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Abstract. Single Transferable Vote (STV) elections are a principled
approach to electing multiple candidates in a single election. Each ballot
has a starting value of 1, and a candidate is elected if they gather a total
vote value more than a defined quota. Votes over the quota have their
value reduced by a transfer value so as to remove the quota, and are
passed to the next candidate on the ballot. Risk-limiting audits (RLAs)
are a statistically sound approach to election auditing which guarantees
that failure to detect an error in the result is bounded by a limit. A
first approach to RLAs for 2-seat STV elections has been defined. In this
paper we show how we can improve this approach by reasoning about
lower bounds on transfer values, and how we can extend the approach to
partially audit an election, if the method does not support a full audit.

1 Introduction

Single Transferable Vote (STV) elections are widely used around the world for
multiple candidate contests. Risk-limiting audits (RLAs) are very complex for
STV elections. Prior work has demonstrated that RLAs for some 2-seat STV
elections, where at least one candidate has more than quota’s worth of votes
on their first preferences, are possible [1]. This existing work proposed two ap-
proaches for undertaking RLAs for 2-seat STV. The first tackles the case where
this first-round winner criterion is satisfied, while the second presents a gen-
eral method that applies when it does not. The latter method was generally not
successful in forming an audit to verify the correctness of both winners.

This paper presents an improved method for 2-seat STV RLAs where the
contest satisfies the first-round winner criterion. This new method is able to
form audits for a greater number of contests, and reduces the expected sample
sizes needed for these audits by 15 to 19% across the contests considered in
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our evaluation. The original method introduced assertions for (i) verifying that
the first winner achieved a quota on their first preferences, (ii) verifying an
upper bound on the transfer value of this first winner, and (iii) using this upper
bound, verifying that the second winner could not have possibly lost to any of
the reported losers. We improve this method by introducing a new assertion that
verifies a non-trivial lower bound on this first winner’s transfer value, and using
both bounds to fine tune the assertions formed in (iii). We additionally show
how contests that perform a preliminary batch-elimination prior to electing any
candidates can be audited using this scheme.

A full RLA, verifying the correctness of both winners, may not possible for
a given 2-seat contest. It may be desirable to perform some kind of audit to
verify some aspects of the reported outcome. We show how the ‘general’ method
can be re-framed as a five-stage process that forms a partial RLA. This process
aims to establish (i) a subset of candidates as definite losers, and (ii) a subset of
candidates as definite winners. The remaining candidates are possible winners.
The first three stages of this revised general method are drawn from the work
of [1]. In this paper we add a fourth stage that looks for opportunities to reduce
the expected sample size of the partial audit. The final stage summarises what
aspects of the reported outcome are verified by the audit, and which are not.

The remainder of this paper is structured as follows. Section 2 describes
the variant of STV that we consider, and assertion-based RLAs. Three sections
follow that consider different election scenarios and how to audit them: Section 3
covers auditing of batch elimination, Section 4 covers the improved first-round
winner method and an evaluation against the existing approach, and Section 5
shows how we can partially audit elections where no candidate has a quota on
first preferences. We conclude in Section 6.

2 Preliminaries

We consider a variant of STV, modelled on how STV is typically implemented
in the United States. We describe this variant in Section 2.1.

We define an STV election as per Definition 1. We define a ballot b as a se-
quence of candidates π, listed in order of preference (most popular first), without
duplicates but without necessarily including all candidates. We use list notation
(e.g., π = [c1, c2, c3, c4]). The notation first(π) = π(1) denotes the first item
(candidate) in sequence π.

Definition 1 (STV Election). An STV election E is a tuple E = (C,B,Q, N)
where C is a set of candidates, B the multiset of ballots cast5, Q the election quota
(the number of votes a candidate must attain to win a seat—usually the Droop
quota—Equation 1), and N the number of seats to be filled.

Q =

⌊
|B|

N + 1

⌋
+ 1 (1)

5 A multiset allows for the inclusion of duplicate items.



RLAs for 2-Seat STV Elections: Revisited 3

Ranking Count Ranking Count

[c1, c3] 8,001 [c3, c4] 5,000
[c1] 1,000 [c4, c1, c2] 3,950
[c2, c3, c4] 3,000 [c5, c2] 50

Total 21,001

N = 2
Q = 7, 001
tc1,1 = 9, 001 tc4,1 = 3, 950
tc2,1 = 3, 000 tc5,1 = 50
tc3,1 = 5, 000

Table 1: An STV election, stating the number of ballots cast with each listed
ranking over candidates c1 to c5. The quota, and first-preference tallies are listed.

Definition 2. Projection σS(π) We define the projection of a sequence π onto
a set S as the largest subsequence of π that contains only elements of S. (The
elements keep their relative order in π.) For example: σ{c2,c3}([c1, c2, c4, c3]) =
[c2, c3] and σ{c2,c3,c4,c5}([c6, c4, c7, c2, c1]) = [c4, c2].

The tabulation of STV elections proceeds in rounds (see Section 2.1). Ini-
tially, all candidates are awarded the ballots on which they are the first ranked
candidate. We call a candidate c’s tally at this stage their first-preference tally,
denoted tc,1. We use tc,r to denote a candidate’s tally at the start of round r of
tabulation. In the election of Table 1, candidates c1 to c5 have first-preference
tallies of 9001, 3000, 5000, 3950, and 50 votes, respectively.

2.1 ‘US’ style STV

Each ballot cast in the election starts with a value of 1. In any given round of
tabulation, if no candidate’s tally is equal to or above the election’s quota, the
candidate with the smallest tally is eliminated. All the ballots in the eliminated
candidate’s tally are redistributed to the next most preferred eligible candidate
on the ballot. These ballots are transferred at their current value. At any stage
where ballots are distributed from one candidate to another, the only candidates
that are eligible to receive votes are those that have not yet been eliminated or
elected to a seat, and who have less than a quota’s worth of votes in their tally.

Eliminations proceed as described above until at least one candidate’s tally
equals or exceeds the election’s quota. At this stage, these candidates are elected
to a seat. These candidates will be elected to a seat in order of their surplus.
For each such candidate, we define their surplus as the difference between their
current tally and the quota. The ballots sitting in the tally pile of this candidate
are reweighted and distributed to the next most preferred eligible candidate on
the ballot. For a candidate c, elected to a seat in round r of tabulation, we
define the transfer value τc used to reweight the ballots in their tally as shown
in Equation 2, where tc,r denotes the tally of c at the start of round r.

τc =
tc,r −Q

tc,r
(2)

For a ballot b ∈ B, whose current value is vb,r, its new value when it leaves the
tally pile of candidate c upon their election to a seat becomes τc vb,r.
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Tabulation proceeds by seating candidates whose tally reaches or exceeds a
quota and distributing their votes to eligible candidates, and eliminating candi-
dates when no candidate has a quota. This process continues until either all seats
have been filled, or the number of candidates still standing equals the number
of seats left to be filled. These remaining candidates are then elected.

Consider the election in Table 1. The quota is 7001 votes. Candidate c1
has a quota on first preferences, and is elected to the first seat. Their transfer
value is τ = (9001− 7001)/9001 = 0.222. The 8,001 [c1, c3] ballots are given to
candidate c3, adding 1,776.222 votes to c3’s tally. The 1,000 [c1] ballots become
exhausted. Candidate c3 now has 6,776.222 votes. As no candidate has a quota’s
worth of votes, the candidate with the smallest tally is eliminated. Here, this is
candidate c5 on 50 votes. These 50 ballots are given to c2 at their current value
of 1. Candidate c2 now has 3,050 votes. Still no candidate has a quota’s worth of
votes. Candidate c2 is eliminated next. The 50 [c5, c2] ballots become exhausted,
and the 3,000 [c2, c3, c4] ballots are given to c3, who now has 9,776.222 votes.
Candidate c3 has achieved a quota, and is elected to the second seat.

Batch elimination We also consider a variation of the above process in
which a batch elimination step is first performed. We first determine if there
are any candidates for which there is no mathematical possibility for them to
win. For each candidate, we compute the number of ballots on which they are
ranked, and compare this tally to the tally of the N candidates with the highest
first-preference tally. Consider the election in Table 1. The two candidates with
the highest first-preference tallies are c1 on 8,001 votes, and c3 on 5,000 votes.
Candidate c5 is ranked on 50 ballots. Candidates c2 and c4 are ranked on 7,000
and 11,950 ballots, respectively. There is no possibility for c5 to win, so they are
eliminated in the first round, and their 50 [c5, c2] ballots are given to c2.

Tabulation then proceeds as described above. Candidate c1 is elected, giving
c3 1,776.2 votes and a tally of 6,776.2. Candidate c2 is eliminated, giving 3,000
votes to c3. Candidate c3 is elected to the second seat on a tally of 9,776.2.

2.2 Assertion-based Approaches to Risk-Limiting Audits

SHANGRLA [3] provides a general framework for RLAs, using assertions as
‘building blocks’. An assertion is a statement about the full set of ballots in
an election. These are typically expressed as an inequality about some property
that would be consistent with a particular election outcome. An example of an
assertion is “Alice received more votes than Bob”. In the SHANGRLA frame-
work, we need to design a set of assertions such that, if they are all true, they
imply that the reported winner really won the election. To conduct an audit,
we statistically test each assertion using general statistical methods that form
part of the framework. Assertions need to have a specific mathematical form to
fit into the framework. In general, any linear combination of tallies (counts of
different types of ballots) can be converted into a SHANGRLA assertion [2]. All
of the assertions we develop in this paper are of this form.
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Table 2: Assertions verifying the batch elimination of the UWIs and Nikiforakis
in the 2021 BoE election in Minneapolis, Minnesota, and their sample sizes.

Assertion Sample Size

AG(S. Brandt, UWIs) 20
AG(S. Pree-Stinson, UWIs) 35
AG(S. Brandt, K. Nikiforakis) 27
AG(S. Pree-Stinson, K. Nikiforakis) 69

Total cost: 69

3 Context: Batch Elimination First

We first consider how we can verify, in an RLA, that the candidates eliminated as
part of an initial batch elimination did indeed have no mathematical possibility
of winning. To do so, we use the existing AG assertion of Blom et al [1].

AG(w, l) Verifies that candidate w always has a higher tally than l by show-
ing that w’s first-preference tally is higher than the maximum tally l could
achieve while w is still standing: tw,1 > |{b : b ∈ B,first

(
σ{w,l}(b)

)
= l}|.

For a US-STV election E = (C,B,Q, N), let Top = {c1, . . . , cN} ⊂ C denote
the N candidates with the highest first-preference tallies, and Batch ⊂ C the set
of batch eliminated candidates. We verify that candidate c ∈ Batch cannot win
by showing that AG(ci, c) for all ci ∈ Top.

Example 1. We consider the 2021 Board of Estimates and Taxation election in
Minneapolis, Minnesota. This two-seat STV election involved four candidates
– S. Brandt, S. Pree-Stinson, P. Salica, and K. Nikiforakis – and a number of
undeclared write-ins (UWIs). The first-preference tallies were 42672 votes for S.
Brandt, 25597 votes for S. Pree-Stinson, 20786 votes for P. Salica, 5815 votes
for K. Nikiforakis and 755 votes for UWIs. The quota or election threshold was
31876, and out of 145337 ballots, 49712 of these were invalid. The UWIs and
K. Nikiforakis were eliminated in the first round with too few mentions to have
a mathematical possibility of winning. S. Brandt was then elected, P. Salica
was eliminated, leaving S. Pree-Stinson as the second winner. We verify this
batch elimination in an RLA with the assertions shown in Table 2, alongside the
expected number of ballots required to audit them.6 ⊓⊔

Example 2. Batch Elimination First can change the result of an election. Con-
sider the two-seat STV with candidates {w, a, b, c1, c2, c3, c4, c5} and ballots
[w] : 15001, [a] : 6875, [b] : 3125, [c1, w, b] : 1000, [c2, w, b] : 1000, [c3, w, b] : 1000,
[c4, w, b] : 1000, [c5, w, b] : 1000. The Droop Quota is 10001. Without batch elim-
ination we give a seat to w, then all the votes for w exhaust; then each of the ci
are eliminated leaving tallies a : 6825 and b : 8125, and finally b is seated.

6 For all sample size estimations, we assume a risk limit of 10%, an error rate of 2
overstatements per 1000 ballots, and the ALPHA risk function of SHANGRLA [3].
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With a batch elimination all of c1, . . . , c5 are eliminated first, none of them
has enough mentions to beat w, a, or b. Then w gets a seat with 20001 votes in
its tally and each of its surviving votes are transferred at value 0.5. The tallies
for a and b are then a : 6875 and b : 5625, so finally a is seated. ⊓⊔

4 Context: First Round Winner

Let E = (C,B,Q, N = 2) denote a US-STV election with winners w1, w2 ∈ W
in which candidate w1 is elected to the first seat, in the first round of tabulation
(i.e., tw1,1 ≥ Q), after any batch elimination has taken place.

Prior Work: In the approach of [1], an IQ assertion is formed to verify
that w1 has a quota on their first preferences, IQ(w1). They then establish an
estimated upper bound, τw1

, on the transfer value of ballots from w1 using an
assertion of the form UT(w1, τw1). Using this upper bound they create assertions
to show that w2 will always have a higher tally than all other candidates using
NL assertions. The method continues to increase the transfer value upper bound
τw1

, until the sample size of the resulting audit increases, or τw1
reaches 2/3

(the maximum transfer value in a 2 seat STV election).

New Approach: We vary this approach by introducing additional types
of assertions to reduce the expected sample sizes required in an audit. The
assertions (beyond AG) we use are (starred assertions are new):

IQ(c) Verifies that candidate c’s first-preference tally is equal to or greater than
a quota: tc,1 ≥ Q.

UT(c, τ c) Assumes that candidate c has been elected on their first preferences,
and verifies that the transfer value for c is less than τ c: tc,1 < Q/(1− τ c).

LT∗(c, τ c) Assumes that c has been elected on their first preferences, and verifies
that the transfer value for c is greater than τ c: tc,1 > Q/(1− τ c).

AG∗(w, l,W, τ , τ ) An extension of the AG assertion [1]. The assertion shows that
candidate w will always have higher tally than candidate l in the context
where the candidates in W have already been elected to a seat with lower
and upper bounds on their transfer values τ and τ .

The assertion compares the minimum tally of candidate w in this context,
with the maximum tally of l. In the original AG assertion [1], the minimum
tally of w consists only of those ballots on which w is ranked first. The
AG∗ assertion retains this and adds further counts to this minimum tally
by including contributions from some ballots where w is not ranked first.
Specifically, for all ballots b where first(σC−W (b)) = w, we reduce them in
value by taking a product of transfer value lower bounds for the candidates
in W that precede w in its ranking, and add these to w′s minimum tally.7

7 In the actual election, there is a scenario where candidate w does not get these
ballots in their vote count: if w is our next winner after those in W . In such a case,
w will be a winner, and thus we can ignore it since the context where we use these
assertions is precisely to show that w is a winner.
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For each ballot b ∈ B, we define its contribution to the minimum tally of w,
and the maximum tally of l, as follows.

CAG∗

min(b, w,W, τ , τ ) =


1 first(b) = w∏

k∈W ′ τk first(σC−W (b)) = w
and W ′ = {c ∈W : c precedes w in b}

0 otherwise

CAG∗

max(b, l,W, τ , τ ) =


0 l does not occur in b
0 w appears before l in b
maxt(b, l,W, τ) first(b) ∈W
1 otherwise

where maxt(b, l,W, τ) = max{τ c : c ∈ W precedes l in b}. We define the
minimum tally of w, t1min

w , and the maximum tally of l, t1max
l , as follows:

t1min
w =

∑
b∈B

CAG∗

min(b, w,W, τ , τ ) (3)

t1max
l =

∑
b∈B

CAG∗

max(b, l,W, τ , τ ) (4)

We say that AG∗(w, l,W, τ , τ ) iff t1min
w > t1max

l . Note AG(w, l) ≡ AG∗(w, l, ∅, , ).

NL∗(w, l,W, τ , τ , G∗, O∗) An extension of the NL assertion [1]. Establishes that
candidate w will always have a higher tally than candidate l under the as-
sumptions that: (i) the candidates in W have already been seated, with lower
and upper bounds on their transfer values τ and τ ; (ii) G∗ denotes the can-
didates g ∈ C for which AG∗(g, l,W, τ , τ ) holds; and (iii) O∗ the candidates
o ∈ C for which AG∗(w, o,W, τ , τ ) holds. This contrasts with the assumptions
underlying the original NL assertion, which only assumes that the candidates
W are seated at some point. The assertion compares the minimum tally of
w, in this context, against the maximum tally of l.

We define w’s minimum tally at a point at which they could be elimi-
nated, where it is assumed that O∗ have been prior eliminated. This mini-
mum tally includes all ballots b where first(σC−O∗(b)) = w, at value 1, and
all ballots b where first(σC−W (b)) = w, at a reduced value. For the maximum
tally of l, we include all ballots on which l precedes w in their ranking, or
l appears and w does not, excluding those on which a candidate g ∈ G∗

precedes l. For each ballot b ∈ B, we define its contribution to the minimum
tally of w, and the maximum tally of l, as follows.

CNL∗

min(b, w,W, τ , τ , O∗) =


1 first(σC−O∗(b)) = w∏

k∈W ′ τk first(σC−W (b)) = w
and W ′ = {c ∈W : c precedes w in b}

0 otherwise
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CNL∗

max(b, l,W, τ , τ , G∗) =


0 l does not occur in b
0 w appears before l in b
0 a g ∈ G∗ appears before l in b
maxt(b, l,W, τ) first(b) ∈W
1 otherwise

We define the minimum tally of w, t2min
w , and the maximum tally of l, t2max

l ,
as follows:

t2min
w =

∑
b∈B

CNL∗

min(b, w,W, τ , τ , O∗) (5)

t2max
l =

∑
b∈B

CNL∗

max(b, l,W, τ , τ , G∗) (6)

We say that NL∗(w, l,W, τ , τ , G∗, O∗) iff t2min
w > t2max

l .

Figure 1 outlines the procedure used to generate the assertions A of our new
RLA for two-seat STV elections satisfying the first-round winner criterion. The
prior approach [1] involved a single loop in which an upper bound on the first
winner transfer value was incremented, and a candidate audit formed for each
of these potential values for this upper bound. The original AG assertions were
computed prior to this loop, as they did not take into account upper or lower
bounds on the first winner’s transfer value. Our new approach involves two loops
– the outer loop (steps 5-34) over potential values for the lower bound on the
first winner’s transfer value, τw1

, and the inner loop (steps 10-29) over potential
values for the upper bound on the first winner’s transfer value, τw1

. For each
candidate value of τw1

, the inner loop searches for a value for τw1
that results in

the cheapest audit. The outer loop searches for a value for τw1
for which the inner

loop yields the cheapest overall audit. As per Blom et al [1], the first assertion we
create is IQ(w1) to verify that our first winner, w1, does indeed achieve a quota
on their first preferences (step 1). Where a group elimination has taken place,
and our resulting election satisfies the first-round winner criterion, the IQ(w1)
assertion verifies that w1 has a quota on the basis of their first-preference tally
and any votes distributed to them from the group eliminated candidates.

AG∗ assertions, which are used to help us form the NL∗ assertions required
to show that w2 beats all of the original losers, are formed inside the inner loop
(step 14), allowing us to take advantage of both lower and upper bounds on the
first winner’s transfer value. When forming each NL∗, we add an AG∗ to our
audit only if it allows us to reduce the expected ASN of the NL∗ we are trying to
form, and where the ASN of the NL∗ without the AG∗ is higher than that of the
AG∗ itself. In this way, we do not add AG∗ assertions to our audit where their
benefit, in terms of making a NL∗ easier to audit, is outweighed by their cost.

Note that if our final audit contains an AG∗ and NL∗ with the same winner
and loser, we remove the NL∗ from our audit as it is redundant.

Example 3. Consider again the 2021 Board and Estimates and Taxation election
(Minneapolis, Minnesota). Example 1 presents the first stage of an RLA for
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this election, identifying the assertions required to check that the two batch
eliminated candidates did not have a mathematical possibility of winning. After
the distribution of these eliminated candidates’ ballots, we have a three candidate
election that satisfies the first winner criterion.

S. Brandt is elected at this stage, with two remaining candidates (S. Pree-
Stinson and P. Salica) vying for the second seat. Using the algorithm in Figure 1,
we form the assertion IQ(S.Brandt). The ASN for this assertion is 34 ballots.

We then enter the outer loop at step 5 with a lower bound on S. Brandt’s
transfer value set to 0. (Where τw1

is 0 we actually do not compute the associated
LT∗ assertion as it is not necessary). Then, starting with an upper bound on S.
Brandt’s transfer value set to his actual transfer value plus δ (with δ = 0.05), we
enter the inner loop of the algorithm in Figure 1 at step 10. The UT assertion
required to show that S. Brandt’s transfer value is less than, in this case, 0.3311,
has an ASN of 131 ballots. AG∗ assertions are computed (step 14), and the NL∗

assertion required to show that S. Pree-Stinson never loses to P. Salica in the
context where S. Brandt is seated first (steps 16 to 24). The NL∗ assertion has
an ASN of 402 ballots. (In this case, none of the AG∗ assertions were found
to be helpful in reducing the margin of this NL∗ assertion, and AG′ ← ∅ in
step 22). At this stage, we have an RLA for the election that costs 402 ballots.
The inner loop is repeated, with the upper bound on S. Brandt’s transfer value
set to 0.3811. The required UT assertion now costs 60 ballots. However, when
proceeding to create the NL∗ assertion required to show that S. Pree-Stinson
never loses to P. Salica, the assertion now costs 628 ballots. The new candidate
configuration for our RLA is more costly, at 628 ballots, than the previous one,
at 402 ballots. So, we break out of our inner loop at step 29.

We repeat our outer loop, with the lower bound on S. Brandt’s transfer value
now 0.1406 (or half of his actual transfer value, as per step 33). The LT∗ assertion
required to show that his transfer value is greater than this lower bound has an
ASN of 59 ballots. We enter the inner loop at step 5 with the upper bound on
S. Brandt’s transfer value again set to 0.3311. The ASN of the UT assertion
for this bound is, as before, 131 ballots. After proceeding through steps 14–24,
we form an NL∗ assertion to show that S. Pree-Stinson never loses to P. Salica
that now costs 247 ballots (again, we opt not to make use of any computed AG∗

assertions). We now have a configuration for our audit that costs 247 ballots in
total. When incrementing τ for S. Brant to 0.3811, we do not improve upon this
ASN (in fact, it will increase to 285). We break out of the inner loop at step 29.

The outer loop will be repeated with τ for S. Brandt increased to 0.1906. The
required LT∗ assertion for this bound will cost 87 ballots. By working through
the inner loop, as before, we are able to find an audit configuration costing 217
ballots. Repeating the outer loop again with τ for S. Brandt increased to 0.2406
gives us an audit costing 194 ballots. The LT∗ assertion will cost 184 ballots in
this audit, the UT 131 ballots, and the required NL∗ 194 ballots. Incrementing τ
for S. Brandt again to 0.2906, in step 33, puts us beyond his actual transfer value
of 0.2811. The outer loop condition fails, and we finish with an audit costing 194
ballots. This audit contains the assertions listed in Table 3. ⊓⊔
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1 iq ← IQ(w1) ▷ Form assertion to verify that w1 has a quota on first preferences
2 τw1

← 0 ▷ Lower bound on transfer value for first winner w1

3 ASN ←∞ ▷ ASN of our audit
4 A ← ∅ ▷ Assertions in our audit
5 while τw1

< τw1 do ▷ τw1 is the reported transfer value for w1

6 lt← LT∗(w1, τw1
) ▷ Form LT∗ assertion, denoted lt.

7 τw1 ← τw1 + δ ▷ Upper bound on transfer value for first winner w1

8 A′ ← ∅
9 ASN ′ ← ASN
10 while τw1 < 2/3 do
11 ut← UT(w1, τw1) ▷ Form UT assertion, denoted ut.
12 A′′ ← {lt, ut, iq}
13 ASN ′′ ← max(lt.ASN, ut.ASN, iq.ASN)

▷ Compute AG∗ assertions between w2 and each l ∈ losers, and
between each l, l′ ∈ losers such that l ̸= l′

14 AG← [AG∗(c, l, [w1], [τw1
], [τw1 ]) | ∀c ∈ losers ∪ {w2}, l ∈ losers, c ̸= l]

15 O∗ ← [c |AG∗(w2, c, [w1], [τw1
], [τw1 ]) ∈ AG]

▷ Find NL∗ assertions to show that w2 never loses to each l ∈ losers
16 for each l ∈ losers do
17 G∗ ← [c |AG∗(c, l, [w1], [τw1

], [τw1 ]) ∈ AG]

18 t2min
w2
←

∑
b∈B CNL∗

min(b, w2, [w1], [τw1
], [τw1 ], O

∗) (Equation 5)

19 t2max
l ←

∑
b∈B CNL∗

max(b, l, [w1], [τw1
], [τw1 ], G

∗) (Equation 6)

20 if t2min
w2

> t2max
l then

21 nl← NL∗(w2, l, [w1], [τw1
], [τw1 ], G

∗, O∗)

22 AG′ ← AG∗ assertions between w2 and o ∈ O∗, and between
g ∈ G∗ and l, that were used to reduce the ASN of nl

23 A′′ ← A′′ ∪ {nl} ∪AG′

24 ASN ′′ ← max(ASN ′′, nl.ASN, a.ASN ∀a ∈ AG′)

25 if ASN ′′ < ASN ′ then
26 A′ ← A′′

27 ASN ′ ← ASN ′′

28 τw1 ← τw1 + δ
29 else break
30 if ASN ′ < ASN then
31 A ← A′

32 ASN ← ASN ′

33 τw1
← τw1

+ δ if τw1
> 0 and

τw1
2

otherwise

34 else break

Fig. 1: Algorithm for generating assertions A for the revised RLA of a two-seat
STV election satisfying the first-round winner criterion. The two reported win-
ners of the election are w1 and w2, and losers denotes the remaining candidates.
Given an assertion, a, we use the notation “a.ASN” to denote its ASN.
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Table 3: Assertions verifying the election of S. Brandt and S. Pree-Stinson in
the 2021 BoE election in Minneapolis, Minnesota, and their sample sizes.
Assertion ASN Assertion ASN

Batch elimination Election of S. Brandt and S. Pree-Stinson

AG(S. Brandt, UWIs) 20 IQ(S. Brandt) 34
AG(S. Pree-Stinson, UWIs) 35 LT∗(S. Brandt, 0.2406) 184
AG(S. Brandt, K. Nikiforakis) 27 UT(S. Brandt, 0.3311) 131
AG(S. Pree-Stinson, K. Nikiforakis) 69 NL∗(S. Brandt, P. Salica, . . .) 194

Total cost: 194

4.1 Evaluation

We contrast the expected cost (ASN) of our new two-seat STV RLA (for elections
satisfying the first-round winner criterion) relative to the existing method [1].
For sample size estimations, we use a risk limit of 10%, an expected error rate of
2 overstatements per 1000 ballots, and the ALPHA risk function of SHANGRLA
[3]. For the algorithm shown in Figure 1, we use a value of 0.05 for δ. Table 4
contrasts the expected sample sizes required by our 2-seat STV RLAs across a set
of real 2-seat STV instances–four BoE elections held in Minneapolis, Minnesota
between 2009 and 2021, and four elections held as part of the Australian Senate
election in 2016 and 2019–and a series of US and Australian (NSW) IRV elections
re-imagined as 2-seat STV contests. All these instances satisfy the first-round
winner criterion. Selected instances from the full set of 92 NSW Legislative
Assembly (NSW-LA) elections, and 23 US IRV elections, are shown in Table 4.

Across the full set of 92 NSW-LA elections (re-imagined as 2-seat STV), no
RLA could be formed using the prior approach [1] for 8 instances. With the new
method, four of these instances become auditable–although in one case, Lismore,
the cost is still quite high at 2180 ballots. Across the remaining 84 instances, the
new approach reduces required sample sizes by 15% on average. Across the full
set of 23 US IRV elections (re-imagined as 2-seat STV), no RLA could be formed
for six instances using the prior approach [1]. Using the new approach, three of
these instances become auditable, with sample sizes of 3925, 350, and 166, as
shown in Table 4. Again, the new method reduces sample sizes for the remaining
17 elections by 15% on average. For the Australian Senate and Minneapolis STV
elections, the new method reduces required sample sizes by 19%, on average.

5 Scenario: General Method

The general method of Blom et al [1] describes how we can form an RLA for a 2-
seat STV election where no candidate has a quota on their first preferences. We
do not, in this paper, present an improvement to this approach–in the sense of
enabling audits for instances that we could not previously audit. We do, however,
show how we can adapt the method to perform partial audits of elections where
a full RLA, verifying both winners, is not possible. The experiments of Blom et
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Table 4: ASNs for our 2 seat STV RLAs, comparing the original method of [1]
against the revised method. All instances satisfy the first-round winner criterion.
Where the revised method improves on the original, ASNs are in bold.

ASN

Instance |C| |B| Q Prior RLA New RLA

MN BoE 2009 7 32086 10696 191 100
MN BoE 2013 5 48855 16286 33 31
MN BoE 2017 4 69694 23232 23 23
MN BoE 2021 5 95625 31876 402 194

AU Senate’16 ACT 22 254767 84923 77 58
AU Senate’19 ACT 17 270231 90078 131 98
AU Senate’16 NT 19 102027 34010 60 60
AU Senate’19 NT 18 105027 35010 58 58

US IRV elections re-imagined as 2 seat STV

MN Mayor 2013 36 79415 26472 73 73
Aspen’09 Mayor 5 2528 843 43 41
Berkeley’10 D1 CC 5 5700 1901 60 29
Oakland’10 D4 CC 8 20994 6999 82 64
Oakland’10 Mayor 11 119607 39870 – 3925
Oakland’10 D6 CC 4 12911 4304 – 350
Pierce’08 CE 5 299132 99711 – 166

NSW’19 Legislative Assembly elections re-imagined as 2 seat STV

Ballina 6 50127 16710 66 66
Bathurst 6 50833 16945 81 57
Clarence 6 49355 16452 147 84
Coffs Harbour 8 47333 15778 1225 515
Cootamundra 6 47448 15817 – –
Heffron 5 50010 16671 1778 211
Holsworthy 6 48244 16082 20 20
Ku-ring-gai 6 48730 16244 202 99
Lake Macquarie 6 50082 16695 129 73
Lane Cove 6 50941 16981 132 109
Lismore 7 48145 16049 – 2180
Manly 6 48316 16106 363 150
Newcastle 8 50319 16774 214 173
North Shore 9 47774 15925 470 184
Northern Tablelands 4 48678 16227 – 143
Oxley 5 48540 16181 98 80
Pittwater 8 49119 16374 163 110
Summer Hill 6 48785 16262 – 110
Tamworth 6 50578 16860 – 129
Vaucluse 7 46023 15342 – 325
Wallsend 5 51351 17118 149 83
Willoughby 8 47857 15953 – –
Wollondilly 8 50989 16997 120 88
Wollongong 7 51435 17146 205 123
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al [1] demonstrate that forming full RLAs for this class of 2-seat STV elections
is challenging, and generally not possible with existing methods.

A partial RLA can be used to verify some aspects of the election outcome.
For example, that some reported losers did indeed lose, and that one of the
reported winners did indeed win. In this paper, we reframe the general method
into five stages. We still use the original assertion types, AG and NL, as we are
not assuming that one or more candidates have been previously seated. Stages
1, 2, and 3 are present in the general method of Blom et al [1]. Stages 4 and 5
are introduced in this paper to (i) describe how we can form a partial RLA for a
2-seat STV election when a full RLA cannot be formed (Stage 5) and (ii) reduce
the required sample size of the resulting partial or full RLA (Stage 4).

1. Form AG Assertions For each pair of candidates c, c′ ∈ C, we determine
whether we can form the assertion AG(c, c′). We keep track of each AG that
we can form, and its cost.

2. Rule out candidates (find Definite Losers) We use the AG assertions
that we formed in Stage 1 to determine whether some candidates definitely
lost the election. All candidates c ∈ C for which there exists at least two other
candidates c′, c′′ ∈ C−{c} such that AG(c′, c) and AG(c′′, c) definitely lost the
election. We denote this set of candidates DL, and the set of AG assertions
required to show that these candidates definitely lost as ADL. This set will
contain two AG assertions for each definite loser. The maximum sample size
required to audit any assertion in this set is denoted the Stage 2 sample size.

3. Rule out alternate winner pairs We consider all pairs of candidates from
the set C−DL, excluding the pair of reported winners, as potential alternate
winner outcomes. We follow the approach of Blom et al [1], and attempt to
rule out each of these alternate winner pairs with an NL assertion. For a pair
(c1, c2), we first assume that c1 is seated at some point, and look for another
candidate c′ that never loses to c2 in this context:

NL(c′, c2, [c1], G,O)

where G is the set of candidates g for which AG(g, c2) and O the candidates
o for which AG(c′, o). We compare the cost of this NL assertion with one
formed when we assume that c2 is seated at some point, and look for a c′

that never loses to c1:

NL(c′, c1, [c2], G,O)

where G is the set of candidates g for which AG(g, c1) and O the candidates
o for which AG(c′, o). The cheapest NL, assuming we are able to form at least
one, is used to rule out the outcome of c1 and c2 winning together. We denote
the set of assertions used to rule out candidate pairs in this stage, A3. This
set includes the formed NL assertions and any AG assertion used to reduce
the margin of those NL assertions. The maximum sample size required to
audit an assertion in this set the Stage 3 sample size.
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4. Reduce audit sample size Ruling out a candidate c in Stage 2, by look-
ing for two other candidates who tallies are always greater than c, may be
unnecessarily costly. We may have been able to rule out all alternate winner
pairs involving c with cheaper NL assertions in Stage 3.

While the Stage 2 sample size is higher than that of Stage 3, we take the
current ‘most difficult to rule out’ candidate in DL, d. Let ASN2

d denote the
sample size required to rule out d as a potential winner in Stage 2. We form
a set of alternate winner pairs by pairing d with all candidates in C −DL.
We perform the Stage 3 process over this new pair set. If the sample size
required to rule out these pairs, ASN3

d , is less than ASN2
d , we:

(a) Remove the assertions formed in Stage 2 to rule out d from ADL;

(b) Add the new assertions formed to rule out all alternate winner pairs
involving d to A3;

(c) Update the Stage 2 sample size, excluding the cost of ruling out d;

(d) Update the Stage 3 sample size to include ASN3
d ; and,

(e) Remove d from DL.

If ASN3
d ≥ ASN2

d , or we could not rule out the new set of alternate winner
pairs, we do not change our audit and move to Stage 5. Otherwise, we take
the next most difficult to rule out candidate in DL, and repeat Stage 4.

5. Summarise what can (and cannot) be audited If we have been able
to rule out each alternate winner pair with an NL, we have a full RLA. This
RLA contains the assertions in ADL and A3. If we were not able to rule out
every alternate winner pair, we consider whether the ones we could rule out
imply that some additional candidates definitely lost or definitely won. Let
Rem denote the set of alternate winner pairs that we could not rule out.

– Definite Winners If there is a candidate c present in every remaining
pair in Rem, we add this candidate to a set DW .

– Definite Losers Includes all candidates in DL (Stage 2) and any c ∈
C − DL (excluding the reported winners) that is not present in any of
the alternate winner pairs in Rem. Each such c is added to DL.

– Potential Winners All candidates in the set C − DL are potential
winners. These are reported losers and winners whose elimination or
election we could not verify.

Our partial RLA contains the assertions in the set ADL ∪ A3 and can be
used to establish that the candidates in the set DL definitely lost, and that
the candidates in the set DW definitely won.

Example 4. Consider the 2022 Australian Senate election for ACT, a 2-seat STV
election that does not satisfy the first-round winner criterion. The quota for
this election was 95073. None of the 23 candidates have a quota on their first
preferences. GALLAGHER won her seat after the elimination of 11 candidates.
After a further 9 candidates were eliminated, POCOCK won the second seat. In
Stage 1, we can form 44 AG assertions with ASNs ranging from 14 to 1141. In
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Stage 2, we use some of these AGs to mark 16 candidates as definite losers. The
maximum ASN of the assertions we use in this stage is 775. In Stage 3, there are
20 alternate winner pairs that we can form with the remaining 7 candidates. We
are able to rule out all but three of these with NL assertions, requiring a sample
size of 420 ballots. The most expensive candidate to rule out as a winner in Stage
2 requires a sample of 775 ballots. In Stage 4, we take this ‘expensive to rule
out candidate’, d, and rule out all alternate winner pairs involving d with NL
assertions instead. These NL assertions have a maximum ASN of 47 ballots. Our
overall audit cost reduces to 420 ballots. Our Stage 5 summary indicates that
we can show that GALLAGHER correctly won, and that four of the remaining
22 candidates, including POCOCK, are potential winners. ⊓⊔

We have collected data for 587 3-4 seat STV elections taking place in 2017
and 2022 to elect local councillors in Scotland. These elections involve 3 to
13 candidates. When viewed as 2-seat STV elections, 428 of these instances
involve an elimination in the first round. A full RLA can be formed for 68 of
these 428 instances. For this set of 68 instances, performing Stage 4 reduces
required sample sizes by 58% on average for 20 elections of the 68 (reductions
range from 5% to 97%), and makes no difference on required sample size for
the remaining 48. For the 360/428 instances for which a full RLA could not be
formed, performing Stage 4 reduces the required sample size of the partial RLA
in 122/360 of these instances (by 49% on average, from 2% to 99%).

6 Concluding Remarks

Auditing STV elections is a challenging problem, but one of very real interest
given the common use of STV throughout the world. The main challenge arises as
ballots can change their value across tabulation. In this paper we have shown how
reasoning about both lower and upper bounds on transfer values may improve
our ability to audit 2-seat STV elections. The revisions substantially reduce the
number of ballots expected to be required to audit an election, and in some cases
makes it possible to audit an election that the previous method [1] could not. We
also show how to effectively audit batch elimination, as well as partially audit
elections where no candidate gets a quota initially. While significant advances
are still required to get to the point of auditing large Australian Senate elections,
STV elections with 6 seats and over 100 candidates and say 4 million ballots,
the new techniques we develop here help us on the path to this goal.
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