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Abstract. We consider the impact of trading fees on the profits of
arbitrageurs trading against an automated marker marker (AMM) or,
equivalently, on the adverse selection incurred by liquidity providers due
to arbitrage. We extend the model of Milionis et al. [10] for a general
class of two asset AMMs to both introduce fees and discrete Poisson block
generation times. In our setting, we are able to compute the expected
instantaneous rate of arbitrage profit in closed form.
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1 Introduction

For automated market makers (AMMs), the primary cost incurred by liquidity
providers (LPs) is adverse selection. Adverse selection arises from the fact that
agents (“arbitrageurs”) with an informational advantage, in the form of knowledge
of current market prices, can exploit stale prices on the AMM versus prices on
other markets such as centralized exchanges. Because trades between arbitrageurs
and the AMM are zero sum, any arbitrage profits will be realized as losses to
the AMM LPs. Milionis et al. [10] quantify these costs through a metric called
loss-versus-rebalancing (LVR). They establish that LVR can be simultaneously
interpreted as: (1) arbitrage profits due to stale AMM prices; (2) the loss incurred
by LPs relative to a trading strategy (the “rebalancing strategy”) that holds
the same risky positions as the pool, but that trades at market prices rather
than AMM prices; and (3) the value of the lost optionality when an LP commits
upfront to a particular liquidity demand curve. They develop formulas for LVR
in closed form, and show theoretically and empirically that, once market risk is
hedged, the profit-and-loss (P&L) of an LP reduces to trading fee income minus
LVR. In this way, LVR isolates the costs of liquidity provision.

Despite its benefits, LVR is derived under the simplification that arbitrageurs
do not pay trading fees. In practice, however, trading fees pose a significant friction
and limit arbitrage profits. Our goal is to introduce fees and understand how they
impact arbitrageur behavior. As a starting point, one could directly introduce fees
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into the model of Milionis et al. [10], where prices follow a geometric Brownian
motion and arbitrageurs continuously monitor the AMM. However, this approach
suffers a major pathology: when arbitrageurs monitor the market continuously
in the presence of even negligible non-zero fees, the arbitrage profits are zero!
Intuitively, when there are no fees, every instantaneous price movement provides
a profitable arbitrage opportunity. With fees, this is true only for movements
outside a (fee-dependent) “no-trade region” around the AMM price which, with
continuous monitoring, then results in an immediate repositioning of that region.
One can show that the fraction of time for which this happens is zero, with the
market price inside the no-trade region at all other times. This is analogous to
the fact that, in continuous time, a reflected random walk spends almost none of
its time at the boundaries. In reality, however, arbitrageurs cannot continuously
monitor and trade against the AMM. For example, for an AMM implemented on
a blockchain, the arbitrageurs can only act at the discrete times at which blocks
are generated. Thus, in order to understand arbitrage profits in the presence of
fees, it is critical to model the discreteness of block generation.

1.1 Model

Our starting point is the model of Milionis et al. [10], where arbitrageurs continu-
ously monitor an AMM to trade a risky asset versus the numéraire, and the risky
asset price follows geometric Brownian motion parameterized by volatility σ > 0.
However, we assume that the AMM has a trading fee γ ≥ 0, and that arbitrageurs
arrive to trade on the AMM at discrete times according to the arrivals of a Poisson
process with rate λ > 0. The Poisson process is a natural choice because of its
memoryless nature and standard usage throughout continuous time finance. It
is natural to assume arrival times correspond to block generation times, since
the arbitrageurs can only trade at instances where block are generated, so the
parameter λ should be calibrated so that the mean interarrival time ∆t ≜ λ−1

corresponds to the mean interblock time.
When an arbitrageur arrives, they seek to make a trade that myopically

maximizes their immediate profit. Arbitrageurs trade myopically because of
competition. If they choose to forgo immediate profit but instead wait for a
larger mispricing, they risk losing the profitable trading opportunity to the next
arbitrageur. If the AMM price net of fees is below (respectively, above) the
market price, the arbitrageur will buy (sell) from the pool and sell (buy) at
the market. They will do so until the net marginal price of the AMM equals
the market price. We describe these dynamics in terms of a mispricing process
that is the difference between the AMM and market log-prices. At each arrival
time, a myopic arbitrageur will trade in a way such that the pool mispricing to
jumps to the nearest point in band around zero mispricing. The width of the
band is determined by the fee γ. We call this band the no-trade region, since
if the arbitrageur arrives and the mispricing is already in the band, there is no
profitable trade possible. At all non-arrival times, the mispricing is a diffusion,
driven by the geometric Brownian motion governing market prices.
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1.2 Results

In our setting, the mispricing process is a Markovian jump-diffusion process. Our
first result is to establish that this process is ergodic, and to identify its steady
state distribution in closed form. Under this distribution, the probability that an
arbitrageur arrives and can make a profitable trade, i.e., the fraction of time that
the mispricing process is outside the no-trade region in steady state, is given by

Ptrade ≜
1

1 +
√
2λγ/σ︸ ︷︷ ︸
≜η

.

This can also be interpreted as the long run fraction of blocks that contain
an arbitrage trade. Ptrade has intuitive structure in that it is a function of the
composite parameter η ≜ γ/(σ

√
λ−1/2), the fee measured as a multiple of

the typical (one standard deviation) movement of returns over half the average
interarrival time. When η is large (e.g., high fee, low volatility, or frequent blocks),
the width of the no-fee region is large relative to typical interarrival price moves,
so the mispricing process is less likely to exit the no-trade region in between
arrivals, and Ptrade ≈ η−1.

Given the steady state distribution of the pool mispricing, we can quantify
the arbitrage profits. Denote by ARBT the cumulative arbitrage profits over the
time interval [0, T ]. We compute the expected instantaneous rate of arbitrage
profit ARB ≜ limT→0 E[ARBT ]/T , where the expectation is over the steady state
distribution of mispricing. We derive a semi-closed form expression (involving
an expectation) for ARB. For specific cases, such as geometric mean or constant
product market makers, this expectation can be evaluated resulting in an explicit
closed form.

1.3 Conclusion

This work has broad implications around liquidity provision and the design of
automated market makers. First, the model presented hereby provides a more
accurate quantification of LP P&L, accounting both for arbitrageurs paying
trading fees and discrete arbitrageur arrival times. As such, this model can be
used for empirical analyses to evaluate LP performance both ex post as well as ex
ante, when coupled with realized metrics of pool data, such as realized asset price
volatility. Our results also have the potential to better inform AMM design, and
in particular, provide guidance around how to set trading fees in a competitive
LP market, in order to balance LP fee income and LP loss due to arbitrageurs.

1.4 Literature Review

There is a rich literature on automated market makers. Angeris and Chitra [1]
and Angeris et al. [2, 3] apply tools from convex analysis (e.g., the pool reserve
value function) that we also use in this paper. In the first paper to decompose the
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return of an LP into an instantaneous market risk component and a non-negative,
non-decreasing, and predictable component called “loss-versus-rebalancing” (LVR,
pronounced “lever”), Milionis et al. [10] analyze the frictionless, continuous-time
Black-Scholes setting in the absence of trading fees to show that it is exactly the
adverse selection cost due to the arbitrageurs’ informational advantage to the
pool. This work extends the model of Milionis et al. [10] to account for arbitrage
profits both in the presence of fees and discrete-time arbitrageur arrivals. Broader
classes of AMMs that have locally smooth demand curves but are not necessarily
constant function market makers have been given by Milionis et al. [8, 9]; our
model here applies to such a general case as well. Evans et al. [7] observe that, in
the special case of geometric mean market makers, taking the limit to continuous
time while holding the fees γ > 0 fixed and strictly positive yields vanishing
arbitrage profits; this is also a special case of our results. Angeris et al. [3] also
analyze arbitrage profits, but do not otherwise express them in closed-form.
Black-Scholes-style options pricing models, like the ones developed in this paper,
have been applied to weighted geometric mean market makers over a finite time
horizon by Evans [6], who also observes that constant product pool values are a
super-martingale because of negative convexity. Clark [4] replicates the payoff of
a constant product market over a finite time horizon in terms of a static portfolio
of European put and call options. Tassy and White [13] compute the growth rate
of a constant product market maker with fees. Dewey and Newbold [5] develop
a model of pricing and hedging AMMs with arbitrageurs and noise traders and
conjecture that arbitrageurs induce the same stationary distribution of mispricing
that we rigorously develop here.

2 Model

Assets. Fix a filtered probability space
(
Ω,F , {Ft}t≥0) satisfying the usual

assumptions. Consider two assets: a risky asset x and a numéraire asset y.
Working over continuous times t ∈ R+, assume that there is observable external
market price Pt at each time t. The price Pt evolves exogenously according to
the geometric Brownian motion

dPt

Pt
= µdt+ σ dBt, ∀ t ≥ 0,

with drift µ, volatility σ > 0, and where Bt is a Brownian motion.

AMM Pool. We assume that the AMM operates as a constant function market
maker (CFMM). The state of a CFMM pool is characterized by the reserves
(x, y) ∈ R2

+, which describe the current holdings of the pool in terms of the
risky asset and the numéraire, respectively. Define the feasible set of reserves C
according to

C ≜ {(x, y) ∈ R2
+ : f(x, y) = L},

where f : R2
+ → R is referred to as the bonding function or invariant, and L ∈ R

is a constant. In other words, the feasible set is a level set of the bonding function.
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The pool is defined by a smart contract which allows an agent to transition the
pool reserves from the current state (x0, y0) ∈ C to any other point (x1, y1) ∈ C
in the feasible set, so long as the agent contributes the difference (x1−x0, y1−y0)
into the pool.Define the pool value function V : R+ → R+ by the optimization

V (P ) ≜ minimize
(x,y)∈R2

+

Px+ y

subject to f(x, y) = L.
(1)

The pool value function yields the value of the pool, assuming that the external
market price of the risky asset is given by P , and that arbitrageurs can trade
instantaneously trade against the pool maximizing their profits (and simultane-
ously minimizing the value of the pool). Geometrically, the pool value function
implicitly defines a reparameterization of the pool state from primal coordinates
(reserves) to dual coordinates (prices).

Following Milionis et al. [10], we assume that the pool value function satisfies:

Assumption 1 (i) An optimal solution
(
x∗(P ), y∗(P )

)
to the pool value opti-

mization (1) exists for every P ≥ 0.
(ii) The pool value function V (·) is everywhere twice continuously differentiable.
(iii) For all t ≥ 0,

E

[∫ t

0

x∗(Ps)
2P 2

s ds

]
< ∞.

We refer to
(
x∗(P ), y∗(P )

)
as the demand curves of the pool for the risky asset

and numéraire, respectively. Assumption 1(i)–(ii) is a sufficient condition for the
following:

Lemma 1. For all prices P ≥ 0, the pool value function satisfies:

(i) V (P ) ≥ 0.
(ii) V ′(P ) = x∗(P ) ≥ 0.
(iii) V ′′(P ) = x∗′(P ) = −Py∗′(P ) ≤ 0.

The proof of Lemma 1 follows from standard arguments in convex analysis; see
Milionis et al. [10] for details.

Fee Structure. Suppose that (∆x,∆y) is a feasible trade permitted by the
pool invariant, i.e., given initial pool reserves (x, y) with f(x, y) = L, we have
f(x+∆x, y +∆y) = L. We assume that an additional proportional trading fee
is paid to the LPs in the pool. The mechanics of this trading fee are as follows:

1. The fee is paid in the numéraire in proportion to the quantity ∆y of numéraire
that is traded.

2. The fee is realized as a separate cashflow to the LPs.
3. We allow for different fees to be paid when the risky asset is bought from the

pool and when the risky asset is sold to the pool.
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4. We denote the fee in units of log price by γ+, γ− > 0. In particular, when
the agent purchases the risky asset from the pool (i.e., ∆x < 0, ∆y > 0), the
total fee charged is (

e+γ+ − 1
)
|∆y|, (2)

while the total fee charged when the agent sells the risky asset to the pool
(i.e., ∆x > 0, ∆y < 0 is (

1− e−γ−
)
|∆y|. (3)

Example 1. In our notation, a 30 basis point proportional fee on either buys or
sales (e.g., as in Uniswap V2) would correspond to

γ+ = log(1 + 0.003) ≈ 0.002995509, γ− = − log(1− 0.003) ≈ 0.003004509.

To a first order, γ+ ≈ γ− ≈ 30 (basis points).

3 Arbitrageurs & Pool Dynamics

At any time t ≥ 0, define P̃t to be the price of the risky asset implied by pool
reserves, i.e., the reserves are be given by

(
x∗(P̃t), y

∗(P̃t)
)
. Denote by

zt ≜ logPt/P̃t, (4)

the log mispricing of the pool, so that P̃t = Pte
−zt .

We imagine that arbitrageurs arrive to trade against the pool at discrete times
according to a Poisson process of rate λ > 0. Here, we imagine that arbitrageurs
are continuously monitoring the market, but can only trade against the pool at
discrete times when blocks are generated in a blockchain. Hence, we will view
the arrival process as both equivalently describing the arrival of arbitrageurs
to trade or times of block generation. For a proof-of-work blockchain, Poisson
block generation is a natural assumption [11]. However, modern proof-of-state
blockchains typically generate blocks at deterministic times. In these cases, we
will view the Poisson assumption as an approximation that is necessary for
tractability.

Denote the arbitrageur arrival times (or block generation times) by 0 < τ1 <
τ2 < · · · . When an arbitrageur arrives at time t = τi, they can trade against the
pool (paying the relevant trading fees) according to the pool mechanism, and
simultaneously, frictionlessly trade on an external market at the price Pt. We
assume that the arbitrageur will trade to myopically maximize their instantaneous
trading profit.4 We ignore any blockchain transaction fees such as “gas”.

The following lemma characterizes the myopic behavior of the arbitrageurs in
terms of the demand curves of the pool and the fee structure:
4 Given trading fees, if there was a single, monopolist arbitrageur, this may not

be optimal, e.g., it may be optimal to wait for a large mispricing before trading.
However, we assume that there exists a universe of competing arbitrageurs, and that
an arbitrageur that forgoes any immediate profit will lose it to a competitor. Hence,
in our setting, arbitrageurs trade myopically.
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Lemma 2. Suppose that an arbitrageur arrives at time t = τi, observing external
market price Pt, and implied pool price P̃t− or, equivalently, mispricing zt− . Then,
one of the following three cases applies:

1. If Pt > P̃t−e
+γ+ or, equivalently, zt− > +γ+, the arbitrageur can profitably

buy in the pool and sell on the external market. They will do so until the
pool price satisfies P̃t = Pte

−γ+ or, equivalently, zt = +γ+. The arbitrageur
profits are then

Pt

{
x∗

(
Pte

−zt−
)
− x∗

(
Pte

−γ+

)}
+e+γ+

{
y∗

(
Pte

−zt−
)
− y∗

(
Pte

−γ+

)}
≥ 0.

2. If Pt < P̃t−e
−γ− or, equivalently, zt− < −γ−, the arbitrageur can profitably

sell in the pool and buy the external market. The will do so until the pool price
satisfies P̃t = Pte

+γ− or, equivalently, zt = −γ−. The arbitrageur profits are
then

Pt

{
x∗

(
Pte

−zt−
)
− x∗

(
Pte

+γ−
)}

+e−γ−
{
y∗

(
Pte

−zt−
)
− y∗

(
Pte

+γ−
)}

≥ 0.

3. If P̃t−e
−γ− ≤ Pt ≤ P̃t−e

+γ+ , then the arbitrageur makes no trade, and
P̃t = P̃t− or, equivalently, zt = zt− .

Considering the three cases in Lemma 2, it is easy to see that, at an arbitrageur
arrival time τi, the mispricing process zt evolves according to5

zτi = bound
{
zτ−

i
,−γ−,+γ+

}
, (5)

On the other hand, applying Itô’s lemma to (4), we have that, at other times
t > 0, process evolves according to

dzt =
(
µ− 1

2σ
2
)
dt+ σ dBt. (6)

Combining (5)–(6), for all t ≥ 0,

zt =
(
µ− 1

2σ
2
)
t+ σBt +

∑
i: τi≤t

Ji, Ji ≜ bound
{
zτ−

i
,−γ−,+γ+

}
− zτ−

i
. (7)

Therefore, the mispricing process zt is a Markovian jump-diffusion process.
Possible sample paths of all of these processes are shown in Figure 1.

5 Define bound{x, u, ℓ} ≜ max(min(x, u), ℓ).



8 J. Milionis et al.

+γ

−γ

time t

mispricing zt

time t

price

Fig. 1. Top: example sample path of the mispricing process zt. Bottom: in red, example
external market price Pt; in blue, example implied pool price P̃t− . The no-trade interval
is shown in shaded gray; whenever the external market price is within this interval,
no trade will happen even if an arbitrageur arrival occurs. The red- and green-colored
crosses in the x-axis show the (Poisson-distributed) times of arbitrageur arrivals; the
red ones show the arrivals on which arbitrageurs do not trade with the pool, while the
green ones correspond to the arrivals on which arbitrageurs do trade.

4 Exact Analysis

Assumption 2 (Symmetry) µ = 1
2σ

2, γ+ = γ− ≜ γ.

Assumption 2 ensures that the mispricing jump-diffusion process, with dynamics
given by (5)–(6), is driftless and is distributed symmetrically around the z = 0
axis.

4.1 Stationary Distribution of the Mispricing Process

The following lemma characterizes the stationary distribution of the mispricing
process.6

Theorem 1 (Stationary Distribution of Mispricing). The process zt is an
ergodic process on R, with unique invariant distribution π(·) given by the density

pπ(z) =


π+ × pexpη/γ(z − γ) if z > +γ,

π0 × 1
2γ if z ∈ [−γ,+γ],

π− × pexpη/γ(−γ − z) if z < −γ,

6 Contemporaneous with the present work, Dewey and Newbold [5] conjecture this
stationary distribution.
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for z ∈ R. Here, we define the composite parameter η ≜
√
2λγ/σ. The probabilities

π−, π0, π+ of the three segments are given by

π0 ≜ π
(
[−γ,+γ]

)
=

η

1 + η
, π+ ≜ π

(
(+γ,+∞)

)
= π− ≜ π

(
(−∞,−γ)

)
= 1

2

1

1 + η
.

Finally, pexpη/γ(x) ≜ (η/γ)e−(η/γ)x is the density of an exponential distribution
over x ≥ 0 with parameter η/γ =

√
2λ/σ.

The stationary distribution is illustrated in Figure 2.
Under this distribution, the probability that an arbitrageur arrives and can

make a profitable trade, i.e., the fraction of time that the mispricing process is
outside the no-trade region in steady state, is given by

Ptrade ≜ π+ + π− =
1

1 +
√
2λγ/σ

.

Equivalently, Ptrade can be interpreted as the long run fraction of blocks that
contain an arbitrage trade.

pool mispricing z

pπ(z)

∝ e−z/σ
√

λ−1/2∝ e+z/σ
√

λ−1/2

−γ +γ0

no-trade

w.p. π0

sell trade

w.p. π−

buy trade

w.p. π+

Fig. 2. The density pπ(z) of the stationary distribution π(·) of mispricing z, illustrating
trade and no-trade regions for an arbitrageur.

Note that Ptrade does not depend on the bonding function or feasible set defining
the CFMM pool; the only pool property relevant is the fee γ. Ptrade has intuitive
structure in that it is a function of the composite parameter η ≜ γ/(σ

√
λ−1/2),

the fee measured as a multiple of the typical (one standard deviation) movement
of returns over half the average interarrival time. When η is large (e.g., high fee,
low volatility, or frequent blocks), the width of the no-fee region is large relative
to typical interarrival price moves, so the mispricing process is less likely to exit
the no-trade region in between arrivals, and Ptrade ≈ η−1. Example calculations
of Ptrade are shown in Table 1 for σ = 5% (daily) volatility and varying mean
interblock times ∆t ≜ λ−1 and fee levels γ, as well as in Figure 3a.
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∆t \ γ 1 bp 5 bp 10 bp 30 bp 100 bp

10 min 96.7% 85.5% 74.7% 49.6% 22.8%
2 min 92.9% 72.5% 56.9% 30.5% 11.6%
12 sec 80.7% 45.6% 29.5% 12.3% 4.0%
2 sec 63.0% 25.4% 14.5% 5.4% 1.7%

50 msec 21.2% 5.1% 2.6% 0.9% 0.3%
Table 1. The probability of trade Ptrade, or, equivalently, the fraction of blocks containing
an arbitrage trade, given asset price volatility σ = 5% (daily), with varying mean
interblock times ∆t ≜ λ−1 and fee levels γ (in basis points).

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

σ
√

λ−1/2/γ

γ (bp)

P
tr
a
d
e

(a) The probability of trade Ptrade, or,
equivalently, the fraction of blocks con-
taining an arbitrage trade, as a function
of the fee γ.

0 20 40 60 80 100
0

20

40

60

80

100

σ
√
λ−1

γ/
√
3

γ (bp)

σ
z

(b
p)

(b) The standard deviation of mispricing
σz, as a function of the fee γ.

Fig. 3. Probability of trade and typical mispricing errors as a function of the fee, with
σ = 5% (daily) and mean interblock time ∆t ≜ λ−1 = 12 (seconds).
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The following immediate corollary quantifies the magnitude of a typical
mispricing. This is illustrated in Figure 3b.

Corollary 1 (Standard Deviation of Mispricing). Under the invariant
distribution π(·), the standard deviation of the mispricing is given by

σz ≜
√

Eπ[z2] =

√√√√(1− Ptrade)× 1
3γ

2 + Ptrade ×

{(
γ +

σ√
2λ

)2

+
σ2

2λ

}
.

4.2 Rate of Arbitrageur Profit

Denote by NT the total number of arbitrageur arrivals in [0, T ]. Suppose an
arbitrageur arrives at time τi, observing external price Pτi and mispricing zτ−

i
.

From Lemma 2, the arbitrageur profit is given by

A(Pτi , zτ−
i
) ≜ A+(Pτi , zτ−

i
) +A−(Pτi , zτ−

i
) ≥ 0,

where we define

A+(P, z) ≜
[
P
{
x∗

(
Pe−z

)
− x∗ (Pe−γ

)}
+ e+γ

{
y∗

(
Pe−z

)
− y∗

(
Pe−γ

)} ]
I{z>+γ} ≥ 0,

A−(P, z) ≜
[
P
{
x∗

(
Pe−z

)
− x∗

(
Pe+γ

)}
+ e−γ

{
y∗

(
Pe−z

)
− y∗

(
Pe+γ

)} ]
I{z<−γ} ≥ 0.

Similarly, the fees paid by the arbitrageur in this scenarios is given by

F (Pτi , zτ−
i
) ≜ F+(Pτi , zτ−

i
) + F−(Pτi , zτ−

i
) ≥ 0,

where we define

F+(P, z) ≜ −
(
e+γ − 1

) [
y∗

(
Pe−z

)
− y∗

(
Pe−γ

)]
I{z>+γ} ≥ 0,

F−(P, z) ≜ +
(
1− e−γ

) [
y∗

(
Pe−z

)
− y∗

(
Pe+γ

)]
I{z<−γ} ≥ 0.

We can write the total arbitrage profit and fees paid over [0, T ] by summing
over all arbitrageurs arriving in that interval, i.e.,

ARBT ≜
NT∑
i=1

A(Pτi , zτ−
i
), FEET ≜

NT∑
i=1

F (Pτi , zτ−
i
).

Clearly these are non-negative and monotonically increasing processes. The
following theorem characterizes their instantaneous expected rate of growth or
intensity:7

7 Mathematically, ARB is the intensity of the compensator for the monotonically
increasing jump process ARBT at time T = 0, similarly FEE is the intensity of the
compensator for FEET .
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Theorem 2 (Rate of Arbitrage Profit and Fees). Define the intensity, or
instantaneous rate of arbitrage profit, by ARB ≜ limT→0

E[ARBT ]
T . Given initial

price P0 = P , suppose that z0 = z is distributed according to its stationary
distribution π(·). Then, the instantaneous rate of arbitrage profit is given by

ARB = λEπ [A(P, z)] = λPtrade

√
2λ

σ

∫ ∞

0

A+(P, x+ γ) +A−(P,−x− γ)

2
e−

√
2λx/σ dx.

(8)

Similarly, defining the intensity of the fee process by FEE ≜ limT→0
E[FEET ]

T ,

FEE = λEπ [F (P, z)] = λPtrade

√
2λ

σ

∫ ∞

0

F+(P, x+ γ) + F−(P,−x− γ)

2
e−

√
2λx/σ dx.

(9)

4.3 Example: Constant Product Market Maker

Theorem 2 provides an exact, semi-analytic closed form expression for the rate
of arbitrage profit, in terms of a certain Laplace transfrom of the functions
{A±(P, ·)}. This expression can be evaluated as an explicit closed form for many
CFMMs. For example, consider the case of constant product market makers:

Corollary 2. Consider a constant product market maker, with invariant f(x, y) ≜√
xy = L. Under the assumptions of Theorem 2, the intensity per dollar value in

the pool is given by8

ARB

V (P )
=


σ2

8
× Ptrade ×

e+γ/2 + e−γ/2

2
(
1− σ2/(8λ)

) if σ2/8 < λ,

+∞ otherwise.

where the quantities on the right side do not depend on the value of P0 = P .

Under the normalization of Corollary 2, where the intensity of arbitrage profits
is normalized relative the pool value, the resulting quantity does not depend on
the price. The same property will hold for the more general class of geometric
mean market makers; this is analogous to the property that LVR is proportional
to pool value for this class [10].

8 Note that there are infinite expected arbitrage profits if λ < σ2/8. This is a conse-
quence of the interaction of the lognormal returns and the exponential interblock
time. When blocks arrive very slowly, the interblock return can have large tails. This
regime is not practically relevant, however. In particular, if σ = 5% (daily), then this
occurs when the mean interblock time satisfies ∆t ≜ λ−1 > 8/σ2 = 3200 (days).
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