96)

where we have substituted T = 1/λ.
This can be equivalently written as

var(pT+1
ext ) ≤ var(p0ext) = K0 ∀K0 ≥ K∗. (97)

Thus, the variance of the belief decreases after T + 1 time steps when the
variance of the initial belief is > K∗. On the other hand, we know that the
variance increases after T + 1 time steps when K0 = 0. Thus, there exists some
positive value of K0 for which we get a “steady-state” constant variance, which
in turn implies a constant spread.
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A.4 Proof of Theorem 3

We define two functions of any policy π : the cost and the risk. The cost
Jπ is the total negative reward accrued (where each term of the sum is of
the form n2

t + µ(pta − ptb)
2, where nt is the windowed trade imbalance), while

the risk is the actual squared deviation from the external price (of the form
(pext − pta)

2 + (pext − ptb)
2). The first aim is to prove that the ratio between the

risk and cost is bounded. This would imply a bound on the risk of the optimal
policy (optimal w.r.t cost), which would imply that a policy that has optimal
cost also has low risk. Another interesting result that might be shown here is
that the cost is proportional to the “time derivative” of the risk.
Proof for a special case Consider the simplest case where the external price
jumps only once at the beginning, and stays constant for the next T steps. The
external price pext jumps to ph with probability σ, and to pl with probability
1− σ. Here we assume ph > pl and let ∆ := ph − pl.

Define the cost function at step t to be the negative of the reward ct := −rt =
n2
t+µ(pat −pbt)

2, and the risk function at step t to be pt := (pext−pat )
2+(pext−pbt)

2.
Let π∗ be the optimal policy of the POMDP, and Jπ := E[

∑
t ct], R

π := E[
∑

t pt].
Assume the action space is limited to (pa, pb) = {(ph, ph), (pl, pl), (ph, pl)}.

We categorize the three actions into three types :

– Type 1: (pa, pb) = (ph, pl)
– Type 2: pa = pb = pext
– Type 3: pa = pb ̸= pext

Given an action sequence, we know that dt is independent from each other
conditioned on the action sequence. Denote the number of actions of three types
to be k1, k2, k3 respectively. Then the expected total risk of any policy π can be
computed as

Rπ = Eπ

[
k1∆

2 + 2k3∆
2
]
.

The computation of the expected total cost will be more difficult. Consider
the definition of nt =

∑t
i=t−H di, we decompose n2

t as

n2
t =

t∑
i=t−H

d2i + 2
∑
i<j

didj .

Therefore, we can check the contribution of each d2i and didj to the expected
total cost as follows:

– For type I actions, we have E[d2i ] = 1− α, so the contribution of d2i to
∑

t n
2
t

is H(1−α) (ignoring some constants when 1 ≤ t ≤ H or T −H+1 ≤ t ≤ H).
The contribution of type I action to µ(pat − pbt)

2 is µ∆2.
– For type II actions, we also have E[d2i ] = 1− α, so the contribution of d2i to∑

t n
2
t is H(1− α).
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– For type III actions, we have E[d2i ] = 1, so the contribution of d2i to
∑

t n
2
t is

H. The contributions of didj when j − i = l < H and both i, j are type III
actions are (H − l + 1)α2.

Therefore, we know the expected total cost of π satisfies (up to some constants)

Jπ ≲ Eπ

[
(µ+H(1− α))k1 +H(1− α)k2 + (H + 2H2α2)k3

]
.

On the other hand, we also have

Eπ [(µ+H(1− α))k1 +H(1− α)k2 +Hk3] ≲ Jπ.

Define J̄π := Jπ −HT (1− α), then

Eπ [µk1 +Hαk3] ≲ J̄π ≲ Eπ

[
µk1 + (Hα+ 2H2α2)k3

]
.

Suppose we have a policy πref with Rπref = β (e.g., the Bayesian policy),
then we have

Eπref

[
k1∆

2 + 2k3∆
2
]
= β,

which implies

Eπref
[k1 + k3] ≤

β

∆2
.

Therefore,

J̄πref ≲
βmax(µ, αH(1 + 2αH))

∆2
.

Note that we have J̄π∗ ≤ J̄πref , so

J̄π∗
≲

βmax(µ, αH(1 + 2αH))

∆2
,

which means

Eπ∗ [k1 + k3] ≲
βmax(µ, αH(1 + 2αH))

min(µ, αH)∆2
.

Finally,

Rπ∗
≲

max(µ, αH(1 + 2αH))

min(µ, αH)
· β.

This means

Rπ∗

T
≤ max(µ, αH(1 + 2αH))

min(µ, αH)
· β
T

+
C

T

for some constant C.
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For the general case where the size of the initial jump is chosen from a
continuous distribution, one can divide the action space of prices using an ϵ−net.
Doing that puts an additional constant factor which is O(1/ϵ2) on the RHS of
the bound derived above, but still gives us that the cost of the optimal policy
is bounded above by a constant multiple of the cost of the Bayesian policy. We
give a detailed proof of this in the following section.
Proof for the general case Now we provide the proof for the general case
discussed above. To be specific, we assume the initial jump to be bounded:
pa, pb ∈ [mp,Mp]. We discretize the interval [mp,Mp] up to P := (Mp −mp)/ϵ
pieces, with each piece length ϵ. We require both the external price and the
chosen actions at each step to be one of the endpoints of these pieces. This is a
reasonable assumption since all market makers discretize the prices in form of
ticks, and computation is performed only in the multiples of the tick sizes over a
finite interval.

Even though the external price space gets more complicated, we can still
analyze the expected cost and risk of each action, where the actions are divided
into four types.

– Type 1: pa = pb = pext
– Type 2: pa > pext > pb
– Type 3: pa ≥ pb > pext
– Type 4: pext > pa ≥ pb

However, the risk and cost are also related to the difference between pa and
pb. Thus, we use ki,d to denote the number of actions of type i with pa − pb = λϵ.
Now we are ready to compute the risk and cost function.

Lemma 8. For any policy π, the risk function Rπ satisfies the following property:

Rπ ≥ Eπ

[
P∑

λ=1

λ2ϵ2

2
k2,λ +

P∑
λ=0

(λ2 + 1)ϵ2(k3,λ + k4,λ)

]
,

Rπ ≤ Eπ

[
P∑

λ=1

λ2ϵ2k2,λ +

P∑
λ=0

2P 2ϵ2(k3,λ + k4,λ)

]
.

Proof. The proof is to check the risk of each type of actions.
Type 1 actions have no contributions to the risk, so we started from type 2

actions.
For a type 2 action pa − pb = λϵ, the expected risk must be at least λ2ϵ2/2,

and at most λ2ϵ2.
For a type 3 or type 4 action, the expected risk must be at least (λ2 + 1)ϵ2,

and at most 2P 2ϵ2.
The theorem is derived by simply summing them up.

■
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Lemma 9. For any policy π, the (modified) cost function J̄π satisfies the fol-
lowing property:

J̄π ≳ Eπ

[
P∑

λ=1

µλ2ϵ2k2,λ +

P∑
λ=0

(µλ2ϵ2 +Hα−Hα2)(k3,λ + k4,λ)

]
,

J̄π ≲ Eπ

[
P∑

λ=1

µλ2ϵ2k2,λ +

P∑
λ=0

(µλ2ϵ2 +Hα+H2α2)(k3,λ + k4,λ)

]
.

Proof. We still decompose n2
t as

n2
t =

t∑
i=t−H

d2i + 2
∑
i<j

didj

and check the contribution of each d2i and 2didj for action at step i with pia−pib =
λϵ.

The contribution of d2i (i.e., E[d2i ]) for type 1, 2, 3, and 4 are H(1−α), H(1−
α), H,H respectively.

The analysis of contributions of 2didj is more complicated. Note that E[didj ] >
0(i < j) if and only if j − i ≤ H and i, j are both type 3 or type 4 actions.
Consider an time interval [t, t+H], we assume the number of type 3 actions is
nt,3 and the number of type 4 actions is nt,4. The contribution of 2didj can then
be calculated as

∑
t≤i<j≤t+H

E[2didj ] = nt,3(nt,3 − 1)α2 + nt,4(nt,4 − 1)α2 − 2nt,3nt,4α
2

=
(
(nt,3 − nt,4)

2 − (nt,3 + nt,4)
)
α2.

By some basic inequalities we have

−(nt,3 + nt,4)α
2 ≤

∑
t≤i<j≤t+H

E[2didj ] ≤ (nt,3 + nt,4)
2α2 ≤ H(nt,3 + nt,4)α

2.

Observe that the sum of nt,3 (resp. nt,4) over all possible t is exactly H
∑

λ k3,λ
(up to some constants when t is smaller than H or larger than T −H), so we
have

∑
t

∑
t≤i<j≤t+H

E[2didj ] ≳ −Hα2
P∑

λ=0

(k3,λ + k4,λ),

∑
t

∑
t≤i<j≤t+H

E[2didj ] ≲ H2α2
P∑

λ=0

(k3,λ + k4,λ).
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As a result, we have

Jπ ≳ Eπ

[
H(1− α)k1 +

P∑
λ=1

(µλ2ϵ2 +H(1− α))k2,λ +

P∑
λ=0

(µλ2ϵ2 +H −Hα2)(k3,λ + k4,λ)

]
,

Jπ ≲ Eπ

[
H(1− α)k1 +

P∑
λ=1

(µλ2ϵ2 +H(1− α))k2,λ +

P∑
λ=0

(µλ2ϵ2 +H +H2α2)(k3,λ + k4,λ)

]
.

Subtracting the inequality by HT (1− α) proves the theorem.
■

Now we derive the final bound between Rπ∗
and Rπref . Before the proof, we

would like to introduce an auxiliary lemma.

Lemma 10. Given three sequence of positive real numbers ai, bi, xi(i ∈ [n]) with∑n
i=1 aixi ≤ c0 for some constant c0, it holds that

n∑
i=1

bixi ≤ β ·max
i

bi
ai
.

According to Lemma 8, we have

Eπref

[
P∑

λ=1

λ2ϵ2

2
k2,λ +

P∑
λ=0

(λ2 + 1)ϵ2(k3,λ + k4,λ)

]
≤ Rπref .

By Lemma 10 it holds that

Eπref

[
P∑

λ=1

µλ2ϵ2k2,λ +

P∑
λ=0

(µλ2ϵ2 +Hα+H2α2)(k3,λ + k4,λ)

]
≤ max(2µ,

Hα(1 +Hα)

ϵ2
) ·Rπref .

Therefore,

J̄π∗
≤ J̄πref ≲ max(2µ,

Hα(1 +Hα)

ϵ2
) ·Rπref

according to Lemma 9.
Finally, we use Lemma 10 and Lemma 8 again to obtain

Rπ∗
≤ Eπ

[
P∑

λ=1

λ2ϵ2k2,λ +

P∑
λ=0

2P 2ϵ2(k3,λ + k4,λ)

]
,

≲ max(
1

µ
,

2P 2ϵ2

Hα(1− α)
) ·max(2µ,

Hα(1 +Hα)

ϵ2
) ·Rπref .
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Therefore, the following bound holds as long as Hα(1 − α)/2P 2ϵ2 ≤ µ ≤
Hα(1 +Hα)/2ϵ2:

Rπ∗
≲

2P 2(1 +Hα)

1− α
·Rπref =

2(Mp −mp)
2(1 +Hα)

(1− α)ϵ2
·Rπref .
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B Empirical results
B.1 Results referenced in main paper

In this section we present the empirical results referred in the main paper,
particularly in Section 5.5. Additional results have been shown in B.
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Fig. 5: The conjectured reward for the model-free algorithm trains the agent to
track the external hidden price, eventually approaching the performance of the
optimal Bayesian algorithm. Figure reference in Section 5.5.
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Fig. 6: The conjectured reward for the model-free algorithm trains the agent to
track the external hidden price, even in the presence of large price jumps. Figure
reference in Section 5.5.
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(a) Using the optimal Bayesian algo-
rithm to track external price - with
known underlying model parameters
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through Gaussian noise. Market Maker
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behavior - tracking is achieved with
similar average spread and loss as the
Bayesian model
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(c) Trader observes external price
through Laplace noise. Market maker
tracks price effectively without any prior
training on this noise model.
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(d) Trader observes external price
through log-normal noise. Market
maker tracks price effectively without
any prior training on this noise model.

Fig. 7: Algorithm 2 is robust to changes in underlying trader behavior. Figure
referenced in Section 5.5.

B.2 Additional results

In this section, we present results related to the ones presented in the main
paper. This includes:

– Performance of Algorithms 1 and 2 in response to different market scenarios
– Monetary loss comparisons between Algorithms 1, 2 and the one presented

in [21].
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Fig. 8: The conjectured reward for the model-free algorithm trains the agent to
track the external hidden price, eventually approaching the performance of the
optimal Bayesian algorithm.
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Fig. 9: The conjectured reward for the model-free algorithm trains the agent to
track the external hidden price, even in the presence of large price jumps.
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Fig. 10: The conjectured reward trains the agent to track the external hidden
price, even in the presence of erratic changes in the market conditions
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Fig. 11: Augmenting the constant product market maker with our algorithms
avoids the arbitrage loss and incurs a slight profit to liquidity providers
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Fig. 12: The performance of all algorithms is robust to changes in the number
of trades the algorithm processes at every time step - this is a proxy for block
latency

Fig. 13: The above histogram is that of the log deviation in price offered by
Uniswap v3 (Decentralized Exchange or DEX) from Binance (Centralized Ex-
change or CEX) for the ETH-USDC pool. The histogram for other token pairs
also has a similar plot.
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(a) Percentage monetary loss per trade
of our market maker is comparable with
the algorithm which has access to the
loss oracle
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Fig. 14: Algorithm 2 gives us comparable monetary loss per trade as running the
algorithm with an oracle. The Bayesian algorithm gives loss close to zero, which
is optimally efficient. The plots are against varying volatility for α = 0.9.
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Fig. 15: Algorithm 2 gives us comparable monetary loss per trade as running the
algorithm with an oracle. The Bayesian algorithm gives loss close to zero, which
is optimally efficient. The plots are against varying volatility for α = 0.8.
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Fig. 16: Algorithm 2 gives us comparable monetary loss per trade as running the
algorithm with an oracle. The Bayesian algorithm gives loss close to zero, which
is optimally efficient. The plots are against varying volatility for α = 0.7.
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Fig. 17: Algorithm 2 gives us comparable monetary loss per trade as running the
algorithm with an oracle. The Bayesian algorithm gives loss close to zero, which
is optimally efficient. The plots are against varying volatility for α = 0.6.
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Fig. 18: Algorithm 2 gives us comparable monetary loss per trade as running the
algorithm with an oracle. The Bayesian algorithm gives loss close to zero, which
is optimally efficient. The plots are against varying volatility for α = 0.5.
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Fig. 19: Algorithm 2 gives us comparable monetary loss per trade as running the
algorithm with an oracle. The Bayesian algorithm gives loss close to zero, which
is optimally efficient. The plots are against varying volatility for α = 0.4.
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Fig. 20: Algorithm 2 gives us comparable monetary loss per trade as running
the algorithm with an oracle. The Bayesian algorithm gives loss close to zero,
which is optimally efficient. The plots are against varying informedness α, and
are averaged over values of volatility σ.
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