
SAVER: SNARK-compatible Verifiable
Encryption

Jiwon Lee1, Jaekyoung Choi2, Jihye Kim3, and Hyunok Oh4

1 Samsung Research, Seoul, Korea, jiwonsec.lee@samsung.com
2 Zkrypto Inc., Seoul, Korea, cjk@zkrypto.com

3 Kookmin University, Seoul, Korea, jihyek@kookmin.ac.kr
4 Hanyang University, Seiou, Korea, hoh@hanyang.ac.kr

Abstract. In applications involving zero-knowledge succinct non-interactive
arguments of knowledge (zk-SNARK), there often exists a requirement
for the proof system to be combined with encryption. As a typical ex-
ample, a user may want to encrypt his identity, while proving that his
identity satisfies a given authorized function (e.g. credit checks). How-
ever, depending on the functionalities and message types, including en-
cryption constraints inside the SNARK input may lead to impractically
large proving time and CRS sizes.
In this paper, we propose a SNARK-compatible verifiable encryption or
in short SAVER, which is a novel encrypt-and-prove approach to mod-
ularize the encryption apart from SNARK circuits. The SAVER holds
many useful properties. It is SNARK-compatible: the encryption scheme
is combined with an existing SNARK, in a way that the encryptor can
prove pre-defined properties while encrypting the message apart from
SNARKs. It is additively-homomorphic: the ciphertext holds a homo-
morphic property by following an ElGamal-like design. It is a verifiable
encryption: one can verify arbitrary properties of encrypted messages
by using the combined SNARK. It provides a verifiable decryption: the
public can verify that the plaintext claimed by decryptor is equal to the
original decryption of ciphertext. It also provides rerandomization: the
proof and the ciphertext can be rerandomized as independent objects so
that even the encryptor (or prover) herself cannot identify the origin.

Keywords: zk-SNARK, verifiable encryption, encrypt-and-prove

1 Introduction

Verifiable encryption (VE) [3, 1] is a cryptographic system where the encrypted
data provides a proof that can guarantee publicly-defined properties. It can
be a useful primitive in trust-based protocols, such as group signatures or key
escrow services. The verifiable property varies depending on the nature of the
application. For instance, in the group signature, the verifiable encryption is used
for the signer to encrypt and prove its identity commitment, which is evidence
for detecting the malicious signer in case of treachery. In the key escrow systems

2 Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh

where users deposit their keys to the trusted party, the verifiable encryption can
let users prove their legitimacy of encrypted keys to the others.

The zero-knowledge proof (ZKP) system is a primitive where one can prove
a knowledge for some pre-defined relation R, without revealing any other in-
formation. As in previous definitions [3], the verifiable encryption can be also
viewed as an encryption scheme combined with the ZKP system, by considering
the encrypted message as an instance which satisfies the pre-defined relation R.
But the early version only focused on verifying the validity of the message, i.e.,
the ciphertext is generated from a correct message, which limits the practicality
in various applications.

Generic VE from zk-SNARK. The zero-knowledge succinct non-interactive
arguments of knowledge (zk-SNARK) [19, 10, 12, 2, 14, 17], modern type of
succinct ZKPs, allow proving more general relations apart from the ciphertext
generation. If we consider a zk-SNARK with general relation inputs, it is possible
to construct generic verifiable encryption, which can prove any desired properties
of the message. For instance, a user may encrypt his identity, while proving that
his identity satisfies some authorized functions (e.g. credit checks).

Unfortunately, a naive combination of zk-SNARK and encryption suffer from
efficiency issues, especially when we consider a functional encryption which may
involve heavy cryptographic operations. When encrypting the message while
proving it, one should guarantee that she uses the same message for encryption
and proof. To ensure this message consistency, the whole encryption process
must be included in the zk-SNARK relation, which incurs heavy circuits and
large overheads. This problem is well-addressed in commit-and-prove system
from LegoSNARK [4] framework, which let the user commit for the value ahead
of time, and let the pre-published commitment be connected to the zk-SNARK
proof gadgets. By using similar approach, we may separate the encryption from
the zk-SNARK circuit, and let them be composable when verifying the proof for
SNARK and ciphertext. However, LegoSNARK only provides a composability for
a commit-carrying system - that is, we do not have any encrypt-and-prove scheme
that can work as a proof gadget for the LegoSNARK framework. Therefore, we
require a new commit-carrying encryption, which can work as a modular system
for the LegoSNARK framework, similar to the commit-carrying SNARK gadgets.

Generic SAVER. We propose a novel SAVER: SNARK-compatible verifiable
encryption, a commit-carrying encryption which can be connected to zk-SNARK
in a modular way. SAVER is an efficient encrypt-with-prove scheme which sup-
ports generic verifiable encryption without including encryption in the circuit.
At the same time, SAVER can also be used as a composable encrypt-and-prove
(or LegoEncryption) scheme by providing a commitment compatible with the
commit-and-prove framework of LegoSNARK [4]. By holding both properties,
SAVER can either be used to encrypt while proving some properties of the mes-
sage (generic verifiable encryption), or to encrypt ahead and prove something
about the message later (composability).

SAVER: SNARK-compatible Verifiable Encryption 3

The proposed SAVER supports more useful features additional to the basic
encryption, listed as follows:
Additive-homomorphism: SAVER is a variation of ElGamal encryption [6], which
is additively-homomorphic, i.e., Gm1+m2 = Gm1 · Gm2 . Verifiable decryption: a
verifiable decryption [3] is a primitive which can convince the verifier that the
decrypted message is indeed from the corresponding ciphertext. Likewise, the de-
cryption in SAVER entails a decryption proof, which is verified with a message
and a ciphertext to guarantee the validity. This allows the decryptor to prove the
correctness of decrypted messages without revealing her secret key. Rerandom-
izable encryption: a rerandomizable encryption [20] is a public-key encryption
scheme where the ciphertext can be rerandomized, which can be viewed as a
newly-encrypted ciphertext. Likewise, a ciphertext in SAVER can be rerandom-
ized as a new unlinkable ciphertext. Since SAVER outputs a proof as verifiable
encryption, the proof is also rerandomized along with the ciphertext.
Applications. SAVER can act as a useful facilitator in many decentralized
situations, especially when the encryption results are shared publicly. Apart
from the designated/destined receiver who is capable of decrypting the message,
more public observers who cannot decrypt the message may at least want to
assure that the uploaded ciphertext meets certain regulations (e.g. memberships,
formats, relations).
Anonymous Credentials. Suppose that a service provider allows users access after
they prove the (zero-knowledge) set membership, but the third-party regulator
(e.g. government) wants full traceability of the identity. A user may prove the
set membership of identity number to the service provider, while encrypting
its raw identity number to the regulator so that the regulator can decrypt and
audit when required. Voting Systems. In a decentralized voting system, each
voter must encrypt its vote for privacy, while proving the universal suffrage
(i.e. voting rights and equality). Each vote can be publicly verified, without
revealing any provenance or message of the vote. Digital Contracts with Privacy.
Assuming an official data sharing platform (e.g. government website), two or
more parties can commit their encrypted contract online while proving that the
contract meets certain government regulations (e.g. deposit amount does not
exceed law-enforced limit).
Organization. The rest of the paper proceeds as follows. Section 2 organizes
related works. In section 3, we describe some necessary preliminaries and formal
definitions. Section 4 presents insights and the formal construction of SAVER,
and section 5 shows experiment results of SAVER. In section 6, we draw a
conclusion.

2 Related Work

The formal generalized notion of verifiable encryption was introduced by Ca-
menisch and Shoup [3], which concerns the problem of proving properties about
encrypted data. They demonstrated many meaningful applications can be achieved
by verifiable encryption, with the existence of efficient proof system for proving

4 Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh

the property of the message. Recent succinct proof systems that use pairings for
the verification, known as zero-knowledge succinct non-interactive arguments
of knowledge (zk-SNARK) [10, 14, 18, 5], enabled more feasible deployment of
verifiable encryption by allowing prover to compile encryption (which is more
optimized for SNARK circuits in recent works [15, 16]) combined with the orig-
inal relation. However, this often led to an unaffordable circuit size, since it
increased linear to the relation mingled with non-trivial encryption arithmetics.
To mitigate this problem, LegoSNARK [4] introduced a SNARK-composable
approach that leads each proof gadgets to prove its own relation, while allowing
the gadgets to be verified together in the composable framework. By using an
encryption gadget with other proof gadget, one can prove encryption and other
relation separately, while composing them in the LegoSNARK verification.

The design of verifiable encryption scheme may vary depending on whether
comprehending the relation (i.e. what to prove) as a special-case or general.
Applications that treat verifiable encryption as a building block often require
nothing more than a simple validity of the message (e.g. range, decryptability).
In this context, variety of works propose verifiable encryption with a specific
relation, such as verifiable secret sharing [11, 9, 13] which requires range-asserting
encryption from unknown users. They focus on verifiable encryption with specific
range proofs, which is more efficient, but not applicable to general relation (i.e.
not capable of proving properties other than valid range). On the other hand,
some applications require mutable relation for generality. In this case, they need
a general version of verifiable encryption such as LegoSNARK [4] encryption
gadget, including the work in this paper.

Table 1: Summary of approaches for achieving generic verifiable encryption, i.e., proving
f(M) and encrypting Enc(M) for the same message M .

All-in-one prove LegoSNARK gadgets SAVER

Composability no yes yes

Relations RG(Enc(M) | f(M)) RG(Enc(M)) | RG(f(M)) RG(f(M))

Total Prove
& Enc Time

Prove(Enc(M) | f(M))
+Enc(M)

Prove(Enc(M)) + Prove(f(M))
+Enc(M)

Prove(f(M))
+Enc(M)

CRS Size CRS(Enc) + CRS(f) CRS(Enc) + CRS(f) CRS(f)

CT Size O(M) O(M) O(M)†

PK Size O(1) O(1) O(M)

† CT = G · n, where G = group element size and n = message chunks
∗ RG = relation generator, f = arbitrary relation
∗ Prove = Prove time, Enc = Enc time, CRS = CRS size

Table 1 shows a general comparison of generic verifiable encryption tech-
niques, which focus on applications with non-restrictive relation (including en-
cryption). Among the existing works, there exists only two approaches to achieve
the generic verifiable encryption - by proving everything (including encryption)

SAVER: SNARK-compatible Verifiable Encryption 5

within a single relation, or proving each (encryption and the rest) with a proof
gadget and composing them with LegoSNARK [4] - we simply refer to the former
approach as All-in-one prove, and the latter approach as LegoSNARK gadgets.

The only difference between All-in-one prove and LegoSNARK gadgets is
that All-in-one prove combines encryption (Enc) and arbitrary relation (f) as
a single relation (i.e. not composable), while LegoSNARK separates them as
independent proof gadgets (i.e. composable). In both approaches, the size of
ciphertext and public key depends on the encryption scheme; assuming standard
public key encryption (e.g. RSA-2048), the public key is a fixed constant while
the ciphertext size grows linear to the message size.

Compared with All-in-one prove and LegoSNARK gadgets, ciphertext in
SAER also grows linear to the message size. More precisely, the ciphertext of
SAVER consists of n group elements, where n is the number of message chunks
(e.g. 8-bit). For example, when a 2048-bit message is split into 8-bit chunks,
SAVER requires n = 256 group elements as ciphertexts. Although SAVER has
a relatively larger public key compared to the existing standards, it can show
much more benefits in total encryption time (including prove) and CRS size,
since SAVER does not require proving of the encryption-related constraints.

3 Preliminaries

3.1 Notations

In this section, we define some essential notations. For the simple legibility, we
define the term βui(x)+αvi(x)+wi(x)

γ
in [10] as yi(x). Then, we denote Gyi(x) as Gi.

We use x or {xi} for the list of elements, which is equivalent to a vector. We also
define JXK = span{X} as a linear combination of x ∈ X, i.e., JXK = {

∑
xi∈X ηixi}.

For any set JXK, we define JAK × JBK = {a · b | a ∈ JAK, b ∈ JBK} and JAK−1 =

{a−1 | a ∈ JAK}. For any given vectors, ◦ represents a Hadamard product (i.e.
let a = (a1, a2) and b = (b1, b2), then a ◦ b = (a1 · b1, a2 · b2)) and � represents a
Hadamard division(a� b = (a1/b1, a2/b2)).

3.2 Relations

Given a security parameter 1λ, a relation generator RG returns a polynomial
time decidable relation R← RG(1λ). For (Φ,w) ∈ R we say w is a witness to the
statement (I/O) Φ being in the relation. The statement Φ in SAVER consists of
Φ = M ∪ Φ̂ for message statements {m1, . . . ,mn} by splitting M = (m1|| · · · ||mn)

and arbitrary statements Φ̂ = {φn+1, · · · , φl}, where l is the number of statements.

3.3 Bilinear Groups

Definition 1. A bilinear group generator BG takes a security parameter as input
in unary and returns a bilinear group (p,G1,G2,GT , e, aux) consisting of cyclic
groups G1, G2, GT of prime order p and a bilinear map e : G1×G2 → GT possibly
together with some auxiliary information (aux) such that:

6 Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh

– there are efficient algorithms for computing group operations, evaluating the
bilinear map, deciding membership of the groups, and for sampling the gen-
erators of the groups;

– the map is bilinear, i.e., for all G ∈ G1 and H ∈ G2 and for all a, b ∈ Z we
have

e(Ga, Hb) = e(G,H)ab;

– and the map is non-degenerate (i.e., if e(G,H) = 1 then G = 1 or H = 1).

3.4 Cryptographic Assumptions

We use Power Knowledge of Exponent (d-PKE) with Batch Knowledge Check
assumption [7]. In [7] (lemma 2.3), it is proven that the d-PKE can be used to
batch knowledge checks, stated as below:

Assumption 1. batch− PKE (Lemma 2.3 of [7]): Assuming the d-PKE the fol-
lowing holds. Fix k = poly(λ), a constant t and an efficiently computable degree
d rational map S : Ft+1 → FM . Fix any i ∈ [k]. For any efficient A there exists
an efficient χA such that the following holds. Consider the following experiment.
α1, . . . , αk, τ ∈ F and xxx ∈ Ft are chosen uniformly. A is given as input [S(τ,xxx)] and
{[αj ·τ l]}j∈[k],l∈[0..d] and outputs a sequence of elements ([a1], . . . , [ak], [b]) in G. χA,
given the same input as A together with the randomness of A and {αj}j∈[k]\{i},
outputs A(X) ∈ F[X] of degree at most d such that the probability that both

1. A ”succeeded”, i.e., b =
∑k
j=1 αj · aj. But,

2. χA ”failed”, i.e., ai 6= A(τ).

is Advbatch-PKE
R,A,χA (λ) = negl(λ).

We also introduce a D−Poly assumption, which is a decisional version of the
computational Poly assumption originated from [12], formally defined as below:

Assumption 2. D− Poly: Let A be a PPT adversary, and define the advantage
AdvD−PolyBG,d(λ),q(λ),A(λ) = Pr[GD−PolyBG,d(λ),q(λ),A]− 1

2
where GD−PolyBG,d(λ),q(λ),A is defined as be-

low and Q1, Q2 is the set of polynomials gi(X1, . . . , Xq), hi(X1, . . . , Xq) queried to
O1
G,xxx,O2

H,xxx.

SAVER: SNARK-compatible Verifiable Encryption 7

MAIN GD−PolyBG,d(λ),q(λ),A(λ)

(p,G1,G2,GT , e, aux)← BG(1λ);

G← G1;H ← G2;xxx← (Z∗p)q

gc(X1, . . . , Xq)← AO
1
G,xxx,O

2
H,xxx(p,G1,G2,GT , e, aux)

where gc(xxx) 6∈ JQ1K× JQ2K× JQ2K−1

set T1 ← Ggc(x
xx), T0

$← G1

b← {0, 1}, T = Tb

b′ ← AO
1
G,xxx,O

2
H,xxx(T)

return 1 if b = b′

else return 0

O1
G,xxx(gi)

assert gi ∈ Z∗p[X1, . . . , Xq]

assert deg(gi) ≤ d

return Ggi(x
xx)

O2
H,xxx(hj)

assert hj ∈ Z∗p[X1, . . . , Xq]

assert deg(hj) ≤ d

return Hhj(xxx)

The (d(λ), q(λ))−D−Poly assumption holds relative to BG if for all PPT adver-
saries A, we have AdvD−PolyBG,d(λ),q(λ),A(λ) is negligible in λ.

In the D-Poly game, the adversary acts similarly as in computational Poly
game, except that it queries a challenge polynomial and guesses the nature of
the output (i.e. whether the output is generated from the polynomial or from
an independent random). In this case, the restriction for the challenge gc 6∈ JQ1K
is not sufficient where Q1 = {g1, . . . , gI}. For example, the adversary should not
have Hgc(xxx); otherwise it can check whether the received challenge T is Ggc(xxx)

or a random group element by applying pairings (i.e. check the nature of T by
e(T,Hgc(xxx))). This problem is similar to the decisional BDH assumption: it can-
not follow the standard DDH as (ga, gb, T0 ← gz, T1 ← gab, b ← {0, 1} | b′ ←
A(ga, gb, T)), because the adversary can test if e(ga, gb)

?
= e(g, T). Thus, the re-

striction should be extended to H ∈ G2, to prevent the adversary from obtaining
the span of gc(xxx) in G2.

3.5 Definition of SAVER

We represent the combined definition of our SAVER: SNARK-compatible veri-
fiable encryption - which captures the properties of verifiable encryption ΠVE [3]
and zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARK)
Πsnark [10] at the same time. As a generic verifiable encryption, SAVER accepts
any relation representable in arithmetic rank-1 constraint system (R1CS). The
intuitive goal of SAVER is that Enc for a message M must satisfy IND-CPA
of standard public key encryption, while VerifyEnc of proof π and ciphertext CT
(as proof I/O) must satisfy the SNARK-like knowledge soundness, i.e., the mes-
sage M hidden in the ciphertext CT is within the relation. In addition, SAVER
also defines other useful properties: verifiable decryption ΠVD (section A.4) and
rerandomizable encryption ΠRR (section A.5).

8 Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh

Definition 2. For any arbitrary zk-SNARK relation R (also noted as relation),
the SAVER consists of seven polynomial-time algorithms as follows:

– CRS ← Setup(relation) : takes an arbitrary relation R as an input, and outputs
the corresponding common reference string CRS.

– SK,PK, V K ← KeyGen(CRS) : takes a CRS as an input, and outputs the
corresponding secret key SK, public key PK, verification key V K.

– π, CT ← Enc(CRS,PK,M, Φ̂;w) : takes CRS, a public key PK, a message
M = m1, . . . ,mn, a zk-SNARK statement Φ̂ = {φn+1, . . . , φl}, and a witness
w as inputs, and outputs a proof π and a ciphertext CT = (c0, · · · , cn, ψ).

– π′, CT ′ ← Rerandomize(PK, π, CT) : takes a public key PK, a proof π, a ci-
phertext CT as inputs, and outputs a new proof π′ and a new ciphertext CT ′

with fresh randomness.
– 0/1← Verify Enc(CRS,PK, π, CT , Φ̂) : takes CRS, a public key PK, a proof π,

a ciphertext CT , and a statement Φ̂ = {φn+1, . . . , φl} as inputs, and outputs
1 if CT , Φ̂ is in the relation R, or 0 otherwise.

– M,ν ← Dec(CRS, SK, V K, CT) : takes CRS, a secret key SK, a verification
key V K, and a ciphertext CT = (c0, · · · , cn, ψ) as inputs, and outputs a plain-
text M = m1, . . . ,mn and a decryption proof ν.

– 0/1 ← Verify Dec(CRS, V K,M, ν, CT) : takes CRS, a verification key V K, a
message M , a decryption proof ν, and a ciphertext CT as inputs, and outputs
1 if M is a valid decryption of CT , or 0 otherwise.

It satisfies completeness, indistinguishability, encryption knowledge soundness,
rerandomizability, decryption soundness, perfect zero-knowledge as below:

Completeness: The completeness of SAVER must satisfy the completeness of
Πsnark, ΠVE, ΠVD and ΠRR altogether. For all λ ∈ N, R, (Φ,w) ∈ R, proof π, cipher-
text CT , message M , decryption proof ν, the completeness must satisfy that:

Pr[(CRS, τ)← Setup(R), π ← Prove(CRS,Φ,w) : Vfy(CRS,Φ, π) = 1] = 1

Pr[(π, CT)← Enc(PK,M),M ∈ R : Verify Enc(V K, π, CT) = 1] = 1

Pr[(M,ν)← Dec(SK, CT), CT = Enc(PK,M) : Verify Dec(V K,M, ν, CT) = 1] = 1

Pr[CT = Enc(PK,M),Rerandomize(PK, CT) : Dec(SK, CT ′) = Dec(SK, CT)] = 1

Indistinguishability: The indistinguishability is also known as semantic secu-
rity (IND-CPA). The IND-CPA of the SAVER must satisfy that of ΠVE and ΠVD,
which is defined by an adversary A and a challenger C via following game.

Setup: The challenger C runs Setup(relation) to obtain CRS, τ , and share CRS, τ
and statements Φ̂ to A. Note that the adversary A is given the trapdoor τ =

{α, β, γ, δ} as an additional information, since ability to simulate the proof does
not affect the security of the ciphertext indistinguishability.

KeyGen: C runs KeyGen(CRS) to obtain a secret key SK, a public key PK, and
a verification key V K. Then, C gives PK,V K to A.

SAVER: SNARK-compatible Verifiable Encryption 9

Oν phase 1: If the message is decrypted, the decryption proof ν is also revealed.
Therefore, A may request decryption proof for M as an additional informa-
tion since knowing M may indicate it is already decrypted. For the polynomial-
time, A may issue decryption proof query as Mi, to obtain the correspond-
ing ciphertext CT i and a decryption proof νi. C generates πi, CT i by running
Enc(CRS,PK,Mi, Φ̂;w), generates νi by running Dec(CRS, SK, V K, CT i), and re-
turns (πi, CT i, νi) to A.

Challenge: For the challenge, A outputs two messages M0 and M1. C picks b ∈
{0, 1} to choose Mb, generates π, CT by running Enc(CRS,PK,Mb, Φ̂;w), and re-
turns π, CT to A.

Oν phase 2: A can continue to issue encryption queries Mj , same as Oν phase 1.
The only restriction is that Mj 6∈ {M0,M1}.

Guess: A outputs its guess b′ ∈ {0, 1} for b, and wins the game if b = b′.

Let AdvindSAVER,A(λ) be the advantage of A winning the above game. For a neg-
ligible function ε, it is IND-CPA secure if for any adversary A we have that
|AdvindSAVER,A(λ)− 1/2| < ε.

Encryption Knowledge Soundness: The encryption knowledge soundness
is a combined definition of computational knowledge soundness in Πsnark and
encryption soundness in ΠVE. It is formally defined as follows:

AdvsoundSAVER,A,χA(λ) = Pr[(CRS, τ)← Setup(R), (PK,SK, V K)← KeyGen(CRS),

(π∗, CT ∗, Φ̂∗)← A(CRS,PK, V K), (M,w)← χA(transA) :

Verify Enc(CRS, π∗, CT ∗, Φ̂∗) = 1 ∧ (Dec(CT ∗) 6= M ∨ (M, Φ̂∗, w) 6∈ R)] = negl(λ).

Rerandomizability: The rerandomizability is extended from ΠRR, to include π
as follows: for all M and π, CT in the support of Enc(CRS,PK,M, Φ̂;w), the distri-
bution of Rerandomize(PK, π, CT) is identical to another round of Enc(CRS,PK,M, Φ̂;w).

Perfect Decryption Soundness: Equivalent to the perfect decryption sound-
ness in ΠVD, i.e., formally defined as follows:

AdvsoundΠVD,A(λ) = Pr[(M∗, ν∗, CT ∗)← A(SK,PK, V K) :

Verify Dec(V K,M∗, ν∗, CT ∗) = 1 ∧ Dec(SK, CT ∗) 6= M∗] = 0.

Perfect Zero-Knowledge: Equivalent to the perfect zero-knowledge in Πsnark,
i.e., there exists a simulator that does not know the witness but has some trap-
door information that enables it to simulate proofs.

4 Proposed SAVER

4.1 Main Idea

10 Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh

Before representing the concrete algorithms, we first introduce an intuitive idea
behind the construction. As a starter, we observe the nature of pairing-based
non-interactive arguments (i.e. SNARKs), which is well-described in Groth16
paper [10]. An analogy from Groth16 analysis is that SNARKs (including the
QAP-based Groth16 construction itself) can obtain succinct proof by balancing
statements (i.e. I/O) and witnesses in the pairing-based equality check of A ·B =

C.

A = α+Σm
i=0aiui(x) + rδ B = β +Σm

i=0aivi(x) + sδ

C =
Σm
i=l+1ai(βui(x) + αvi(x) + wi(x)) + h(x)t(x)

δ
+As+Br − rsδ

The equation above represents the essential elements of Groth16 construc-
tion, where statements are a1, · · · , al ∈ Fl and witnesses are al+1, · · · , am ∈ Fm−l.
To balance the equality check of A · B = C, both statements and witnesses
a1, · · · , am are batched into the coefficients of polynomials in A and B, while
only witnesses al+1, · · · , am are batched into the coefficients of polynomials in C.
Then in verification, statements a1, · · · , al are appropriately (as span of yi(x))5

combined into C to reassemble all spans of a1, · · · , am, so that it can cancel out
all the a1, · · · , am spans combined in A and B.

Message Statement transformable to ElGamal Ciphertext. Orthogonal to encryp-
tion, when we consider proving some properties of the message mi, the message
mi itself becomes a statement. In verification, these message statements mi are
combined into the element of C as a span of yi(x), i.e., ai · yi(x). The concrete
verification algorithm of Groth16 for the message statements mi is represented
as below:

e(A,B) = e(Gα, Hβ) · e(
l∏
i=0

Gmii , Hγ) · e(C,Hδ)

Notice that, the message statement lies in the group element as Gimi , which
takes a form of ElGamal primitive - if we add a random blinding factor to the
element as Gi

mi · Xir, it becomes a short discrete-log ElGamal ciphertext for
small message blocks mi (i.e. message is chunked). When the blinding factor is
eliminated (by some secrets), the decryptor can retrieve the message by solving
a short discrete-log (e.g. 8-bits) from Gi

m. So if we maintain the equality check
while allowing these ciphertext-transformed message statements to work as an
original input to the verifying statements, the verification itself implies that the
message behind the ciphertext satisfies the original soundness for arguments. In
order to make this actually happen though, we need to find a graceful way of
generating and neutralizing these blinding factors Xir which distorts the original
equality check (while assuring the semantic security). SAVER adds a G−γ in the

5 We simplify βui(x)+αvi(x)+wi(x)
γ

as yi(x), as mentioned in section 3.1.

SAVER: SNARK-compatible Verifiable Encryption 11

CRS as a neutralizing factor for yi(x) = βui(x)+αvi(x)+wi(x)
γ

, to blend it in the
public keys in a way that satisfy both indistinguishability of the ciphertext and
neutralization of the equality check - which is the main contribution of SAVER.

Replaceability of the underlying construction. In SAVER, we design the concrete
verifiable encryption scheme based on the Groth16 [10] construction. However,
our intuitive idea shows that any linear proof systems (including polynomial
commitment variants like Sonic [18] or Plonk [8]) that share the idea of the
equality-check - which combine input/output statements in some structured ref-
erence strings of group elements (i.e. Giai) and plugged into the verification -
can benefit from the idea of extending the statement elements Giai to a series
of ElGamal ciphertexts Gimi · Xir. Nevertheless, designing another encryption
based on a different verification scheme while maintaining provable security is
a non-trivial work; exploring the applicability of the SAVER intuition and ana-
lyzing whether it is possible to come up with a general extension technique (i.e.
extending any linear proofs to verifiable encryption) would be an interesting
future work.

4.2 SAVER Construction

We now represent a formal construction of the proposed SAVER. In SAVER, a
message M is split into n blocks as M = (m1|| · · · ||mn), to form a vector M =

{m1, . . . ,mn}6. A ciphertext CT consists of n + 2 blocks as CT = {c0, · · · , cn, ψ},
where c0 contains the random, ψ contains a commitment, and the remaining ci
contains an encryption of mi for 1 ≤ i ≤ n. Within the construction, we work
with {m1, . . . ,mn}, assuming that M is already parsed to M = (m1|| · · · ||mn).

Algorithm 1 represents the formal construction of SAVER. The term relation
denotes an arbitrary relation R for the zk-SNARK, and the terms of α, β, γ, and
δ within the functions come from CRS (common reference string) of the adopted
zk-SNARK scheme [10]. In case of encrypt-and-prove, there is a possibility that
the relation has not been determined yet (when encrypting only ahead of time); in

this case, the relation can be assumed as an empty circuit (i.e. Gδ, Gi, Gγ
$← G1).

SAVER receives any relation which consists of two I/O statements. State-
ments m1, . . . ,mn will be encrypted while statements φn+1, . . . , φl will be used
as normal I/O statements in plaintext. For the given relation, Setup generates
CRS using the adopted zk-SNARKs scheme, with additional G−γ . KeyGen gen-
erates a private key, a public key, and a verification key. Enc encrypts messages
m1, . . . ,mn and generates a proof π of statement Φ = (m1, . . . ,mn, φn+1, . . . , φl).
To check the truth of statement Φ, Verify Enc takes π and CT as inputs for verifi-
cation. Rerandomize does rerandomization of the given ciphertext and the proof.
Note that the rerandomized proof is a valid proof of the statement. Dec decrypts
the ciphertext CT by performing decryption for each block c1, . . . , cn, to output
m1, . . . ,mn and a decryption proof ν. The original message M can be restored

6 These are pre-defined relation (section 3.2) with a fixed messsage chunk size (e.g.
8-bits), which does not require an addtional range proof.

12 Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh

Algorithm 1 SAVER construction

relation(m1, . . . ,mn, φn+1, . . . , φl;w) :

· · ·

Setup(relation) :
ˆCRS ← Πsnark.Setup(relation)

CRS ← ˆCRS ∪ {G−γ}
return CRS

KeyGen(CRS) :

{si}ni=1, {vi}ni=1, {ti}ni=0, ρ
$← Z∗p

PK ← (Gδ, {Gδsi}ni=1, {Gtii }
n
i=1, {Hti}ni=0, G

δt0
∏n
j=1G

δtjsj , G−γ·(1+
∑n
j=1 sj))

SK ← ρ
V K ← (Hρ, {Hsivi}ni=1, {Hρvi}ni=1)
return (SK,PK, V K)

Enc(CRS,PK,m1, . . . ,mn, φn+1, . . . , φl;w) :

let PK = (X0, {Xi}ni=1, {Yi}ni=1, {Zi}ni=0, P1, P2)

r
$← Z∗p

CT = (Xr
0 , X

r
1G

m1
1 , . . . , Xr

nG
mn
n , ψ = P r1 ·

∏n
j=1 Y

mj
j)

π̂ = (A,B,C)← Πsnark.Prove(CRS,m1, . . . ,mn, φn+1, . . . , φl;w)
π ← (A,B,C · P r2)
return (π, CT)

Rerandomize(PK, π, CT) :

parse π = (A,B,C) and CT = (c0, . . . , cn, ψ)
let PK = (X0, {Xi}ni=1, {Yi}ni=1, {Zi}ni=0, P1, P2)

r′, z1, z2
$← Z∗p

CT ′ ← (c0 ·Xr′
0 , . . . , cn ·Xr′

n , ψ · P r
′

1)

π′ ← (Az1 , Bz
−1
1 ·Hδ·z2 , C ·Az1z2 · P r

′
2)

return (π′, CT ′)

Verify Enc(CRS,PK, π, CT , φn+1, · · · , φl) :

parse π = (A,B,C) and CT = (c0, . . . , cn, ψ)
let PK = (X0, {Xi}ni=1, {Yi}ni=1, {Zi}ni=0, P1, P2)
assert

∏n
i=0 e(ci, Zi) = e(ψ,H)

assert e(A,B) = e(Gα, Hβ) · e(
∏n
i=0 ci ·

∏l
i=n+1G

φi
i , H

γ) · e(C,Hδ)

as M = (m1|| . . . ||mn). The honest decryption of CT can be proved by calling
Verify Dec with a message M and a decryption proof ν.

The ciphertext CT in SAVER satisfies additive-homomorphic property, for
each individual message block. Given CT = (Xr

0 , {Xr
i G

mi
i }

n
i=1, P

r
1

∏n
j=1 Y

mj
j) and

CT ′ = (Xr′
0 , {Xr′

i G
m′i
i }

n
i=1, P

r′
1

∏n
j=1 Y

m′j
j), it is easy to see that CT · CT ′ = (Xr+r′

0 ,

{Xr+r′

i G
mi+m

′
i

i }ni=1, P
r+r′

1

∏n
j=1 Y

mj+m
′
j

j), which satisfies additive-homomorphism.
Note that the merged message may not be homomorphic, due to the carry-bits.

SAVER: SNARK-compatible Verifiable Encryption 13

Dec(CRS, SK, V K, CT) :

parse SK = ρ, V K = (V0, {Vi}ni=1, {Vi}2ni=n+1), and CT = (c0, . . . , cn, ψ)
for i = 1 do to n

e(ci,Vn+i)

e(c0,Vi)ρ
= e(Gi, Vn+i)

mi

compute a short discrete log of e(Gi, Vn+i)
mi to obtain mi

end for
ν ← cρ0
return (m1, . . .mn, ν)

Verify Dec(CRS, V K,m1, . . .mn, ν, CT) :

parse V K = (V0, {Vi}ni=1, {Vi}2ni=n+1) and CT = (c0, . . . , cn, ψ)
assert e(ν,H) = e(c0, V0)
for i = 1 do to n

assert
e(ci,Vn+i)

e(ν,Vi)
= e(Gi, Vn+i)

mi

end for

4.3 Encrypt-and-Prove

The encrypt-with-prove construction in section 4.2 is also a commit-carrying
encryption: it includes an encrypt-and-prove scheme which allows modular com-
position to other commit-carrying systems. In this section, we show that the com-
mitment ψ in the ciphertext CT is identical to the Pedersen vector commitment
c in LegoSNARK [4]’s commit-and-prove, which implies that the SAVER con-
struction (algorithm 1) is a commit-carrying encryption (appendix A.3). Then
we briefly show that CT and ψ can be the inputs of CP-SNARK CPlink (ap-
pendix A.2).

Commit-carrying encryption. When observing algorithm 1, it is obvious
that SAVER is a commit-carrying encryption since the ciphertext CT already
includes a commitment ψ. We show that ψ is identical to the Pedersen vector
commitment of the commit-carrying SNARKs. Recall that the Pedersen vector
commitment in a commit-carrying SNARK is constructed as c = ho · hu1

1 · · ·hunn
for a random o

$← Z∗p, messages u1, · · · , un, and random generators h, h1, · · · , hn.
The commitment ψ in SAVER is constructed as ψ = P r1 ·

∏n
j=1 Y

mj
j . Notice that

P1 = Gδt0
∏n
j=1G

δtjsj can be viewed as a random generator h with respect to the
randoms ti and si, and {Yi = Gtii }

n
i=1 can be also viewed as random generators

h1, · · · , hn with respect to the random ti. Since the message m1, · · · ,mn and
random r for the encryption correspond to the message u1, · · · , un and random
o for the commitment, ψ = P r1 ·

∏n
j=1 Y

mj
j can be considered as Pedersen vector

commitment c = ho ·
∏n
j=1 h

uj
j by matching h = P1, o = r, hj = Yj , uj = mj .

CP-SNARK composability. We briefly show how to connect algorithm 1 as
a commit-carrying system for the CP-SNARK CP. Recall that the CP protocol
let the prover prove the relation with the commitment key ck as follows:

crs := (ek, vk)← KeyGen(ck,R)

π ← Prove(ek, x, (cj)j∈[l], (uj)j∈[l], (oj)j∈[l], ω)

14 Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh

For the ck, we may assume P1 and {Yi}ni=1 as the commitment key ck since
they are the ingredients for constructing the commitments {ψj}j∈[l]. Also, in
Prove and VerProof, notice that we already showed the commitments {cj}j∈[l] and
random o are identical to the commitment {ψj}j∈[l] and random {rj}j∈[l] from
SAVER systems (or other cc-SNARK systems). Therefore, it is straightforward
to run the CP by matching the inputs as {cj = ψj}, {oj = rj}, {uj = (m1, · · · ,mn)}
for j ∈ [l].

Conceptual Benefits. In the viewpoint of commit-and-prove, encrypt-and-
prove can provide more general extension of selective disclosure. In the encrypt-
and-prove, the encrypted ciphertext can also work as a commitment since the
commit-carrying encryption has an efficient function fc(x) that can output com-
mitment c. Therefore, when the prover outputs the commit-carrying ciphertext,
it can disclose whole data to the secret key holder, while only disclosing proved
statements to the other public the same as commit-and-prove. As a simple ex-
ample, assume a blockchain contract management system where Alice and Bob
encrypt a contract to each other. Alice wants to let Bob (who has a secret key) see
the whole data, but she also wants to prove some restricted statements publicly.
In this case, Alice can upload the ciphertext as a commitment of commit-and-
prove; Bob can decrypt the ciphertext, and Alice can use the ciphertext as a
commitment later for proving various statements.

4.4 Security Proof

To satisfy the definition of SAVER, the scheme should satisfy completeness, in-
distinguishability, encryption knowledge soundness, rerandomizability, and per-
fect zero-knowledge. Especially, the indistinguishability (IND-CPA) is held by
D− Poly (Assumption 2); intuitively, D− Poly states that no PPT adversary A
can determine whether given G1 group element T is generated from G1,G2 span
polynomials Ggc(x) or randomly generated from G1, where SAVER ciphertexts
are mapped to the G1,G2 span polynomials Ggc(x). For the encryption knowl-
edge soundness, batch− PKE (Assumption 3) states that no PPT adversary A
could have generated a Gb that passes Gb = Gα0(x)·a0 · · ·Gαn(x)·an other than us-
ing the span of Gx, which enables the extraction of all coefficients from batch
polynomials αi(x) equivalent to the SAVER message I/O.

Due to the space limit, rest of the formal proofs are provided in the full
version.

5 Experiment

We test the efficiency of SAVER by implementing the construction on the
Ubuntu 18.04 machine with Intel-i5 (3.4GHz) quad-cores and 24GB memory.
Since SAVER is a generic verifiable encryption for any arbitrary relations, the
relation can be defined flexibly depending on the user’s requirements. We as-
signed hashing as a sample relation, which can be widely extended to other ap-
plications such as set of membership proofs. For a given SHA-256 hashed value

SAVER: SNARK-compatible Verifiable Encryption 15

H, the defined relation guarantees that H = hash(M) and CT = encrypt(M) for
the same message M . We set the SAVER message block size as |m| = 32bits,
and use Groth16 zk-SNARK [10] for the proof system as in section 4.2 based on
libsnark [21].

Table 2: SAVER encryption performance for SHA-256 relation (approximately 25,000
constraints, a little dependency on input wires).

time
|M | (bits)

size
|M | (bits)

256 512 1024 2048 256 512 1024 2048

Setup 2.67s 2.67s 2.69s 2.72s CRS 16MB 16MB 16MB 16MB

KeyGen 0.01s 0.02s 0.04s 0.09s SK 32B

Enc (sep) 1.6ms 2.4ms 7.4ms 8.8ms PK 1246B 2321B 4465B 8753B

Πsnark.Prove 0.73s 0.73s 0.73s 0.74s V K 1126B 2184B 4296B 8520B

Verify Enc 8.2ms 12.7ms 21.7ms 39.8ms CT 477B 749B 1293B 2381B

Dec 37.7ms 75.2ms 149.7ms 300.4ms π 128B

Verify Dec 14.8ms 28.3ms 55.5s 110.1ms ν 32B

Rerandomize 0.02ms 0.03ms 0.04ms 0.06ms

∗ |M | = message size, |m| = 32 bits, Πsnark =Gro16 [10]

Table 2 lists the execution time for each algorithm step, and size for the
generated results. To examine the growth rate of encryption costs per message
blocks in SAVER, we vary the message size from 256 bits to 2048 bits while fixing
the message block size as |m| = 32bits for all message spaces. For example, 256-bit
M consists of 8 blocks of messages. The block size determines the ciphertext size
and decryption time. A larger block size can yield less number of total blocks,
which leads to less number of ciphertext blocks to decrease the ciphertext size.
However, as a trade-off, it increases the decryption time due to the increased
computation of discrete log search. Since we fix the block size, the decryption
time is strictly linear to the message size which determines the number of message
blocks.

As an encrypt-with-prove construction, SAVER.Enc is responsible for both en-
cryption (Enc (sep)) and proof (Πsnark.Prove for SHA-256 of M). The zk-SNARK
proving time Enc (sep) takes 0.74s, which is dominant in the total encryption
time, while the separated encryption part Enc (sep) takes less than 8ms for
|M | = 2048bits. Note that existing non-modular approaches require proving the
encryption itself apart from the relation, which makes Enc (sep) much heavier;
for instance, RSA-2048 using libsnark takes about 2.57s for Enc (sep).

In SAVER, the number of elements for PK, V K and CT is determined by the
number of message blocks. Therefore it is shown in the result that PK, V K, CT
size increases along with the message size. For the fixed relation, the size of
common reference string (CRS) remains as 16MB for all message sizes, which is
practical to be stored in the portable devices.

In general, the efficiency (e.g. encryption time, CRS size) of SAVER is much
more practical compared to the typical approach. While the typical approach

16 Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh

requires a proving overhead which may take a few seconds and a few hundreds
of MB, SAVER can encrypt the message within few milliseconds and few MB
by avoiding the proving process.

6 Conclusion

This paper proposes SNARK-compatible verifiable encryption, which is a generic
verifiable encryption achieved from modular combination of zero-knowledge suc-
cinct non-interactive arguments of knowledge (zk-SNARK) and encryption. The
proposed SAVER provides modular composition with other proof systems by
supporting commit-and-prove connection from LegoSNARK. SAVER also satis-
fies many useful functionalities. It is additively-homomorphic, so that the cipher-
texts can be aggregated in an additive manner. It provides verifiable decryption,
which can prove the validity of decryption to the public. It provides rerandom-
ization, where the ciphertext can be rerandomized as a new encryption. The
security of the proposed SAVER is formally proved under d-PKE and Poly as-
sumptions.

Acknowledgements. This work was supported by Institute of Information
& communications Technology Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) (No.2021-0-00518, Blockchain Privacy preserving
techniques based on data encryption). J. Kim and H. Oh are co-corresponding
authors.

SAVER: SNARK-compatible Verifiable Encryption 17

References

1. G. Ateniese. Verifiable encryption of digital signatures and applications. ACM
Transactions on Information and System Security (TISSEC), 7(1):1–20, 2004.

2. S. Bowe and A. Gabizon. Making groth’s zk-snark simulation extractable in
the random oracle model. Cryptology ePrint Archive, Report 2018/187, 2018.
https://eprint.iacr.org/2018/187.

3. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Annual International Cryptology Conference, pages 126–
144. Springer, 2003.

4. M. Campanelli, D. Fiore, and A. Querol. Legosnark: Modular design and com-
position of succinct zero-knowledge proofs. Cryptology ePrint Archive, Report
2019/142, 2019. https://eprint.iacr.org/2019/142.

5. A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and N. P. Ward. Marlin: Prepro-
cessing zksnarks with universal and updatable SRS. In A. Canteaut and Y. Ishai,
editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, May 10-14, 2020, Proceedings, Part I, volume 12105 of Lecture Notes in
Computer Science, pages 738–768. Springer, 2020.

6. R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient
multi-authority election scheme. European transactions on Telecommunications,
8(5):481–490, 1997.

7. A. Gabizon. On the efficiency of pairing-based proofs under the d-pke. Cryptology
ePrint Archive, Report 2019/148, 2019. https://eprint.iacr.org/2019/148.

8. A. Gabizon, Z. J. Williamson, and O. Ciobotaru. Plonk: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Paper 2019/953, 2019. https://eprint.iacr.org/2019/953.

9. C. Gentry, S. Halevi, and V. Lyubashevsky. Practical non-interactive publicly
verifiable secret sharing with thousands of parties. Cryptology ePrint Archive,
Paper 2021/1397, 2021. https://eprint.iacr.org/2021/1397.

10. J. Groth. On the size of Pairing-Based non-interactive arguments. In Advances in
Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II, pages 305–326, 2016.

11. J. Groth. Non-interactive distributed key generation and key resharing. Cryptology
ePrint Archive, Paper 2021/339, 2021. https://eprint.iacr.org/2021/339.

12. J. Groth and M. Maller. Snarky signatures: Minimal signatures of knowledge from
Simulation-Extractable SNARKs. In Advances in Cryptology - CRYPTO 2017
- 37th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20-24, 2017, Proceedings, Part II, pages 581–612, 2017.

13. A. Kate, E. V. Mangipudi, P. Mukherjee, H. Saleem, and S. A. K. Thyagarajan.
Non-interactive vss using class groups and application to dkg. Cryptology ePrint
Archive, Paper 2023/451, 2023. https://eprint.iacr.org/2023/451.

14. J. Kim, J. Lee, and H. Oh. Simulation-extractable zk-snark with a single verifica-
tion. IEEE Access, 2020.

15. A. Kosba, Z. Zhao, A. Miller, Y. Qian, H. Chan, C. PAPAMAN-THOU, R. Pass,
S. ABHI, and E. SHI. c: A framework for building composable zero-knowledge
proofs. Technical report, Cryptology ePrint Archive, Report 2015/1093, 2015.
http://eprint. iacr. org . . . , 2015.

18 Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh

16. A. E. Kosba, Z. Zhao, A. Miller, Y. Qian, T.-H. H. Chan, C. Papamanthou, R. Pass,
A. Shelat, and E. Shi. How to use snarks in universally composable protocols. IACR
Cryptology ePrint Archive, 2015:1093, 2015.

17. H. Lipmaa. Simulation-extractable snarks revisited. 2019.
18. M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-knowledge

snarks from linear-size universal and updatable structured reference strings. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’19, page 2111–2128, New York, NY, USA, 2019. Association
for Computing Machinery.

19. B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages
238–252. IEEE, 2013.

20. M. Prabhakaran and M. Rosulek. Rerandomizable rcca encryption. In Annual
International Cryptology Conference, pages 517–534. Springer, 2007.

21. SCIPR-Lab. libsnark. https://github.com/scipr-lab/libsnark, 2014.

SAVER: SNARK-compatible Verifiable Encryption 19

Appendix

A Definitions

A.1 Zero-Knowledge Succinct Non-interactive Arguments of
Knowledge

For the zk-SNARK, we adopt the definitions from [10, 12].

Definition 3. A zero-knowledge succinct non-interactive arguments of knowl-
edge (zk-SNARK) for R is a set of four algorithms Πsnark = (Setup,Prove,Vfy, SimProve)

working as follows:

– (CRS, τ) ← Setup(R): takes a relation R ← RG(1λ) as input and returns a
common reference string CRS and a simulation trapdoor τ .

– π ← Prove(CRS,Φ,w): takes a common reference string CRS, a relation R,
a statement and witness in the relation (Φ,w) ∈ R as inputs, and returns a
proof π.

– 0/1← Vfy(CRS,Φ, π): takes a common reference string CRS, a statement Φ,
a proof π as inputs and returns 0 (reject) or 1 (accept).

– π ← SimProve(CRS, τ, Φ): takes a common reference string CRS, a simulation
trapdoor τ , a statement Φ as inputs and returns a proof π.

It satisfies completeness, knowledge soundness, zero-knowledge, and succinct-
ness described as below:

Completeness: Given a true statement, a prover with a witness can convince
the verifier. For all λ ∈ N, for all R and for all (Φ,w) ∈ R, Pr[(CRS, τ) ←
Setup(R), π ← Prove(CRS,Φ,w) : Vfy(CRS,Φ, π) = 1] = 1.

Computational Knowledge Soundness: Computational knowledge sound-
ness says that the prover must know a witness and such knowledge can be
efficiently extracted from the prover by a knowledge extractor. Proof of knowl-
edge requires that for every adversarial prover A generating an accepting proof,
there must be an extractor χA that, given the same input of A, outputs a valid
witness. Formally, an argument system Πsnark is computationally considered as
knowledge sound if for any PPT adversary A, there exists a PPT extractor χA,
such that AdvsoundΠsnark,A,χA(λ) is negligible.

AdvsoundΠsnark,A,χA(λ) = Pr[(CRS, τ)← Setup(R), (Φ∗, π∗)← A(CRS), w ← χA(transA) :

V fy(CRS,Φ∗, π∗) = 1 ∧ (Φ∗, w) 6∈ R] = negl(λ).

Perfect Zero-Knowledge: Perfect zero-knowledge states that the system does
not leak any information besides the truth of the statement. This is modelled by
a simulator that does not know the witness but has some trapdoor information
that enables it to simulate proofs.

Succinctness: Succinctness states that the argument generates the proof of
polynomial size in the security parameter, and the verifier’s computation time
is polynomial in the security parameter and in statement size.

20 Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh

A.2 Commit-Carrying SNARK and Commit-and-Prove SNARK

The commit-carrying SNARK (cc-SNARK) and the commit-and-prove SNARK
(CP-SNARK) are originally defined in LegoSNARK [4]. The main concept of the
LegoSNARK is to connect the modular SNARK systems and ensure the same
input between them via commitments.

The cc-SNARK is a proof system where the proof includes a commitment
to the portion of witnesses, which can be used for the connection. There is no
specific restriction for the commitment scheme, but it is convenient to consider

it as the Pedersen vector commitment c = ho · hu1
1 · · ·hunn for a random o

$← Z∗p,
messages u1, · · · , un and generators h, h1, · · · , hn.

Definition 4. (cc-SNARK: Definition 3.2 of [4]). A commit-carrying zk-SNARKs
for a relation R is a set of four of algorithms Πcc = (KeyGen,Prove, VerProof,VerCommit)

that works as follows:

– (ck, ek, vk)← KeyGen(R) : takes a relation R as inputs, and outputs a common
reference string which includes a commitment key ck, an evaluation key ek,
and a verification key vk.

– (c, π; o) ← Prove(ek, x, w) : takes an evaluation key ek, a statement x and a
witness w := (m,ω) such that the relation R holds as inputs, and outputs a
proof π, a commitment c and an opening o such that VerCommit(ck, c, u, o) = 1.

– 0/1← VerProof(vk, x, c, π) : takes a verification key vk, a statement x, a com-
mitment c, a proof π as inputs, and outputs 1 if x, c, π is within the relation
R, or 0 otherwise.

– 0/1 ← VerCommit(ck, c, u, o) : takes a commitment key ck, a commitment c,
a message u and an opening o as inputs, and outputs 1 if the commitment
opening is correct, or 0 otherwise.

which satisfies completeness, succinctness, knowledge soundness, zero knowl-
edge and binding (described in [4]).

The CP-SNARK is a proof system that can link existing cc-SNARKs by using
their commitments. The LegoSNARK defines the CP-SNARK framework and
provides a CP-SNARK scheme CP, that guarantees the connectivity between
multiple cc-SNARKs via Pedersen vector commitments.

Definition 5. (CP-SNARK: Definition 3.1 of [4]). Let {Rλ}λ∈N be a family of
relations R over Dx×Du×Dω such that Du splits over l arbitrary domains (D1×
· · ·×Dl) for some arity parameter l ≥ 1. Let Com = (Setup,Commit,VerCommit) be
a commitment scheme (as per Definition 2.1) whose input space D is such that
Di ⊂ D for all i ∈ [l]. A commit and prove zk-SNARK for Com and {Rλ}λ∈N is
a zk-SNARK for a family of relations {RCom

λ }λ∈N such that:

– every R ∈ RCom is represented by a pair (ck,R) where ck ∈ Setup(1λ) and
R ∈ Rλ;

SAVER: SNARK-compatible Verifiable Encryption 21

– R is over pairs (x,w) where the statement is x := (x, (cj)j∈[l]) ∈ Dx × Cl, the
witness is w := ((uj)j∈[l], (oj)j∈[l], ω) ∈ D1×· · ·×Dl×Ol×Dω, and the relation
R holds iff∧

j∈[l]
VerCommit(ck, cj , uj , oj) = 1 ∧R(x, (uj)j∈[l], ω) = 1

We denote a CP-SNARK as a triple of algorithms CP = (KeyGen, Prove,
VerProof) as follows.

– (ek, vk)← KeyGen(ck,R) : takes a commitment key ck, a relation R as inputs,
and outputs a common reference string which includes an evaluation key ek,
and a verification key vk.

– π ← Prove(ek, x, (cj)j∈[l], (uj)j∈[l], (oj)j∈[l], ω) : takes an evaluation key ek, a
statement x, commitments cj, messages uj, randoms oj, witnesses ω, and
outputs the proof of correct commitment.

– 0/1 ← VerProof(vk, x, (cj)j∈[l], π) : takes a verification key vk, a statement x,
commitments cj, a proof π, and rejects or accepts the proof.

A.3 Commit-Carrying Encryption

We define a new notion of encryption that can output a commitment which
shares a same format with the commit-carrying SNARKs. If the encryption
scheme is capable of outputting the Pedersen vector commitment from existing
ciphertexts, we say that it is a commit-carrying encryption. It can be formally
defined as follows:

Definition 6. Suppose a public-key encryption scheme Πenc which outputs a ci-
phertext CT for the message input m. For the ciphertext CT and a Pedersen
vector commitment c = Ped.Commit(m) of the message m, if there exists an effi-
cient polynomial-time function fc(x) which satisfies fc(CT) = c, we say that the
encryption scheme Πenc is a commit-carrying encryption.

The commit-carrying encryption follows the definition of standard public-
key encryption, but it also gains modular composability between other commit-
carrying systems via commit-and-prove SNARK (CP-SNARK).

A.4 Verifiable Decryption

We refine the definition of verifiable decryption from [3]; the definition in [3]
represents the proof system and the encryption system separately, but we in-
tend to combine them as an encryption scheme with verifying phase. Plus, we
strengthen the security notion from decryption soundness to perfect decryption
soundness, and introduce a new security notion - perfect zero-knowledge.

Definition 7. Suppose we have an encryption scheme Πenc which satisfies the
definition of standard public-key encryption. We say that Πenc is a verifiable de-
cryption ΠVD, if it additionally includes the following polynomial-time algorithm:

22 Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh

– M,ν ← Dec(SK, CT) : the decryption of a ciphertext CT outputs a message
M , along with the corresponding decryption proof ν.

– 0/1 ← Verify Dec(V K,M, ν, CT) : takes a verification key V K, a message M ,
a decryption proof ν, a ciphertext CT as inputs, and outputs 1 if M,ν is a
valid decryption for CT or 0 otherwise.

with satisfying completeness, and perfect decryption soundness, and indistin-
guishability as described below:

Completeness: A message M and a decryption proof ν must pass the verifica-
tion, if decrypting CT with SK outputs M , formally as Pr[(M,ν)← Dec(SK, CT), CT =

Enc(PK,M) : Verify Dec(V K,M, ν, CT) = 1] = 1.

Perfect Decryption Soundness: The advantage of an adversary forging ver-
ifying M∗, ν∗, CT ∗ where M∗ is not a decryption of CT is 0.

AdvsoundΠVD,A(λ) = Pr[(M∗, ν∗, CT ∗)← A(SK,PK, V K) :

Verify Dec(V K,M∗, ν∗, CT ∗) = 1 ∧ Dec(SK, CT ∗) 6= M∗] = 0.

Indistinguishability: A verifiable decryption should satisfy IND-CPA of the
original public-key encryption, with providing additional information ν to an
adversary A, for A’s chosen messages.

A.5 Rerandomizable Encryption

We adopt the definition of rerandomizable encryption from [20].

Definition 8. Suppose we have an encryption scheme Πenc which satisfies the
definition of standard public-key encryption. We say that Πenc is a rerandom-
izable encryption ΠRR, if it additionally includes the following polynomial-time
algorithm:

– CT ′ ← Rerandomize(PK, CT) : a randomized algorithm which takes a public
key PK and a ciphertext CT and outputs another ciphertext CT ′.

which satisfies completeness and rerandomizability described as below:

Completeness: For every ciphertext CT and every CT ′ in the support of Rerandomize(PK, CT),
we must have Dec(SK, CT ′) = Dec(SK, CT).

Rerandomizability: For every plaintext M and every ciphertext CT in the
support of Enc(PK,M), the distribution of Rerandomize(PK, CT) is identical to
another round of Enc(PK,M).

