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Abstract. Digital signature schemes with specific properties have re-
cently seen various real-world applications with a strong emphasis on
privacy-enhancing technologies. They have been extensively used to de-
velop anonymous credentials schemes and to achieve an even more com-
prehensive range of functionalities in the decentralized web.
Substantial work has been done to formalize different types of signatures
where an allowable set of transformations can be applied to message-
signature pairs to obtain new related pairs. Most of the previous work
focused on transformations with respect to the message being signed,
but little has been done to study what happens when transformations
apply to the signing keys. A first attempt to thoroughly formalize such as-
pects was carried by Derler and Slamanig (ePrint’16, Designs, Codes and
Cryptography’19), followed by the more recent efforts by Backes et al.
(ASIACRYPT’18) and Eaton et al. (ePrint’23). However, the literature
on the topic is vast and different terminology is used across contribu-
tions, which makes it difficult to compare related works and understand
the range of applications covered by a given construction.
In this work, we present a unified view of signatures with randomizable
keys and revisit their security properties. We focus on state-of-the-art
constructions and related applications, identifying existing challenges.
Our systematization allows us to highlight gaps, open questions and di-
rections for future research on signatures with randomizable keys.
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1 Introduction

Digital signatures are an invaluable cryptographic primitive for the authenticity
and integrity of data. Over the years, different variants with advanced properties
have been introduced. One particular primitive used for privacy-enhancing appli-
cations [37] (e.g., anonymity networks, rate-limiting applications, deterministic
wallets and stealth addresses) are malleable signatures. These are schemes where
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given a signature σ on a message m, one can efficiently derive a new signature
σ′ on a message m′. Following the notation by Chase et al. [36], a digital sig-
nature is malleable if, on input a message m and a signature σ, it is possible to
efficiently compute a signature σ′ on a related message m′ = T (m), for a (n-ary)
transformation T allowed by the signature scheme. Ideally, σ′ should look like a
freshly computed signature on m′, a property known as context hiding.

The study of malleable signatures originates from the work on homomorphic
signatures [79], and subsequent formalizations by Ahn et al. [4] and Attrapadung
et al. [6]. They can be considered a generalization of existing primitives, such as
quotable [4, 70] or redactable signatures [98, 79, 25], homomorphic signatures
for restricted classes [19, 20, 34] or any classes of functions [65] (cf. [49] for a
comprehensive overview). When T is unary, i.e., it operates on a single signa-
ture, one obtains primitives such as quotable or redactable signatures. For n-ary
transformations, i.e., T operates on n > 1 signatures, one obtains homomorphic
signatures (cf. [36] for a more detailed discussion). In this work, we only consider
the unary case. One particular class of such signatures is randomizable signa-
tures [32, 33, 93]. They allow one to maul the signature but leave the message
untouched, i.e., m′ = m, and one can publicly derive a new signature that is
distributed like a fresh one on m′. Thus, they can be seen as a special case where
T is the identity function, and the scheme provides context hiding.

To the best of our knowledge, the first work to explicitly study malleability on
the key space is the work by Derler and Slamanig [50, 51] on key-homomorphic
signatures inspired by previous works on pseudo-random functions [22] and en-
cryption [21]. While they discuss the unary and the n-ary case, again, we only
focus on the former. They consider secret and public key spaces to be groups
(with an efficiently computable homomorphism µ from the secret to the public
key space), and the functionality that a given signature σ for message m that
verifies under pk can be adapted to a signature σ′ on m under pk′. The function-
ality is obtained by applying µ to a randomly sampled element from the secret
key space and combining the result with pk.

The concept of signatures with re-randomizable keys was introduced earlier
in the context of sanitizable signatures by Fleischhacker et al. in [58] and subse-
quently used in [46, 5] and [55]. Kiltz et al. [84] have used key-rerandomizability
(calling it “random self-reducibility”) of canonical identification schemes when
converted to signature schemes. Another similar notion that appears in the lit-
erature is known as key-blinding (sometimes referred to as key-randomization).
This notion has recently been used and further formalized in the works by Eaton
et al. [54] and [53]. Backes et al. [7] introduce signature schemes with flexible
public keys, also focusing on re-randomizable keys. But instead of switching keys
arbitrarily, secret and public keys live in equivalence classes induced by a rela-
tion R, and keys are re-randomized between representatives of the respective
classes. This relation is usually chosen based on an underlying computationally
hard problem to ensure any form of unlinkability. We also note that malleability
of signature schemes w.r.t. the message and key spaces have been studied under
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the name of mercurial signatures in [42] and [41]. Besides, similar notions have
also been studied in works targeting related-key attacks (e.g., [10, 12, 91]).

Ferreira and Dahab [57, 56] construct schemes named blinded-key signatures
as a means to protect a long-term secret key from being stolen. While their goal
looks similar to that of one-way blinding from [54], it considers a different case
where the adversary receives a blinded secret key and must recover the long-term
secret key. Furthermore, [57] and [56] do not provide formal definitions and rely
on a trusted third party for signature verification, making it difficult to compare
with the previous works (albeit the naming convention resembles).

There is also recent work on key-updatable signatures [78] and key-updating
signatures [80] which might seem related. These signatures support updating of
secret keys and corresponding public keys, and are generalizations of or closely
related to forward-secure (or key-evolving) signatures [11]. Their main focus is
on unforgeability under certain key leakages and are used in the construction
of strongly secure messaging protocols. However, they are neither interested in
updated keys being indistinguishable from freshly generated keys, nor in the
randomization or adaption of issued signatures. More recently, the notion of
updatable and randomizable signatures has been introduced in context of the
same application in [52]. Such schemes support asynchronous updates of secret
and public keys as well as randomization of secret keys, where for the latter
indistinguishability is required. Nevertheless, as above, there is no notion of
adaption, making it incomparable.

Our approach and contributions. We aim to present a complete overview
of signatures with randomizable keys, which we see as malleable signatures w.r.t.
the key space. To systematize their knowledge, we review existing works on the
topic and revisit security definitions with a focus on privacy-preserving applica-
tions. As a result, we propose new security notions to better capture different
attack scenarios and adversarial behaviour. As applications evolve, we aim for
a general security framework to capture all the possible combinations. More in
detail, we propose a set of parametrized definitions to capture unforgeability,
unlinkability and unextractability of signature schemes. The latter notion dif-
ferentiates from unlinkability in that the adversary is challenged to extract the
long-term public key when given access to randomizations of it and correspond-
ing key-randomizers. This contrasts with unlinkability where access to the long-
term public key and randomizations of it is given but not the key-randomizer.
Furthermore, our formalizations also consider maliciously generated parameters,
keys and oracles in a comprehensive manner. From there, we identify research
gaps and discuss related challenges as part of our contributions. Along the way,
we also show how definitions given in previous works can be strengthened.

Organization. We give the preliminaries in Sec. 2. The related literature is
discussed in Sec. 3. Our systematization is presented in Sec. 4. Finally, we discuss
relevant applications in Sec. 5 and conclude in Sec. 6.
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2 Preliminaries

To introduce the different terminology and related concepts of signatures with
randomizable keys, we follow the approach of [51]. However, unlike [51], we do
not consider combinations of keys nor take into account the particular structure
of a given homomorphism. Instead, we opt to abstract the idea of “allowable”
transformations to provide more general definitions. This is the main reason to
propose a different name and a slightly different formalization. In the following,
we present the required notation and basic definitions.

Notation. PPT stands for probabilistic polynomial time. We use λ to denote
the security parameter; ϵ(λ) for a negligible function. r ←$ S denotes sampling
r from set S uniformly at random. We write A(x; y) to specify that A uses
randomness y on input x. Similarly, A(x, [y]) indicates that y is an optional
parameter. We denote the signature (resp. message, public-key, secret-key and
key-randomizer) space by SIG (resp. M, PK, SK and KR).

Definition 1 (Signatures With Randomizable Keys). A signature scheme
with randomizable keys (SWRK) consists of the following algorithms:

PPGen(1λ) is a PPT algorithm that, given λ, outputs public parameters pp.
KGen(pp) is a PPT algorithm that, given pp, outputs a key pair (sk, pk).
Sign(pp, sk,m) is a PPT algorithm that, given pp, a message m and a secret key
sk, outputs a signature σ on m.
Verify(pp,m, σ, pk) is a deterministic algorithm that takes as input pp, m, σ, and
public key pk. It outputs 1 if and only if σ is a valid signature on m.
RandPK(pp, pk, ρ) is a PPT algorithm that, given pp, a key randomizer ρ, and
pk, outputs a new public key pk′ s.t. pk′ = T (pk, ρ) for some transformation T .
RandSK(pp, sk, ρ) is a PPT algorithm that, given pp, ρ, and sk, outputs a new
secret key sk′ s.t. sk′ = T̃ (sk, ρ) for some transformation T̃ .
Adapt(pp, [m], σ, ρ, pk) is a PPT algorithm that takes as input pp, m (optional),
σ, ρ, and pk. It computes an adapted signature σ′ under a new public key pk′

s.t. pk′ = T (pk, ρ) for some transformation T and outputs (pk′, σ′).
VerKey(pp, sk, pk) is a deterministic algorithm that takes as input pp and a key
pair (sk, pk). If (sk, pk) is a valid key pair it outputs 1 and 0 otherwise.

Security requires the scheme to be at least correct and unforgeable. To
support the Adapt algorithm, SWRK should provide adaptability in the sense
of the aforementioned context hiding notion and (perfect) adaption correct-
ness (i.e., signatures adapted with Adapt should verify as long as the origi-
nal signature does). However, there are SWRK schemes that support key ran-
domization but not adaption. While one could distinguish between SWRK and
aSWRK (adaptable SWRK), for simplicity, we keep the term SWRK and assume
the schemes provide adaption unless otherwise explicitly mentioned. In what
follows, we present these properties based on the literature. In Sec. 4, we revisit
them and include new ones as part of our systematization effort.
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Experiment ExpAdapt

Γ,A (λ)

pp←$ PPGen(1λ); b←$ {0, 1}; (sk, pk)←$ KGen(pp); ρ0, ρ1 ←$ KR;σ ← Sign(sk,m)

τ0 ← Adapt(m,σ, ρ0, pk); τ1 ← (RandPK(pk, ρ1), Sign(RandSK(sk, ρ1),m))

b′ ←$A(τb); return b = b′

Fig. 1. Signature adaption experiment.

Definition 2 (Correctness). A SWRK scheme is correct if for every secu-
rity parameter λ, message m s.t. pp ←$ PPGen(1λ) and (sk, pk) ←$ KGen(pp) :
Pr

[
σ ← Sign(sk,m) : Verify(m,σ, pk) = 1

]
= 1.

Definition 3 (EUF-CMA). A SWRK scheme is existentially unforgeable un-
der adaptively chosen-message attacks, if for all PPT adversaries A with access
to a signing oracle Sign, the following probability is negligible,

Pr
[
pp←$ PPGen(1λ); (sk, pk)←$ KGen(pp),
(m∗, σ∗)←$ASign(sk,·)(pk)

:
∀ m ∈ Q : m∗ ̸= m ∧
Verify(m∗, σ∗, pk) = 1

]
,

where Q is the set of queries that A has issued to the signing oracle.

For unforgeability, one can also consider the strong variant in which the oracle
keeps track of mesage-signature pairs and the adversary wins if (m∗, σ∗) /∈ Q.

Definition 4 (Signature Adaption). A SWRK scheme provides signature
adaption if, for every security parameter λ, message m, and key randomizer ρ,
the advantage of any adversary A defined by AdvAdapt

Γ,A (λ) := 2·Pr
[
ExpAdapt

Γ,A (λ)⇒ true
]

− 1 = ϵ(λ), where ExpAdapt

Γ,A (λ) is shown in Fig. 1.

A stronger notion for signature adaption is called perfect adaption (see Defini-
tion 5) and it states that distinguishing between a fresh signature and an adapted
signature should be hard even when the original signature is known to the adver-
sary. Both notions can be stated with unconditional security against unbounded
adversaries or restricted to computational security (PPT adversaries).

Definition 5 (Perfect Adaption). A SWRK scheme provides perfect adaption
if, for every security parameter λ, message m, and key randomizer ρ, it holds
that {σ,Adapt(m,σ, ρ, pk)} and {σ,RandPK(pk, ρ), Sign(RandSK (sk, ρ),m)} are
identical distributions where pp←$ PPGen(1λ), b←$ {0, 1},(sk, pk)←$ KGen(pp),
and σ ← Sign(sk,m).

The previous definitions for signature adaption consider honest parameters
and honestly generated keys. However, one can also address what happens when
any (or both) of the previous is maliciously generated as in [62, 83, 41].

3 Literature Review

We present an overview of previous work on the topic, unifying syntax and no-
tation in accordance to Sec. 2. We also compare and discuss the shortcomings of
each work whenever it corresponds, setting the grounds for our systematization.
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3.1 Equivalence Class Signatures

While the prime focus of Structure-Preserving Signatures on Equivalence Classes
(i.e., SPS-EQ or Equivalence Class Signatures) [71, 62] is message randomiza-
tion; they have inspired and have been used to build SWRK. We identify two lines
of work in this regard. The first one is mercurial signatures [42], which are mal-
leable signatures that allow transformations on all: the message, signature and
key spaces. Consequently, they can be viewed as SWRK whenever the message is
not randomized. There are two constructions: i) [42] (based on [62]) in the generic
group model (GGM), and ii) [41] (based on [83]) in the standard model. The
second line of work is signatures with flexible public keys (SFPK [7]), which solely
focuses on equivalence classes on the key space and, thus, key randomization.
In both mercurial signatures and SFPK, any individual message or key is actu-
ally a class representative, and privacy and unforgeability are defined over these
classes. SFPK constructions exist under standard assumptions [7], in the com-
mon reference string model (CRS, [7]) and in the random oracle model (ROM,
[72]). Regardless of the specific equivalence relation in which an SPS-EQ acts,
they all require some form of signature adaption (as in Def. 4), which should also
provide unlinkability with respect to a class. This stronger property has been
studied with some variations and referred to under different names such as class-
hiding, origin-hiding, as well as perfect adaption when the context is clear. In
the following, we present the relevant work on signatures acting on equivalence
classes of keys alongside the formalizations of such variations.

Adaption in Mercurial Signatures. The original definition of class-hiding
for SPS-EQ from [71] focused on messages and signatures. It only considered that
given an honestly generated signature, changing the message using randomness
µ and adapting the signature should look like a random message-signature pair.
The subsequently developed notion of perfect adaption [61, 62, 83] explicitly
states that adapting a message-signature pair with randomness µ should look
like a fresh signature for the same message. This notion was also extended to
consider potentially maliciously generated parameters, signatures, and keys.

Mercurial signatures include three functions to randomize keys and signa-
tures, RandPK, RandSK, and ConvertSig. They also provide a fourth function,
ChangeRep which randomizes the message space and signature together, but our
systemzatization does not consider message space randomizations. The ConvertSig
algorithm in [42] outputs a valid signature which will verify under a new repre-
sentative of a public key class, randomizing the signature but leaving the message
representative unchanged. The public key can then be randomized with RandPK
to output a new public key which correctly verifies with the new signature from
ConvertSig when the same key converter is supplied to both functions (ConvertSig
and RandPK). We can consider our Adapt function from Sec. 2 as running the
two functions simultaneously. In [43], the ConvertSig algorithm is extended to
also randomize the message representative alongside the signature. If the iden-
tity of the message space is passed to ConvertSig in [43], it will operate exactly
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Experiment ExpPKCH-MS
Γ,A (λ)

pp←$ PPGen(1λ); b←$ {0, 1}; ρ←$ KR

(sk1, pk1)←$ KGen(pp); (sk02, pk
0
2)←$ KGen(pp)

pk12 ← RandPK(pk1, ρ); sk
1
2 ← RandSK(sk1, ρ)

b′ ←$ASign(sk1,·),Sign(sk
b
2,·)(pk1, pk

b
2); return b = b′

Oracle Sign(sk,m)

return Sign(sk,m)

Fig. 2. Public key class-hiding experiment from [42].

like the ConvertSig from [42]. Adaptability for mercurial signatures is formalized
as origin-hiding for ConvertSig (Def. 6) and origin-hiding for ChangeRep in [42].

Definition 6 (Origin-Hiding for ConvertSig [42]). A mercurial signature
scheme, Γ , is origin-hiding for ConvertSig if, given any tuple (pk, σ,m) that
verifies, and given a random key randomizer ρ, ConvertSig(σ, pk, ρ) outputs a
new signature σ′ such that σ′ is a uniform random signature in SIG for m, i.e.,
σ′ ∈ {σ∗| Verify(RandPK(pk, ρ),m, σ∗) = 1}.

We also observe that the notion of origin-hiding was formalized in a slightly
different way in [41] where the authors follow the terminology from [62, 83]. In
that work, a definition is given for perfect adaption of signatures w.r.t. the key
space under maliciously generated keys in the honest parameters model. As in
[42], the construction from [41] only achieves a weaker notion of perfect adaption
under honestly generated keys in the honest parameter model. To the best of our
knowledge, it remains an open problem to build a mercurial signature scheme
with perfect adaption under maliciously generated keys.

Inspired by previous work, [42] considered the notion of public key class-
hiding (Def. 7). It states that an adversary cannot succeed in determining whether
message-signature pairs are being generated from keys in the same equivalence
class, i.e., valid key randomizations, or distinct equivalence classes.

Definition 7 (Public Key Class-Hiding [42]). A mercurial signature scheme
has public key class-hiding if the advantage of any PPT adversary A defined by
AdvPKCH-MS

Γ,A (λ) := 2 · Pr
[
ExpPKCH-MS

Γ,A (λ)⇒ true
]
− 1 = ϵ(λ), where ExpPKCH-MS

Γ,A (λ)
is shown in Fig. 2.

Definition 7 is similar to class-hiding from [62] as both challenge the adver-
sary to distinguish whether two values are from the same equivalence class or
not. However, in Def. 7, the values are keys (instead of messages), so the adver-
sary is additionally given access to signing oracles. Both definitions assume that
the values (keys and messages) are honestly generated.

As we show in Sec. 4, our unlinkability notion (Def. 16) captures the idea
behind public key class-hiding. Moreover, we extend it by considering all possible
signing oracles and maliciously generated parameters and keys.

Signatures with flexible public keys. Signatures with flexible public keys
(SFPK) introduced by Backes et al. [7] consider equivalence classes solely on the
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Experiment ExpPKCH-SFPK
Γ,A (λ)

pp←$ PPGen(1λ); b←$ {0, 1}; ρ←$ KR
{ski, pki}i∈{0,1} ←$ KGen(pp)

pk′ ← RandPK(pkb, ρ); sk
′ ← RandSK(skb, ρ)

b′ ←$ASign(sk′,·)({ski, pki}i∈{0,1}, pk
′); return b = b′

Oracle Sign(sk,m)

return Sign(sk,m)

Fig. 3. Class-hiding experiment from [7].

public key space. One of the goals of the authors was to construct a SFPK scheme
for which the public key space would be the message space of existing equivalence
class signatures, i.e., a vector of group elements of one of the pairing groups.
The authors combined their SFPK scheme with the equivalence class signature
scheme from [71], which allowed them to build short static group signatures, and
the first sublinear ring signature scheme without ROM or a CRS.

The class-hiding notion introduced in [7] gives the adversary access to the
random coins used by KGen. This strong notion makes the primitive useful in con-
structing ring signatures satisfying a strong anonymity property (i.e., anonymity
against full key exposure [13]). This idea contrasts with the properties of mer-
curial signatures, as the latter do not fulfill this strong notion of class-hiding
(i.e., an adversary can recognize a public key using the secret key). However,
the relaxed property has been proven useful in some settings, e.g., [66], allow-
ing signers to recognize their randomized public key from a key/signature pair
but without being able to link the signature to a particular signing process. We
present the basic definition from [7] (i.e., without access to the random coins).

Definition 8 (Class-Hiding [7]). A SFPK scheme, Γ , has class-hiding if the
advantage of any PPT adversary A in the ExpPKCH-SFPK

Γ,A experiment is negligible
as defined by AdvPKCH-SFPK

Γ,A (λ) := 2 · Pr
[
ExpPKCH-SFPK

Γ,A (λ) ⇒ true
]
−1 = ϵ(λ),

where ExpPKCH-SFPK
Γ,A (λ) is shown in Fig. 3.

SFPK can also be built in a way that class-hiding is conditional. In this line,
Backes et al. [7] define an alternative key generation algorithm, TKGen, that
outputs an additional trapdoor alongside the key pair. The former allows the
identification of any public key in relation to the key pair but class-hiding holds
as long as this trapdoor is unknown. This trapdoor is also used by the challenger
in the unforgeability experiment to verify the winning conditions, i.e., that the
public key output by the adversary is in relation to the challenged key. Keypairs
generated by KGen and TKGen should be indistinguishable for all the previous
conditions to hold. This indistinguishability allowed Backes et al. to define class-
hiding w.r.t. the former and unforgeability regarding the latter. Unforgeability
holds even if the adversary is given the trapdoor. But, linking public keys using
the corresponding secret key cannot be secure in such a case.

Backes et al. [7] also introduce the notion of key recovery, allowing the signer
to retrieve the signing key for public keys generated by third parties, i.e., via
randomizing the original key. They show that this property has applications for
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stealth addresses and give a construction in the standard model. Unfortunately,
due to its specific public key structure, the construction cannot be combined
with the SPS-EQ of [71]. In the same paper, the authors define SFPK in the
presence of multiple signers, modeled as a setup algorithm for generating public
parameters for all signers. For this case, they consider the properties of class-
hiding and unforgeability in the presence of maliciously generated parameters.

In follow-up work, Backes et al. [8] introduce a weaker notion called class-
hiding with key corruption. Instead of giving the random coins used in KGen,
the challenger provides just the secret keys for the challenged public keys. This
weaker notion allowed for a more efficient SFPK scheme (a construction that
is enough for their group signature application). The authors also proposed the
idea of a canonical representative, i.e., a distinct public key for each relation that
represents the whole class. An example representative used in [8] consists of a
vector of group elements, where the first element is a specified group generator.

Lastly, Hanzlik and Slamanig [72] used the same combination of SFPK and
SPS-EQ (as in [7] and [8]) to construct efficient anonymous credentials. The
authors also introduce the idea of split signing for SFPK, a technique allowing
the distribution of the signing process between two parties. In brief, one party
performs the essential operations (i.e., using the secret key) while the other
performs computationally inefficient operations without requiring the secret key.
This technique allowed Hanzlik and Slamanig to run parts of the SFPK signing
process on a constrained smart card while the user’s smartphone performs the
more computationally complex operation without being able to sign by itself.

3.2 Signatures with Re-Randomizable Keys

Fleischhacker et al. [58] introduce signatures with (perfect) re-randomizable keys
Such a signature scheme allows to “re-randomize” (or simply randomize) both
the signing and the verification key separately; but, it is required that the re-
randomization is perfect (re-randomized keys must have the same distribution as
the original ones). Their main motivation is to construct sanitizable signatures
which allow a signer to authenticate a message so that another dedicated party
(the sanitizer) can modify parts of it without invalidating the signature.

Their work gives an unforgeability notion (Def. 9) for signatures with (per-
fectly) re-randomizable keys. The new unforgeability notion requires it to be
infeasible for an adversary to output a forgery under either the original or a
re-randomized key, even when they control the randomness. The authors note,
however, that security does not trivially follow from the “standard” regular no-
tion of (existential) unforgeability. In fact, schemes as the one from Boneh and
Boyen [18] or Camenisch and Lysyanskaya [33] are insecure w.r.t. this stronger
notion although their keys can be randomized. Nevertheless, Fleischhacker et al.
give two constructions fulfilling their security notion. The first one is in the ROM
and is a somewhat folklore variant of Schnorr [96], also discussed in [51] and [24].
The second one is secure in the standard model and is a variant of a scheme given
by Hofheinz-Kiltz [74, 75]. Bowe et al. [24] refer to the Schnorr variant as a ran-
domizable signature and provide a similar formalization for the unforgeability
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Experiment ExpUNF
Γ,A (λ)

Σ ← ∅; pp←$ PPGen(1λ); (sk, pk)←$ KGen(pp); (ρ∗,m∗, σ∗)←$ASign(sk,·,·)(pk)

pk∗ ← RandPK(pk, ρ∗); return m /∈ Σ ∧ (Verify(m∗, σ∗, pk) ∨ Verify(m∗, σ∗, pk∗))

Oracle Sign(sk,m, ρ)

Σ ← Σ ∪ {m}; if ρ = ⊥ return Sign(sk,m); return Sign(RandSK(sk, ρ),m)

Fig. 4. Unforgeability experiment from [58].

Experiment ExpUNL
Γ,A (λ)

pp←$ PPGen(1λ); b←$ {0, 1}; ρ←$ KR; (sk1, pk1)←$ KGen(pp)

(sk02, pk
0
2)←$ KGen(pp);m← ASign(sk1,·)(pp, pk1)

pk12 ← RandPK(pk1, ρ); sk
1
2 ← RandSK(sk1, ρ);σ ←$ Sign(skb2,m)

b′ ←$ASign(sk1,·)(pk1, σ, pk
b
2); return b = b′

Oracle Sign(sk,m)

return Sign(sk,m)

Fig. 5. Unlinkability experiment from [24].

property under the name of existential unforgeability under randomization. The
difference is that the adversary in [24] can only obtain signatures for the initial
secret key and not from re-randomized ones. Therefore, the unforgeability notion
presented in [24] is strictly weaker than the one from [58].

Definition 9 (Unforgeability under Re-Randomized Keys [58]). A sig-
nature scheme Γ under re-randomizable keys is unforgeable if, for every se-
curity parameter λ, message m and key randomizer ρ, the advantage of any
PPT algorithm A defined by AdvUNF

Γ,A (λ) := Pr
[
ExpUNF

Γ,A (λ)⇒ true
]
≤ ϵ(λ), where

ExpUNF
Γ,A (λ) is shown in Fig 4.

The authors of [58] aim to construct so called unlinkable sanitizable sig-
natures [26, 27] and thus require unlikability on re-randomized keys. We note
that this unlinkability is already baked into their correctness notion, requiring
that, for uniform randomness, re-randomized and fresh keys are identically dis-
tributed. Bowe et al. [24] introduce an explicit unlinkability notion that they
consider a “computational relaxation” of the previous one from [58]. Their defi-
nition (Def. 10) is close to the class-hiding notion from [42] but weaker since the
adversary is only able to get signatures from one of the keys. Furthermore, Bowe
et al. define re-randomizable signatures as providing existential unforgeability
and a property called injective randomization. The latter states that obtaining
the same randomized key for two different key randomizers is impossible.

Definition 10 (Unlinkability [24]). A signature scheme Γ is unlinkable if, for
every security parameter λ and key randomizer ρ, the advantage of any PPT al-
gorithm A defined by AdvUNL

Γ,A (λ) := 2· Pr
[
ExpUNL

Γ,A (λ)⇒ true
]
− 1 = ϵ(λ), where

ExpUNL
Γ,A (λ) is shown in Fig. 5.
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Experiment ExpUNL
Γ,A (λ)

Σ ← ∅; b←$ {0, 1}; pp←$ PPGen(1λ); {ski, pki}i∈{0,1} ←$ KGen(pp)

(ρ∗, st)← ARandPK1(·),Adapt1(·,·)
1 (1λ); pk∗ ← RandPK(pkb, ρ

∗);Σ ← Σ ∪ {(pk∗, ρ∗)}

b′ ←$ARandPK2(·),Adapt2(·,·)
2 (pk∗); return b = b′

Oracle RandPK1(ρ)

pk′ ← RandPK(pk1, ρ)

Σ ← Σ ∪ {(pk′, ρ)}
return pk′

Oracle RandPK2(ρ)

if ρ = ρ∗ then return pk∗

else pk′ ← RandPK(pk1, ρ);Σ ← Σ ∪ {(pk′, ρ)}
return pk′

Oracle Adapt1(m, ρ)

if ρ /∈ Σ return ⊥ else (σ, ·)← Adapt(m,Sign(sk1,m), ρ, pk1); return σ

Oracle Adapt2(m, ρ)

if ρ /∈ Σ return ⊥; if ρ = ρ∗ then (σ, ·)← Adapt(m, Sign(skb,m), ρ, pkb); return σ

else (σ, ·)← Adapt(m,Sign(sk1,m), ρ, pk1; return σ

Fig. 6. Unlinkability experiment from [54].

3.3 Signatures with Key Blinding

Eaton et al. [54] used the term key blinding to describe signature schemes for
which the public key can be randomized (i.e., masked or blinded, in their termi-
nology). Similar to other works, given two randomized public keys and associated
key randomizers, there should be no way to tell if they were generated from the
same initial public key or not without knowledge of such key.

Signatures with key blinding must satisfy two security requirements: unforge-
ability and unlinkability. For the former, they rely on the “standard” unforge-
ability notion with the caveat that an adversary has to provide a tuple (ρ, σ,m)
instead of (m,σ, pk) for verification to succeed. For the latter, they introduce a
notion of unlinkability for signatures with key blinding (Def. 11). This notion
captures the fact that even if an adversary has access to the RandPK and Adapt
oracles, they still cannot distinguish a randomized key created from the original
public key from one randomized from a random key. They introduce a property
called independent blinding, which asks that the distribution of the output of the
blinding function is independent of its input (essentially, it is non-deterministic).
Hence, even if an adversary sees n randomizations from a public key, they will
learn no information about the original public key.

Definition 11 (Unlinkability [54]). A signature scheme Γ is unlinkable if,
for every security parameter λ, message m and key randomizer ρ, the advantage
of any PPT adversary A defined by AdvUNL

Γ,A (λ) := 2· Pr
[
ExpUNL

Γ,A (λ)⇒ true
]
−1 =

ϵ(λ), where ExpUNL
Γ,A (λ) is shown in Fig. 6.

More recently, Eaton et al. [53] extended the study of signatures with key-
blinding in an attempt to capture other applications ([54] only considered anonymity
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Experiment ExpUNL
Γ,A (λ)

Σ ← ∅; b←$ {0, 1}; pp←$ PPGen(1λ); {ski, pki}i∈{0,1} ←$ KGen(pp); ρ∗ ←$ KC

pk∗ ← RandPK(pkb, ρ
∗);Σ ← Σ ∪ {(pk∗, ρ∗)}; b′ ←$ARandPK(pk1),Adapt(·,·)(pk∗)

return b = b′

Oracle RandPK()

ρ′ ←$ KC; pk′ ← RandPK(pk1, ρ
′);Σ ← Σ ∪ {(pk′, ρ′)}; return pk′

Oracle Adapt(m, pk)

if pk /∈ Σ return ⊥; if pk = pk∗ then (σ, ·)← Adapt(m, Sign(skb,m), ρ, pkb)

else ρ∗ ← Σ(pk∗); (σ, ·)← Adapt(m, Sign(sk1,m), ρ∗, pk1); return σ

Fig. 7. Unlinkability experiment from [53].

networks). The unlinkability property from [53] differs slightly from the previous
one and states that an adversary without knowledge of the long-term public key
but who observes many blinded public keys and signatures that verify under those
blinded public keys cannot distinguish between a blinding key of the long-term
public key or a blinding of a freshly generated public key. Compared with [54],
this formalization (Def. 12) does not allow the adversary to query the RandPK
oracle for a chosen ρ, which allows them to receive a corresponding randomized
public key. The authors’ interest in this modified notion of unlinkability is that
it allows for a key blinding scheme that admits an unblinding functionality. This
can be necessary for certain applications where only trusted parties execute the
unblinding process. Hence, they treat the ρ as privileged information unavailable
to the adversary. However, this property can be considered weaker as the adver-
sary is restricted from learning ρ. We also note that they call this unlinkability
with unblinding property “bidirectional” blinding. This contrasts with the notion
of “one-way” blinding from [54] where no unblinding is supported.

Definition 12 (Unlinkability [53]). A signature scheme Γ is unlinkable if,
for every security parameter λ, message m and key randomizer ρ, the advantage
of any PPT adversary A defined by AdvUNL

Γ,A (λ) := 2· Pr
[
ExpUNL

Γ,A (λ)⇒ true
]
−1 =

ϵ(λ), where ExpUNL
Γ,A (λ) is shown in Fig. 7.

Both works base their techniques on two conditions: (1) an adversary with
access to a blinding oracle and signing oracle cannot distinguish between a new
blinding of a long-term key and a blinding of a freshly-chosen key (the blinded
public keys is independent of the long-term public key), and (2) signatures with
an identical distribution that are produced from blinded public keys depend only
on the blinded public key and not on long-term public key (signatures leak no
information about the long-term public key). Nevertheless, the two scenarios are
quite different and talking about unlinkability in both cases may be confusing.

The unlinkability notion from [54] considers an adversary who aims to extract
the long-term public key when confronted with (possibly many) randomizations
of it for which they know the key randomizer (i.e., blinding factor). However,
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Experiment ExpSUNF
Γ,A (λ)

Σ ← ∅; pp←$ PPGen(1λ); (sk, pk)←$ KGen(pp); (ρ∗,m∗, σ∗)←$ASign(sk,·,·)(pk)

if ρ∗ = ⊥ then pk∗ ← pk else pk∗ ← RandPK(pk, ρ∗)

return Verify(m∗, σ∗, pk∗) ∧ (ρ∗,m∗, σ∗) /∈ Σ

Oracle Sign(sk,m, ρ)

Σ ← Σ ∪ {(ρ,m, σ)}; if ρ = ⊥ return Sign(sk,m); return Sign(RandSK(sk, ρ),m)

Fig. 8. Unforgeability experiment from [53].

one can also consider an adversary who knows the long-term public key and aims
to link it with a randomized public key without knowledge of the key randomizer
(as in the previous unlinkability notions). For this reason, we propose a different
formalization in Sec. 4 (Def. 17), to better capture this issue.

The work of [53] also introduces a notion of strong unforgeability, as seen
in Def. 13. This property considers any tuple of the form (ρ∗,m∗, σ∗) for which
σ∗ was not the result of a call to Sign(sk,m∗) a valid forgery. The adversary
should, in this case, be able to modify σ∗ or ρ∗ (or both). A weaker notion of
this property only allows the adversary to modify σ∗, which would allow for
forged signatures to be valid under any ρ.

Definition 13 (Strong Unforgeability [53]). A signature scheme Γ is strongly
unforgeable if, for every security parameter λ, message m and key randomizer ρ,
the advantage of any PPT adversary A defined by AdvSUNF

Γ,A (λ) := Pr
[
ExpSUNF

Γ,A (λ)⇒ true
]
≤

ϵ(λ), where ExpSUNF
Γ,A (λ) is shown in Fig. 8.

3.4 Signatures with honestly randomized keys

Deterministic wallets (further discussed in Sec. 5.4) require a signature scheme
with certain properties as outlined in [46]. For example, they require a perfect
randomization property equivalent to that of [42]. Further, they require un-
forgeability under honestly rerandomized keys (Def. 14), which states that an
adversary cannot produce a forgery as long as keys are correctly randomized.

Definition 14 (Unforgeability under honestly rerandomized keys [46]).
A signature scheme Γ has unforgeability under honestly rerandomized keys if, for
every security parameter λ, message m and key randomizer ρ, the advantage of
any PPT adversary A defined by AdvUNF−hrk

Γ,A (λ) := Pr
[
ExpUNF−hrk

Γ,A (λ)⇒ true
]
≤

ϵ(λ), where ExpUNF−hrk

Γ,A (λ) is shown in Fig. 9.

Def. 14 is strictly weaker than Def. 9 from Sec. 3.2, since the adversary
doesn’t control the randomness used to convert the challenge key. Furthermore,
the adversary is only allowed to query the signing oracle for randomizations of
the secret key but not the secret key itself.
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Experiment ExpUNF−hrk

Γ,A (λ)

Σ1 ← ∅;Σ2 ← ∅; (sk, pk)←$ KGen(1λ); (m∗, σ∗, ρ∗)← ASign(sk,·,·),Rand()(pk)

pk∗ ← RandPK(pk, ρ∗); return m∗ ̸∈ Σ1 ∧ ρ∗ ∈ Σ2 ∧ Verify(pk∗, σ∗,m∗)

Oracle Sign(sk,m, ρ)

If ρ ̸∈ Σ2, return ⊥; sk′ ← RandSK(sk, ρ)

σ ← Sign(sk′,m);Σ1 ← Σ1 ∪ {m}; return σ

Oracle Rand()

ρ←$ KR;Σ2 ← Σ2 ∪ {ρ}; return ρ

Fig. 9. Unforgeability under honestly rerandomized keys experiment from [46].

3.5 Updatable signatures

Updatable signatures [39] are the signature equivalent to updatable encryption
(UE) [22], i.e., the main motivation is periodical key-rotation. They work with
the concept of epochs (keys are updated in every new epoch) and require an
update token ρe+1 to move (i.e., adapt) signatures produced under a key in epoch
e to signatures valid under the key in the next epoch e+1. Cini et al. [39] consider
constructions from key-homomorphic signatures [51] as well as dedicated ones.

Updatable signatures include a function, Next, which can be thought of as
being a bundled function for RandPK and RandSK that samples its own key
randomizer. We recall their unforgeability notion in Appendix C (Def. 19). In
the game, the adversary can use the oracles to obtain signatures, updates of
signatures (Update), public keys (Next), secret keys (CorruptKey), and update
tokens (CorruptToken), with the restriction that trivial forgeries are excluded. To
capture them, the authors in analogy to UE in [87] create a recursively defined
set (S∗ in Def. 19) of messages and epochs that the adversary must be able to
compute by correctness (cf. [39] for details). In other words, the definition does
not count forgeries if the adversary’s forgery is under a key on which they’ve
either corrupted a signature from the previous key along with an update token
or a signature from the next key along with an update token.

Cini et al. [39] also include an unlinkable updates under chosen message attack
definition, which ensures that updated signatures are indistinguishable from fresh
ones. This definition of unlinkability does not involve distinguishing the origin of
a randomized public key, but instead, only distinguishing the origin of a signature
(the origin being which value the challenge value was adapted from). Because
of this, we also defer its presentation to Appendix C. However, we note that
this notion of unlinkability is implied by perfect adaption since the adversary is
stronger in the adaptability game (no corruption or update oracles are given).

Klooß et al. [86] construct a one-time signature (instantiated based on the
one-time SPS from [85]) with an updatable signature notion to provide integrity
in UE. Their construction is only proven secure under non-randomizable keys
and is a one-time signature. Whether their approach can be adapted to provide
security for randomizable keys and sign multiple messages without leading to
forgeries (perhaps using the compiler from [85]) remains open.
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Experiment Expα−UNF

SWRK,A(λ)

Σ1 ← ∅;Σ2 ← ∅; pp←$ PPGen(1λ); (sk, pk)←$ KGen(pp)

(m∗, σ∗, ρ∗)←$ASign(sk,·,·),Rand()(pk); pk∗ ← RandPK(pk, ρ∗)

return (m∗ , σ∗ ) /∈ Σ1 ∧ (ρ∗ ∈ Σ2 ∨ α = 1) ∧ Verify(m∗, σ∗, pk∗)

Oracle Sign(sk,m, ρ)

if ρ ̸∈ Σ2 ∧ α = 0 return ⊥
if ρ = ⊥ σ ←$ Sign(sk,m)

else σ ← Sign(RandSK(sk, ρ),m)

Σ1 ← Σ1 ∪ {(m,σ )}; return σ

Oracle Rand()

ρ←$ KR
Σ2 ← Σ2 ∪ {ρ}
return ρ

Fig. 10. Our α-unforgeability experiment. Solid boxes refer to strong unforgeability.

4 Systematization

In this section, we propose unifying definitions to capture all the relevant prop-
erties of SWRK: unforgeability, unlinkability and unextractability. Subsequently,
we classify the existing constructions.

4.1 Unforgeability

We opt to merge the definitions from [58] and [46] (Def. 9 and Def. 14) to con-
sider two cases: when the key randomizer is honestly generated and when the
adversary can arbitrarily pick it. To reflect this, we parametrize the definition
(Def. 15) by α, where α = 0 means the key randomizer is honestly generated.
Observe that the forgery should be with respect to the original key pair. Oth-
erwise, the adversary could run KGen to obtain a random key pair, produce a
signature, randomize it, and present (m∗, σ∗, ρ∗, pk∗) to trivially win the game.
As in [53], our experiment also captures strong unforgeability. It is worth not-
ing here that schemes supporting the adaptability of signatures cannot achieve
strong unforgeability. In other words, those notions are mutually exclusive.

Definition 15 (α-Unforgeability). Let α ∈ {0, 1}. A SWRK scheme is α-
unforgeable if the advantage of any PPT adversary A defined by Advα−UNF

SWRK,A(λ) :=
Pr

[
Expα−UNF

SWRK,A(λ)⇒ true
]
≤ ϵ(λ), where ExpUNF

SWRK,A(λ) is shown in Fig. 10.

4.2 Unlinkability

We propose a parametrized definition, (α, β, γ)-unlinkability (Def. 16), which is
inspired by the notion of (O1,O2, α)-anonymity from [92]. In our case, we use
α ∈ {0, 1} to denote whether or not the scheme is secure against adversarially
chosen parameters. Similarly, β ∈ {0, 1} denotes if the scheme is secure against
adversarially chosen keys. Finally, the parameter γ denotes the set of keys for
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Experiment Exp(α,β,γ)−UNL
SWRK,A (λ)

st← ∅; b←$ {0, 1}; ρ←$ KC; if α = 0 then pp←$ PPGen(1λ) else (pp, st)← A0(st, 1
λ)

if β = 0 then {ski, pki}i∈{0,1} ←$ KGen(pp) else ({ski, pki}i∈{0,1}, st)← A1(st, pp)

if ∃ i ∈ {0, 1} : VerKey(ski, pki) = 0 return 0

pk′ ← RandPK(pkb, ρ); sk
′ ← RandSK(skb, ρ)

if γ = ∅ then b′ ←$A2(pk
′, pk0, pk1, st) else b′ ←$ASignγ(·)

2 (pk′, pk0, pk1, st)

return b = b′

Oracle Signγ(m, pk)

if (pk, sk) /∈ K(γ) return ⊥ else return Sign(sk,m)

Fig. 11. Our (α, β, γ)-unlinkability experiment.

the signing oracle available to the adversary. For ease of exposition, we supply
γ to a function K6, resulting in the following scenarios to consider:

– K(0) = {∅}: no signing oracle is available to the adversary.
– K(1) = {(sk′, pk′)}: the signing oracle for the randomized key is available.
– K(3) = {(sk′, pk′), {(ski, pki)}i∈{0,1}}: all signing oracles are available.

Definition 16 ((α, β, γ)-Unlinkability). Let α, β ∈ {0, 1} and γ a set of keys
parametrizing the signing oracle Sign. A SWRK scheme has (α, β, γ)-unlinkability
if the advantage of any PPT adversary A = {A0,A1,A2} defined by Adv(α,β,γ)−UNL

SWRK,A

(λ) := 2 · Pr
[
Exp(α,β,γ)−UNL

SWRK,A (λ)⇒ true
]
− 1 = ϵ(λ), where Exp(α,β,γ)−UNL

SWRK,A (λ) is
shown in Fig. 11.

For schemes that support perfect adaption the adversary can run the Adapt
algorithm by herself on the signatures obtained through the oracles. Thus, the
adversary can locally compute signatures from randomized secret keys.

Definition 16 captures unlinkability for the following configurations: (0,0,0),
(0,0,1), (0,0,3), (1,0,0), (1,0,1), (1,0,3), (0,1,0), (0,1,1), (1,1,0) and (1,1,1). We
assume that the secret keys are not given to the adversary for configurations
(·, 0, ·). However, as discussed in [7], the adversary could be given those keys or
even the random coins used to generate the key pairs. In such a case, one gets an
unlinkability notion, which we call unlinkability under key leakage. Knowledge
of the secret key provides a strictly stronger notion than (·, 0, 3) but weaker than
the case where the adversary can generate the keys. For simplicity, we denote
this intermediate notion as (·, 0, 3∗) and stress that Def. 16 can easily be updated
so that the adversary receives the secret keys or random coins.

4.3 Unextractability

As discussed in Sec. 3.3, in some scenarios (e.g., anonymity networks, see Sec. 5.1
for more details) the adversary is given access to randomizations of the long-term
6 We will use the shorthand forms of 0, 1 or 3 to instantiate γ.
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Experiment Exp(α,β)−UNE
SWRK,A (λ)

st← ∅; γ ← ⊥; b←$ {0, 1}; if α = 0 then pp←$ PPGen(1λ) else (pp, st)← A0(st, 1
λ)

if β = 0 then ρ←$ KC else (ρ, st)← A1(st, pp); {ski, pki}i∈{0,1} ←$ KGen(pp)

pk′b ← RandPK(pkb, ρ); sk
′
b ← RandSK(skb, ρ); b

′ ←$ASign(·,·)
2 (pk′b, ρ, st); return b = b′

Oracle Sign(m, γ)

if γ = b return Sign(skb,m) elseif γ = b− 1 return Sign(skb−1,m)

elseif γ =⊥ return Sign(RandSK(skb, ρ),m) else return ⊥

Fig. 12. Our (α, β)-unextractability experiment.

public key and the key-randomizer, but not to the long-term public key. The se-
curity notion for this case differs from the usual unlinkability one that is used,
e.g., in the context of anonymous credentials, where the adversary knows the
long-term public key and tries to identify its randomizations without knowledge
of the key-randomizer. Since information given to the adversary differs in each
setting, we see the former notion as orthogonal to the latter instead of weaker
or opposed. In this regard, we stress that there are schemes supporting both
properties and that it is the application in question that determines which prop-
erty should be used depending on their security needs. Therefore, we introduce
the distinct notion of (α, β)-unextractability (Def. 17), where (α, β) ∈ {0, 1}. In
our experiment, the adversary can arbitrarily pick the parameters (parametrized
by α) and/or the key-randomizer (parametrized by β) —assuming the strongest
variant—, and is given an honestly randomized key for which they must de-
termine the corresponding long-term public key. As previously mentioned, the
adversary’s goal in the experiment is to determine the long-term public key given
knowledge of a randomized key and the corresponding key-randomizer.

Definition 17 ((α, β)-Unextractability). Let α, β ∈ {0, 1}. A SWRK scheme
has (α, β)-unextractability if the advantage of any PPT adversary A = {A0,A1,
A2} defined by Adv(α,β)−UNE

SWRK,A (λ) := 2· Pr
[
Exp(α,β)−UNE

SWRK,A (λ)⇒ true
]
− 1 = ϵ(λ),

where Exp(α,β)−UNE
SWRK,A (λ) is shown in Fig. 12.

4.4 Classification

An up-to-date classification of SWRK constructions based on our proposed for-
malization is given in Table 1. We include schemes that were not originally con-
ceived as SWRK but that can easily be adapted to as discussed in Appendix B.

Remark 1 (On the relation between unlinkability and unextractability.). The clas-
sification in Table 1 suggests that only schemes providing all signing oracles in
the unlinkability experiment (i.e., γ = 3) can achieve (0, 1)-UNE unextractabil-
ity. However, schemes achieving only γ = 1 unlinkability can be (0, 1)-UNE
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Scheme A PA α-UNF (α, β, γ)-UNL (α, β)-UNE Setting |pk| |σ|
Schnorr [97, 24, 58] ✓ ✗ 1-UNF (1,0,3*) ✗ (EC)DL & ROM 1|G| 1|Zp|+ 1|G|
BLS [23, 51] ✓ ✓ 1-UNF (1,1,3) ✗ BGType-I & ROM 1|G| 1|G|
Katz-Wang [82, 64, 51] ✓ ✗ 1-UNF (1,0,3) ✗ (EC)DL & ROM 2|G| 2|G|+ 1|Zp|
Guillou-Quisquater [69, 51] ✓ ✗ 1-UNF (0,1,3) ✗ RSA(CRS) & ROM 1|ZN | 1|Ze|+ 1|ZN |∗∗

Waters [100, 14, 51] ✓ ✓ 1-UNF (1,1,3) ✗ BGType-III & CDH 1|G2| 1|G1|+ 2|G2|
Pointcheval-Sanders [93, 51] ✓ ✓ 0-UNF (1,1,3) ✗ BGType-III & GGM 2|G2| 2|G1|
AGOT [3, 51] ✓ ✓ 0-UNF (1,1,3) ✗ BGType-II & GGM 2|G1| 2|G2|
Ghadafi [63, 51] ✓ ✓ 0-UNF (1,1,3) ✗ BGType-III & GGM 2|G2| 3|G1|
EdDSA [53] ✗ ✗ 1-UNF† (1,1,3) (0, 1)-UNE (EC)DL 1|G| 1|G|+ 1|Zp|
ECDSA [53] ✓ ✗ 1-UNF (1,1,3) (0, 1)-UNE (EC)DL 1|G| 2|Zp|
Hofheinz-Kiltz [74, 75, 58] ✗ ✗ 1-UNF (1,1,3) ✗ BG & q-SDH 1|G2| 1|Zp|+ 1|G1|
BHKS1 (Scheme 4) [7] ✓ ✓ 1-UNF‡ (1,0,3∗) ✗ BG & DLIN & DDH (ℓ+ 5)|G1| 2|G1|+ 1|G2|
BHKS2 (Scheme 5) [7] ✓ ✓ 1-UNF‡ (0,0,3∗) ✗ BG & DLIN & DDH 3|G1| 2|G1|+ 1|G2|
Crites-Lysyanskaya [42] ✓ ✓ 1-UNF‡ (1,0,3) ✗ BGType-III & GGM ℓ|G1| 2|G1|+ 1|G2|
CLPK [41] ✓ ✓ 1-UNF‡ (0,0,3) ✗ BGType-III & CRS (2 + ℓ)|G2| 9|G1|+ 4|G2|
ESS (Dilithium) [54] ✗ ✗ 1-UNF (1,0,3) (0, 1)-UNE MLWE 7.7kB 5.7kB
ESS (Picnic) [54] ✗ ✗ 1-UNF (1,0,3) (0, 1)-UNE MPC-in-the-head 32B ≈ 75kB∗∗∗

ESS (LegRoast) [54] ✗ ✗ 1-UNF (1,0,3) (0, 1)-UNE PRF 0.50kB 7.94kB
ESS (CSI-FiSh) [54] ✗ ✗ 1-UNF (1,0,3) (0, 1)-UNE CSIDH 32B 1.8-2.1kB
US (Fig. 7) [39] ✓ ✓ 1-UNF (1,1,3) ✗ BGType-I & ROM 1|G| 1|G|
HRK (Fig. 10) [46] ✗ ✗ 0-UNF (1,1,3) ✗ (EC)DL 1|{0, 1}λ|+ 2|Zp| 1|G|

Table 1. Classification of SWRK schemes in terms of their adaption (A), perfect
adaption (PA), unforgeability (α-UNF, where † refers to the strong variant and ‡
means equivalence classes), unlinkability ((α, β, γ)-UNL, where ∗ means that keys can
be leaked to the adversary) and unextractability ((α, β)-UNE) properties. We also
include the setting in which they work, and the size of pk (ℓ parametrizes the message
vector’s length) and σ.
∗∗e is a large prime roughly the size of ϕ(N). ∗∗∗ Estimated size.

secure. Consider the BLS signature scheme with a deterministic transformation
T (i.e., ρ = ε). The idea is to compute the transformed BLS key using the
formula sk′ = sk · H(Sign(sk, “0”), pk). In other words, we randomize the secret
key by multiplying it with the hash value of the pre-transformed public key
and a signature under “0”. This transformation is correct since BLS signatures
are unique, making the process deterministic without requiring the factor ρ.
Unextractability holds because the adversary does not learn pk nor the ran-
domizing factor H(Sign(sk, “0”), pk). This can be easily shown under the DDH
assumption in the ROM. On the other hand, the scheme cannot achieve unlink-
ability with γ = 3 because an adversary can query the signatures under both
original public keys, compute the randomizing factors H(Sign(sk0, “0”), pk0) and
H(Sign(sk1, “0”), pk1), and check which public key corresponds to pk′.

5 Applications

5.1 Anonymity networks: Tor

Anonymity networks allow users to conceal their internet history from website
operators, Internet Service Providers (ISPs), and any intermediaries in the net-
work path. The most famous one is the Tor network alongside its onion services.
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As defined by version 3 of Tor’s rendezvous specification [99], the Ed25519 sig-
nature scheme [15] is used as a SWRK. Long-term keys in this signature scheme
are made w.r.t. a generator G of a cyclic group of large prime size ℓ and are
an integer a ∈ [ℓ − 1]. The corresponding public key is A = Ga, which can
be randomized using a nonce τ and hash function H to obtain ρ ← H(τ ∥ A)
with ρ ∈ [ℓ − 1]. The randomized key pair, (ρ · a mod l, Aρ), is entirely fresh
and compatible with Ed25519 for signing and verification (see Appendix A.1
for more details). The application requires the scheme to provide two essential
properties: unlinkability and unforgeability. As discussed by [54, 76], Tor’s func-
tionality, when instantiated in their post-quantum setting, achieves 1-UNF and
(1, 0, 3)-UNL when seen as a SWRK. Furthermore, a randomized public key is
treated as completely public in Tor and should leak no information about the
long-term public key. Hence, the scheme should be at least (0, 1)-UNE (i.e., to
provide “key-blinding without unblinding” following the terminology from [53]).

5.2 Rate-limiting Privacy Pass

Privacy Pass [47] is a protocol that relies on challenges (e.g., human attestations)
to assess if a client is honest (i.e., not fraudulent) to give certain amount of
unlinkable and unforgeable tokens, to use in future interactions if the client is
deemed honest (i.e., they solve the challenge successfully). The goal is to reduce
the number of challenges presented to a client as these can impact usability. This
is particularly useful for clients who are assigned to IPs with poor reputations.

An extended protocol version [35, 48] includes a third party, dividing the
functionalities into attestation and issuance. Clients interact with an attester
and issuer service to produce tokens. A rate-limited version [73] extended this
architecture with the ability for the attester to limit the number of tokens clients
can request, but without the attester learning which services a specific client in-
teracts with. The scheme requires key-randomization, with the attester’s ability
to rollback the process. To prevent a dictionary attack (see Appendix A.2), the
protocol requires unlinkability, and unforgeability. As discussed by [53], the func-
tionality of rate-limiting Privacy Pass (as an example of a key-blinding signa-
ture scheme) achieves 1-UNF† (the strong notion is only provided in the ECDSA
version) and (1, 1, 3)-UNL, given our definitions. Note that in Privacy Pass a
randomized public key is treated as private information and never given to the
adversary. [53] cites this scheme as an example of “key-blinding with unblinding”.

5.3 Anonymous Credentials

Anonymous credentials (see Appendix A.3 for a background) are usually con-
structed with signatures on commitments to a user’s identity. To show a cre-
dential, the signature and commitment are randomized together and knowledge
of the identity is proven. This prevents a malicious signer from linking a user’s
credential to a particular signing. However, knowledge of the signer can reveal
sufficient information to fully de-anonymize users in some scenarios: a problem
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that has been studied in different settings [42, 43, 17, 41, 40, 89]. Potential so-
lutions to this problem require different properties. In issuer-hiding credentials
(e.g., [17, 41]), a verifier attempts to link a signature to a particular public key
after the public key has been randomized. For this reason, signatures with strong
unlinkability (i.e., (1, 1, 3)-UNL) are desired. Unfortunately, known constructions
of issuer-hiding credentials only provide (1, 0, 3)-UNL.

Another desired property is to allow the signer to delegate their power to
other users. In delegatable anonymous credentials (DACs), a verifier often sees
a chain of public keys (as in [42, 60]). In this chain, the root is unrandomized
and trusted by the verifier, the intermediate keys are those of delegators and
the last key is from the user who performs the credential showing. This means
that (1)-UNF is a desirable property. Without this property, each key in the
chain would need an attached (randomizable) proof ensuring that it is computed
correctly. To construct DACs directly from SWRK signatures, (0, 0, 3)-UNL is
desired as intermediate signers will have to issue signatures from their random-
ized keys or else signers will reveal the origin of their own delegation chain [42].
Unextractability is not required for anonymous credentials as the randomization
factor isn’t known to the verifier nor to the signer.

5.4 Deterministic Wallets & Stealth Addresses

Deterministic wallets tackle the problem of a user who wants to send money
through a blockchain from many different transactions to their wallet without
linking it to each transaction (see also Appendix A.4 for hot/cold wallets). This
can be achieved using different keys (where the user generates a new key for each
transaction). However, this causes the number of keys to scale with the number of
transactions. Deterministic wallets provide a single key pair, where the public key
can be randomized so that a single wallet can have multiple unlinkable keys, thus
requiring at least (0, 0, 3)-UNL as it needs to support randomized wallets that
create further transactions (signatures). With deterministic wallets, we further
need to assume the signature scheme is unforgeable for honestly randomized
keys since the user will only send money to these honestly created wallets. This
means that even if an adversary forges a signature for a randomized public key
(if it was maliciously randomized), the wallet will have no value to steal. Thus,
they can be realized with a signature scheme that achieves 0-UNF.

Stealth addresses techniques are aimed to generate one-time addresses for
each transaction so that the privacy of cryptocurrencies is increased. The tech-
nique has many implementations: the ones using SWRK are among the most
relevant. In them, the user can use RandPK on the recipient’s public key and
send money to the randomized public key. The transaction is finalized with the
user sending the randomizer to the recipient, allowing for the redemption of
funds. Since the new address can be chosen maliciously, the stealth address ap-
plication requires at least (0, 0, 3)-UNL and 1-UNF. As shown in the recent work
by Pu et al. [94], stealth addresses are closely related to asynchronous remote
key generation for FIDO tokens [59]. In this application, the primary device reg-
isters randomized public keys in the name of the backup device (e.g., stored in a
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safe). In case the primary device is lost, the backup device can restore the secret
key and successfully authenticate to the server while leveraging the registration
which is solely executed with the primary device. Both devices use a key agree-
ment protocol to generate a shared randomizer, allowing the backup device to
recompute it later. This application requires at least (0, 0, 3)-UNL and 1-UNF,
since the primary device could potentially be malicious.

5.5 Stronger Security for NIZK Proofs

As shown in [51], key-homomorphic signatures can be used to generically lift
non-interactive witness indistinguishable and zero-knowledge proofs that provide
soundness (or knowledge soundness) to ones that provide the stronger notion of
simulation soundness (or simulation extractability) . The basic idea is to extend
a proof for a language L to a language L ∨ Lkey and to add a public key of a
signature scheme into the CRS. Loosely speaking, during proof computation one
signs the proof with a secret key corresponding to a freshly sampled signature key
pair. To prove the language Lkey, one proves that one knows a key randomizer
that converts the fresh public key to the one in the CRS. This can only be
done by the simulator knowing the trapdoor of the CRS (i.e., the corresponding
signing key). This application requires at least (0, 0, 0)-UNL, 1-UNF and signature
adaption. In [2, 1], the approach has been adapted to updatable signatures that
provide (black-box) extractability (not to be confused with Def.17) i.e., to make
the key randomizer (black-box) extractable. These features can be used in generic
constructions inspired by the aforementioned in [51] to build zk-SNARKs and
circuit-succinct NIZK proofs with an updatable CRS [67].

6 Conclusions

6.1 Future work

As we saw in Sec. 5, SWRK have an array of practical, real-world privacy-
preserving applications. A first direction for future work is to explore further
applications that might be enabled or benefit from this concept. A second di-
rection is devising schemes with stronger properties for existing applications. In
some cases, applications are realized with weaker properties but could benefit
from stronger guarantees. For instance, anonymous credentials will benefit from
signature constructions that achieve stronger unlinkability, such as (0, 1, 3)-UNL
or (1, 1, 3)-UNL. Third and very important direction are post-quantum construc-
tions: there are already some first works available [5, 54, 77, 44, 45]. However,
they only focus on re-randomizing keys, but do not consider adaption. When
it comes to signature adaption, the noisy nature of lattice-based cryptography
seems to introduce non-trivial problems to overcome. Finally, equivalence class
signatures, e.g., mercurial signatures, or also SFPK, from post-quantum assump-
tions are a completely unexplored field. Finally, while many of these schemes have
practical applications, few of them have concrete implementations, and it is the
subject of future work to properly implement them.
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6.2 Final Remarks

We proposed a general framework to analyze the security of SWRK, providing
an up-to-date literature review. Our definitions offer a flexible yet formal way to
fully characterize signature constructions. They can help implementers to better
identify the properties captured by a given scheme, helping avoid security risks.
Moreover, our framework constitutes a step forward for standardization efforts
in the area as it provides fine-grained separations between each notion. To justify
our approach, we discussed practical applications for which such distinctions are
highly relevant and classified all known constructions. As a result, we identified
exciting areas to explore as previously outlined.
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Appendix

A Applications: Detailed discussion

A.1 Anonymity networks

We recall the exposition from [54]. At a high level, onion services work by up-
loading a three-hop path (defined as a circuit in Tor terminology) to a Tor node
called the introduction point, where the path begins. Once a number of introduc-
tion points have been picked, the host builds a set of documents called “hidden
service descriptors” (or “descriptors”) and uploads them to a group of Hidden Ser-
vice Directory (HSDir) nodes. These documents list the hidden service’s current
introduction points and describe how to contact the hidden service. Because of
Tor’s layered encryption, the introduction point does not know where the onion
service lives, only where the next node in the path lives. To connect to the onion
service, a client uses the .onion address to find the introduction point, which
will then direct their communication towards the onion service.
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The .onion address is the long-lived EdDSA public key of the onion service
(the long-term master identity key). Time in the Tor network is divided into
periods: the period length is a consensus parameter, and the period number is
the number of periods that have occurred since the Unix epoch. So, given the
public key, the nonce τ , and the consensus parameters of the Tor network, the
key randomizer ρ is computed by hashing together the public key, the nonce, the
current period number, and some parameters of both the Tor network and the
signature scheme. The resulting randomized public key ρA (“key-of-the-day”)
is then used to index the descriptors held by the HSDir. Clients can derive
the randomized key from the .onion address (the long-term public key or the
“unblinded” version of the blinded ephemeral key) and query for a descriptor
(unusable by entities without knowledge of the randomized key).

The randomized key serves as a private index from which the descriptor may
be queried. This means that the client is implicitly checking the link between
the long-term identity public key from the .onion address and the randomized
public key. For security, it is crucial that only the actual owner of the .onion
address can upload a descriptor to a given index. This is achieved by letting
the onion services upload a signature on the descriptor, which can be verified
with the randomized key. When HSDir’s verify this signature, they ensure that
the descriptor is being uploaded by the actual owner of the identity public key
without knowing what the .onion address is.

A.2 Rate-limiting Privacy Pass

In Privacy Pass, tokens are simply evaluations over a client-chosen value using a
blinding protocol (e.g., an OPRF or a publicly verifiable blind RSA signature).

To prevent a dictionary attack whereby the attester masquerades as a client
and requests a token for a service of their choosing, clients sign in a key-blinding
manner their token requests to the issuer with a secret key ppbsk they know. The
attester and issuer check this signature. The issuer, in turn, blinds this request
with a long-term secret of their own. The attester then unblinds the response
from the user and assigns this result as the identifier (the corresponding public
key). To ensure that the issuer cannot use this public key and signature to link
any two token requests to the same client, and clients sign their requests with a
freshly chosen blind. This lets the issuer check each request for validity without
letting the attester forge requests on behalf of a client.

A.3 Anonymous Credentials

Anonymous credentials (ACs), first introduced by Chaum [38] and Lysanskaya et
al. [88], allow user authentication without compromising the user’s identity. Ini-
tial constructions [31, 32, 33] consisted of a signature (representing a credential)
on a commitment to the user’s identity (such as their public key) so that users
could prove knowledge of their secret key to show they own a valid credential.
By doing so, a trusted issuer could give out credentials to be used anonymously,
i.e., verifiers would only know that a user has been issued a credential without



SoK: Signatures With Randomizable Keys 31

learning anything further. Unlinkable showings for the same credential could be
supported if the underlying signature scheme was randomizable.

Since their introduction, the field of ACs has flourished and rapidly expanded
to consider more efficient constructions and increased functionalities (e.g., [93,
29, 95, 61, 62, 72]). One of the most prominent lines of works (see [81] for
a recent survey) considers anonymous attribute-based credentials (ABCs) [30],
allowing the user to obtain a credential for an attribute set with the ability to
show a subset of them in an unlinkable fashion, as done in [62]. Another related
notion is that of delegatable anonymous credentials (DAC) [28, 16, 9, 90], which
extend ACs to allow for a delegator to issuer credentials on a root-key-owner ’s
behalf. Using a DAC scheme in this way prevents a verifier from knowing which
delegatee issued the credential (only that the delegatee’s public key was signed
by the root key). However, relying on a root authority introduces a single point
of failure that can be prohibiting in some scenarios. To address this issue, very
recent work studied the notion of issuer-hiding ACs (IHAC) [17, 41, 40, 89] with
[41] and [40] using mercurial signatures to hide the identity of credential issuers.

Constructing DAC schemes requires additional properties beyond unlinka-
bility and basic unforgeability, such as ensuring that the signature scheme can
sign public keys and that signatures are unforgeable w.r.t. equivalence classes.
This makes simple use of some signature schemes like [93, 63] for DAC not work
as [93] has public keys in (G2)

2 with messages in Zp. Similarly, [63] has public
keys in (G2)

2 and messages in G1 × G2. Furthermore, neither are unforgeable
w.r.t. equivalence classes. In the mercurial signature construction from [42], the
message and public key spaces mirror each other ((G1)

ℓ and (G2)
ℓ). This is why

mirrored schemes can be used to construct DAC.

A.4 Deterministic wallets

Deterministic wallets can also be used in a scenario with hot and cold wallets.
Here, each the wallet has its own secret, but the hot wallet is in some precarious
location (typically connected to the Internet), representing a risk when a big
amount of money is stored. In contrast, a cold wallet is stored offline (e.g., in a
hardware device). Deterministic wallets facilitate transfers between hot and cold
wallets. In brief, the hot wallet randomizes the cold wallet’s public key so that
latter can retrieve the corresponding secret key, while keeping no secrets in the
hot wallet that could lead to a forgery or privacy violation for the cold wallet.

B Classification of signature constructions

In this section, we give a brief description of how certain signature schemes
approach the properties described in Sec. 4.

Pointcheval-Sanders (PS) signatures [93]. Derler and Slamanig present a variant
of PS signatures with publicly randomizable keys [51]. By exponentiating the
public keys with two blinding factors (one for each element in the public key)
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one can obtain a uniform random public key. Using those same blinding factors,
one can randomize the signature to verify with the original message and the
updated public key. Signatures randomized this way are identical to a fresh
signature issued from the updated key on the original message, thus it achieves
unlinkability with β = 0. Randomizing the keys in this way though opens up a
possibility of forgery, thus making this variant only achieve 0-UNF. The attack
on 1-UNF for this variant from [51] works as follows: The adversary queries a
signature, σ, on message, m. They then choose an arbitrary message, m′. They
then choose ρ1 = 1, ρ2 = m/m′ as the key randomizer and compute randomized
key: pk′ = (X̂ ′, Ŷ ′) = X̂Ŷ ρ1 where the original key was pk = X̂Ŷ . We can see
that the original signature for m verifies for m′ with the new key:

e(σ1, X̂
′(Ŷ ′)m

′
) = e(σ2, g2)

= e(h, gx2 (g
ym/m′

2 )m
′
) = e(hx+ym, g2)

= e(h, gx2g
ym
2 ) = e(hxhym, g2)

If we restrict the randomizations of PS signatures, ensuring that both ele-
ments of the public key are randomized with the same factor, we can achieve
1-UNF. Unfortunately, the public keys randomized in this way are recognizable
since the owner of the secret key can compute X̂y = Ŷ x which holds for any
randomization of the public key. Hence, it can only achieve (1-0-3)-UNL. We
present this variant below:

PS Signatures with 1-UNF and (1,0,3)-UNL

PPGen(1λ) : Generate bilinear pairing groups, p = G1, g1,G2, g2,Gt, e of prime order p.

KGen(p) : Choose sk = (x, y)←$ Zp, pk = (X̂, Ŷ ) = (gx2 , g
y
2 ). Output sk, pk.

Sign(p, sk,m ∈ Zp) : h←$ G1, σ = (σ1, σ2) = (h, hx+ym).

Verify(p, pk,m) : Check that e(σ1, X̂Ŷ m) = e(σ2, g2).

Adapt(p, pk, σ,m, ρ) : X̂ ′ = X̂ρ, Ŷ ′ = Ŷ ρ, r ←$ Zp, σ
′ = (σr

1 , σ
(ρ+ρm)r
2 ).

We also observe that this scheme can only sign messages in Zp and so it
cannot be used with GS proofs [68] (see Ghadafi signatures below).

Ghadafi signatures [63]. Ghadafi signatures (GSig) are similar to PS signatures
in that they use a randomly sampled group element to ensure unforgeability, but,
GSig can sign group elements in a bilinear pairing, and in particular they are
structure-preserving signatures, making them useful for GS proofs [68]. Note also
that the signatures can be randomized while looking identical to fresh signatures,
so, like PS signatures, Ghadafi signatures also achieve (1-1-3)-UNL with 0-UNF
(using the variant in [51]). Ghadafi signatures do not have an unforgeability
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definition which respects equivalence classes, and so they cannot be easily used
to construct delegatable anonymous credentials. The key-randomizable variant of
Ghadafi signatures is provided in [51]. Similar to PS signatures, if both elements
of the public key are randomized with the same factor, we can achieve 1-UNF,
but then only satisfy (1,0,3)-UNL.

AGOT signatures [3]. Similar to PS signatures and Ghadafi signatures, we can
use the variant in [51] to achieve (1-1-3)-UNL with 0-UNF, and use a variant with
the same randomness for elements in keys to achieve 1-UNF and (1,0,3)-UNL.

Updatable signatures and signatures with honestly randomizable keys [39, 46].
These signatures have a strong assumption for their unforgeability definition,
that the adversary must produce a forgery only for keys which have been honestly
randomized. Thus, they only achieve 0-UNF.

Guillou-Quisquater [69]. Guillou-Quisquater signatures requires a trusted setup
in which an RSA modulus is generated and the secret factorization is then dis-
carded. Because of this trusted setup, the scheme can only achieve (0-*-*)-UNL.
We find a key-randomizable version of the scheme in [51]. We can see in this
version, that a randomized public key is uniformly distributed across the set of
possible public keys (since a secret key is simply an element in Z∗

N and random-
izing it involves simply multiplying it with another secret key in Z∗

N ). Because
of this (along with the fact that updated signatures look exactly like fresh signa-
tures), the randomizable variant achieves (*-1-3)-UNL. Note also that the first
element in the signature is not randomized. Thus, the scheme only achieves
adaptability (Def. 4) instead of perfect adaption (Def. 5). Because one of the
elements of the signature is a hash of the message, it achieves 1-UNF.

Signatures with unforgeability over equivalence classes. The signature schemes
from [7, 42, 41] all achieve unforgeability with respect to message equivalence
classes. With equivalence classes, one representation of a message class could be
a vector of group elements. The class is then the set of messages in the message
space that share some property with that representative. For example, in [42], the
equivalence class is RM = {(M,M ′) : ∃µ,Mµ = M ′} where exponentiation is
vector exponentiation and messages are M ∈ Gℓ

1 for some ℓ > 1. We define a class
of a representative by [M ]R which is a set holding all message representations
with the same class. We show this definition in Def. 18.

Definition 18 (α-Unforgeability w.r.t. equivalence classes). Let α ∈ {0, 1}.
A SWRK scheme is α-unforgeable if the advantage of any PPT adversary A de-
fined by Advα−UnfEquiv

SWRK,A (λ) := Pr
[
Expα−UnfEquiv

SWRK,A (λ)⇒ true
]
≤ ϵ(λ), where Expα−UnfEquiv

SWRK,A (λ)
is shown in Fig. 13.
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Experiment Expα−UnfEquiv

SWRK,A (λ)

Σ1 ← ∅;Σ2 ← ∅; pp←$ PPGen(1λ); (sk, pk)←$ KGen(pp)

(m∗, σ∗, ρ∗)←$ASign(sk,·,·),Rand()(pk); pk∗ ← RandPK(pk, ρ∗)

return ([m∗]R) /∈ Σ1 ∧ (ρ∗ ∈ Σ2 ∨ α = 1) ∧ Verify(m∗, σ∗, pk∗)

Oracle Sign(sk,m, ρ)

if ρ ̸∈ Σ2 ∧ α = 0 return ⊥
if ρ = ⊥ σ ←$ Sign(sk,m)

else σ ← Sign(RandSK(sk, ρ),m)

Σ1 ← Σ1 ∪ {([m]R)}; return σ

Oracle Rand()

ρ←$ KR
Σ2 ← Σ2 ∪ {ρ}
return ρ

Fig. 13. An α-unforgeability experiment for equivalence classes.

C Updatable Signature Definitions

We present the unforgeability and unlinkability definitions from [39] with certain
aspects removed to focus on signatures (instead of signatures and MACs) and
also combine the definition of a “valid” adversary (a separate definition in [39])
into one definition.

The unforgeability definition (Def. 19) assumes the adversary can trivially
produce a signature if they corrupt either a signature from the previous key
along with an update token ((e − 1,m) ∈ S∗ ∧ e ∈ T ) or a signature from the
next key along with an update token ((e+ 1,m) ∈ S∗ ∧ e ∈ T ). But ensures an
adversary cannot produce a forgery if they do not have the appropriate keys and
update tokens. The unlinkability definition (Def. 20) challenges an adversary to
distinguish between a new signature or an updated one, sp the same epoch, on
the same message.

Definition 19 (US-EUF-CMA [39]). An updatable signature scheme Γ has
existential unforgeability under chosen-message attacks for updatable signatures
if, for every PPT adversary A, the advantage function defined by Advus−euf−cma

Γ,A (λ) :=

Pr
[
Expus−euf−cma

Γ,A (λ, q)
]
= ϵ(λ), where the experiment Expus−euf−cma

Γ,A (λ, q) is
shown in Fig. 147

Definition 20 (Unlinkable updates under chosen-message attacks (US-
UU-CMA) [39]). A signature scheme, Γ , has unlinkable updates under chosen-
message attacks, if for every PPT adversary A, the advantage function defined by
Advus−uu−cma

Γ,A (λ) := 2· Pr
[
Expus−uu−cma

Γ,A (λ, q)− 1
]
= ϵ(λ), where Expus−uu−cma

Γ,A (λ, q)
is shown in Fig. 15.

Definition 20 uses the same oracles as in Def. 19 except that T and K are
not used and S includes signatures.
7 Since our focus here is on signatures, we do not consider the updatable MACs

from [39], i.e., we can remove the verification oracle (Ver′).
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Experiment Expus−euf−cma
Γ,A (λ, q)

(sk1, pk1)←$ KGen(1λ);S, T,K ← ∅3, I = (pk1, sk1,⊥), e := 1

(e∗, σ∗,m∗)← ASign,Next,Update,CorruptKey,CorruptToken(pk1)

S∗ = {(e′,m) : e′ ∈ K ∨ (e′,m) ∈ S ∨ (e′ ∈ T ∧ ((e′ − 1,m) ∈ S∗ ∨ (e′ + 1,m) ∈ S∗))}
return Verify(pke∗ ,m

∗, σ∗) ∧ {{(e∗,⊤)} ∪ {(e∗,m∗)}} ∩ S∗ = ∅
Oracle Sign(e′,m)

if e′ > e : return ⊥
S = S ∪ (e′,m);

return Sign(ske′ ,m)

Oracle Next(1λ)

(pke+1, ske+1, ρe+1) = Next(pke, ske)

I = I ∪ (pke+1, ske+1, ρe+1); e := e+ 1

return pke

Oracle Update(e′,m, σ)

if e′ > e : return ⊥
if Verify(pke′ ,m, σ) ̸= 1 return ⊥
S = S ∪ (e′ + 1,m)

return Update(ρe′+1,m, σ)

Oracle CorruptKey(e′)

if e′ > e : return ⊥
K = K ∪ {e′}
return ske′

Oracle CorruptToken(e′)

if e′ > e : return ⊥
T = T ∪ {e′}
return ρe′

Fig. 14. Unforgeability experiment from [39].

Experiment Expus−uu−cma
Γ,A (λ, q)

(sk1, pk1)← Setup(1λ);S ← ∅; (e∗,m∗)← ASign,Next,Update,CorruptKey,CorruptToken(pk1)

if (·,m∗) ̸∈ S return 0; e′ = max({e : (e,m∗, ·) ∈ S})
σe ←$ {σ : (e′,m∗, σ) ∈ S};∀i ∈ [e∗ − e′]σe′+i = Update(ρe′+i,m

∗, σe′+i−1)

σ(0) = σe∗ ;σ
(1) = Sign(ske∗ ,m

∗)

b←$ {0, 1}; b′ ← A(σ(b)); return e′ < e∗ ∧ b = b′

Fig. 15. Unlinkable updates under chosen mesaage attack game from [39].
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