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Abstract. Scalable Transparent ARguments of Knowledge (STARKs)
are a kind of succinct zero-knowledge proof which do NOT require trust-
ing any party to generate a Common Reference String (CRS). In this
work, we examine the applicability of STARKs to improving Counted-
as-Collected verification in the homomorphically tallied elections. In par-
ticular we are interested in using STARKs to allow very efficient tally
verification while providing everlasting privacy to the information made
available for public verification. This work provides a useful reference for
the computational and verifiability trade-offs of using STARKs.

1 Introduction

A slew of various electronic voting protocols and systems (Helios, STAR-Vote,
Belenios, ElectionGuard, etc.) follow a general approach pioneered by Benaloh
and Yung [BY86] that utilises homomorphic encryption to preserve privacy while
maintaining the verifiability of these systems. In this general approach, voters
submit additively homomorphic ciphertexts which are then composed into an
output ciphertext representing the vote tally. This output ciphertext can then
be decrypted to reveal the vote tally, all while the underlying votes are never
exposed and remain secure in their encrypted form. This approach preserves the
privacy of voters while also maintaining verifiability of the voting protocol.

The exact verification procedure differs between voting systems but in gen-
eral the verifier checks zero-knowledge proofs to ensure the (encrypted) ballots
are well formed and then homomorphically combines these checking that the
accumulated ciphertext decrypts to the claimed result, with the aid of more
zero-knowledge proofs; optionally, the verifier may also check that the ballots
came from valid voters by checking digital signatures or the like.

The intuition behind the approach we evaluate is that we get the tallier, or
a third-party, to produce a STARK proof which says that all the evidence is
valid with respect to the normal verification procedure; the verifier then checks
the STARK proof rather than original evidence. We enhance this approach by
committing (within a Merkle tree) to the original verification data in constant

⋆ Thomas Haines is the recipient of an Australian Research Council Australian Dis-
covery Early Career Award (project number DE220100595).

1



size which reduces the data required to verify dramatically; the statement proved
by the STARK proof is then that the prover can open the commitment to values
which satisfy the normal verification procedure.

1.1 Limitations of the existing approaches

On a per ballot basis the standard homomorphic tally approach is fairly efficient,
at least for simple elections, but the cost of verification grows linearly in the
number of ballots cast which quickly become prohibitive. In our running example
of a referendum with 224 voters (roughly the number of eligible voters in the
Australian 2023 Voice referendum) the verification time is approximately 77
core-days and the size of the inputs to the verification is roughly 38 GB; these
values will be explained in Section 3. While these values are certainly manageable
they do pose a hurdle to the idealised world where each voter checks the election
result for themselves.

In addition to the computational costs of verification, many Governments
have been hesitant to release the data required for verification even when it ex-
isted; examples of this include the Estonian IVXV system [oE], the Swiss Post
system [Swi21], and iVote system as used in New South Wales and Western Aus-
tralia. While this hesitation is certainly multifaceted the privacy risk of doing so
is certainly a significant part of the equation; for example, the lack of random-
ness in ballot generation [Gjø16] in the Norwegian system would have been much
more disastrous if these ballots were published. Ideally, we like a system where
the information released for verification perfectly hid the individual ballots à la
everlasting privacy [HMMP23].

1.2 STARKs

There has been an orthogonal thread of research and development in crypto-
graphic proof schemes within the last decade, enabling the construction of suc-
cinct ZK proofs - these novel proof schemes enable the construction and verifi-
cation of ZK proofs in radically shorter time frames and data sizes. A prominent
example of such a system is one introduced by [BSBHR18]: STARKs (Scalable
Transparent ARguments of Knowledge) are a proof-of-computation scheme that
have a number of attractive properties relevant to the development of e-voting
systems. They are fully transparent, meaning they do NOT rely on any complex
trusted setup ceremonies. They rely on very few cryptographic assumptions and
are very modular to any specific implementation. STARKs are also highly par-
allelisable, allowing huge workloads to be distributed efficiently. Crucially, the
STARK-constructed succinct ZK proofs are very efficient to both generate and
verify, with verification time and proof size sublinear in the size of input data.

1.3 STARKs for Counted-As-Collected

There are many places in an electronic voting protocol where one might con-
sider using STARKS, or Zero-Knowledge Succinct Non-Interactive Argument of

2



Knowledge (SNARKs) if one is willing to accept the trust assumption; to our
knowledge all other previous works considered SNARKs but STARKs could be
used instead at an increased computational cost. Huber et al. [HKK+22] use
them to prove that an election result (the outcome of the social choice function)
is correct with regards to commitments to votes. Both Sheikhi et al. [SGS23] and
Devillez et al. [DPP22] use it as part of ballot validity proofs. We, however, are
interested in the applicability of STARKs to enhance existing homomorphically
tallied election systems by increasing the efficiency and privacy of checking that
the election result is correct with regards to the collected ballots (Counted-as-
collected), and optionally eligibility verification as well.

While STARKs immediately fix the computational-time issue for the verifier
they do not immediately fix the issue with verification input size since we would
still need to send all the encrypted votes; we address this issue by committing to
all the encrypted votes in a Merkle tree and sending the root of the tree along
with the STARK proof, see Section 2 for details. In addition, there is no guar-
antee that the prover can produce the proofs for the statements we care about
within the time-frame of an election. Our analysis shows that primary constraint
on the prover, at least on the current state-of-the-art implementations, is not the
execution time but rather the availability of Random Access Memory (RAM);
we address this limitation by producing proofs which prove that batches of votes
are: well formed, come from valid voters, and are correctly homomorphically ac-
cumulated. The homomorphically accumulated ciphertexts from each batch are
then themselves combined and verifiable decrypted.

One of the advantage of using a Merkle tree is that we can provide logarithmic
sized proofs of inclusion to voters that their ballot is among those tallied. In the
specific instance we evaluated, which used digital signatures, this is not necessary
since the fact that one of ballots has a signature valid with respect to the voter’s
public key serves to prove inclusion. However, in many cases digital signature
are not used and the ability to prove Collected-as-Cast in sublinear time and
space is important to the overall efficiency of the system; we note that care must
be taken to ensure all internal nodes of the Merkle tree are perfectly hiding if
this approach is taken and everlasting privacy is desired.

Our construction reduces the amount of time and data required to verify
an election result by l orders of magnitude, at the cost of increasing the re-
quired RAM of the talliers by l orders of magnitude. Our construction hides the
verification information behind a perfectly hiding commitment: a computation-
ally unbounded adversary cannot extract any more information about individual
votes than what is revealed by the vote result. We also present evaluation data
for an example implementation of the protocol to practically characterise the
asymptotic behaviour of the protocol in both proving and verification.

1.4 Contribution

We believe the approach we evaluate is essentially the obvious way to use
STARKs in the context of existing homomorphically tallied voting systems; in
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that sense, we consider this work’s primary contribution to be carefully pre-
senting and evaluating this approach rather than the approach itself. The only
downside of the approach we evaluate, that we are aware of, is the marked in-
crease in difficulty in building an independent verifier; we note that this could
be mitigated by having some verifiers directly verify the original proofs though
we would need to trust those verifiers for everlasting privacy.

– We formalise a construction which reduces the amount of data and time
required to verify by l orders of magnitude at the cost increasing the RAM
the bulletin board needs by l orders of magnitude.

– The construction hides the verification information behind a perfectly hiding
commitment so that even an unconstrained adversary cannot recover the
individual votes being each commitment.

– The construction also allows proofs of collected-as-cast which are logarithmic
in the number of voters.

– We characterise the asymptotic behaviour of both the prover and the verifier.

In our running example a tallier machine with ∼6TB RAM (relatively cheap
in the context of modern data centres), reduces the verification time from ap-
proximately 77 core-days for a naive execution of the verification procedure to a
projected time of 2.57 core-minutes. In addition, it reduces the sizes of the inputs
from the naive 37.92GB to a total proof size of 1.54 GB, being the collective size
of the STARK proofs for each batch.

Our evaluation code can download from the following link
https://github.com/gerlion/STARKs for Homomorphic Tallying.

2 Construction

For completeness we present a somewhat simplified protocol demonstrating the
technique; this construction is not intended to be a contribution and is essentially
[CGS97] with some small modifications. The e-voting protocol consists of the
following participants:

– the election authority EA.
– the set of voters V1, . . . , Vn.
– the set of talliers T1, . . . , Tm.

The protocol requires some form of communication between the participants.
We model this (following [CPP13]) through two append-only bulletin boards: the
public bulletin board PB and the secret bulletin board SB. All participants can
read from and publish to the public bulletin board PB. We assume the content of
the secret bulletin board SB is only able to be read by the talliers T1, . . . , Tm, but
anyone can write to the board SB via a private (but not anonymous) channel.1

1 i.e. an outside observer can store the metadata of the channel but not the actual
correspondence data. This corresponds to the assumptions made in the literature for
practical everlasting privacy. We have practical constructions to realise such channels
long-term, e.g. post-quantum TLS [SSW20].
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The election authority EA is responsible for setting up the election (date,
set of candidates, voting methods, etc.). The election authority EA provides
the following election public information: the candidate list, the list of eligible
voters’ signature public keys, the list of valid talliers’ signature public keys, and
the public voting parameters. We assume that the authority EA has a valid
signature public key pkEA known to all participants.

The voters interact with the authority EA to register for an election. They
publish their ballot information to SB. The talliers are responsible for tallying
the results - they read the ballot from the SB, verify voter signatures and the
ballot correctness proofs, compute the tally and commitment values, and publish
the resulting tally, commitment values, and STARK proofs to the PB.

For the election scheme, PK denotes the public ElGamal encryption key and
sk denotes the secret decryption key such that PK = sk ·G, note we are using
multiplicative notation since ElGamal will be defined over an elliptic curve in our
evaluation. The secret key sk is jointly generated by the talliers using standard
techniques, we denote skj as the jth share of the secret key.

2.1 Cryptographic primitives

The proposed e-voting protocol is composed of several cryptographic primitives
and relies on several proof systems.

Definition 1 (ElGamal Encryption Scheme). The ElGamal encryption
scheme is a triple of PPT algorithms defined as follows:

– KeyGenE(λ) → (P,K, sk): on input of security parameter λ, it derives the
encryption parameters P = (G, q, g), chooses the secret key sk ∈ Zq, and
computes the public key K = sk ·G ∈ G, where sk ·G denotes the generator
element G ∈ G composed with itself sk times. The parameters P contains a
cyclic group G of prime order q generated by G with group composition ◦,
and Zq is the additive subgroup of integers modulo q.

– Enc(P,m,K)→ (α, β): on input of a message m ∈ G and public key K ∈ G,
it chooses r ∈ Zq and computes (α, β) = (r ·G,m ◦ (r ·K)).

– Dec(P, (α, β), sk) → m: on input a ciphertext (α, β) and secret key sk, it
computes m = β ◦ (−sk · α) = (m ◦ (r ·K) ◦ ((r − sk) ·G).

Definition 2 (Digital Signature Scheme). A digital signature scheme
S is a triple of PPT algorithms defined over a (finite) message space M and a
signature space Σ as follows:

– KeyGenS(λ) → (sk, pk): on input of security parameter λ, it chooses a sig-
nature key pair (sk, pk).

– Sign(m, sk) → σ: on input a message m ∈ M and a signing key sk, it
outputs a signature σ ∈ Σ.

– VerifyS(σ,m, pk)→ 0/1: on input a signature σ, message m, and verification
key pk, it outputs 1 if it accepts the signature and 0 otherwise.
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We require that for a validly generated key pair (sk, pk)← KeyGenS(λ) and for
any message m ∈M, a valid signature σ ← Sign(m, sk) must be accepted:

Pr[VerifyS(σ,m, pk) = 1] = 1

The signature scheme used by the protocol should be secure: participants in
the scheme should be convinced that the respective parties actually authored
any published information in order for verification to be valid.

Authenticated Data Structures An authenticated data structure (ADS) allows a
party to compute a short hash H(L) of some sequence L = (x1, . . . , xn) so that
the party can:

1. prove properties (e.g. membership and non-membership) of L with respect
to H(L).

2. commit to the sequence L, i.e. another party can receive H(L) and know
that the committing party cannot change the sequence L without changing
H(L).

An ADS scheme can be seen as an extension of the more general commitment
scheme2.

Definition 3 (ADS Scheme). An authenticated data structure scheme
D is a quadruple of PT algorithms defined over some input element space X as
follows:

– SetupA(λ)→ AP: on input of security parameter λ, it derives commitment
parameters AP including a description of some collision-resistant hash func-
tion H : X → Y where the input to H can either be single element in X or
a pair of elements in Y.

– Commit(AP, L)→ r: on input of commitment parameters AP and some list
of elements L = (x1, . . . , xn) ∈ Xn, it derives a commitment value r ∈ Y.

– Open(AP, i, x, L) → ϕ: on input of commitment parameters AP, an index
1 ≤ i ≤ n, an element x ∈ X , and a list L ∈ Xn, it outputs a membership
proof ϕ that x = xi for L = (x1, . . . , xn).

– VerifyA(AP, i, x, r, ϕ) → 0/1: on input of commitment parameters AP, an
index 1 ≤ i ≤ n, an element x ∈ X , a commitment value r ∈ Y, and a
membership proof ϕ, it outputs 1 if it accepts the proof and 0 otherwise.

For any sequence L ∈ Xn with a commitment value r ← Commit(AP, L) and
any element xi ∈ L, a valid membership proof ϕ ← Open(AP, i, x, L) must be
accepted:

Pr[VerifyA(AP, i, x, r, ϕ) = 1] = 1

2 In a commitment scheme, a party commits to a general message m instead of com-
mitting to a sequence L. We can view the ADS scheme as a commitment scheme with
the additional functionality of proving some desired properties about the committed
message.
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It should be hard for a party to commit to some sequence and be able to
prove false properties about that sequence.

NIZK Ballot Correctness Proofs. To maintain voter privacy, the protocol
aggregates voter ballots in their encrypted form. This is susceptible to voters
encrypting non-valid plaintext votes: if a voter encryptsm′ = 100·G and submits
this to a simple referendum (where valid votes are either 0 or 1) this could
unfairly impact the final vote result. We thus want to able to form proofs of
ballot correctness that m ∈ {0 · G, 1 · G}, but in such a way that we do not
reveal the underlying vote value. This is achieved through a NIZK proof system
Φ = (ProveB,VerifyB) where the two PPT algorithms are defined as follows:

– ProveB(v, (α, β), PK) → π: on input of a vote v, an ElGamal ciphertext
(α, β), and an encryption public key PK, it outputs a NIZK ballot cor-
rectness proof π.

– VerifyB(π, (α, β), PK) → 0/1: on input of a NIZK ballot correctness proof
π, a ciphertext (α, β), and an encryption public key PK, it outputs 1 if it
accepts the proof and 0 otherwise.

A valid proof π ← ProveB(v, (α, β), PK) is one for which the vote v is a valid
value for the respective election, the ciphertext (α, β) hides v, and the public
key PK is the one used to encrypt (α, β). The NIZK proof system used by
the protocol should be sound: only valid proofs (with overwhelming probability)
should be accepted by VerifyB.

2.2 Definition of the Protocol

We first explicitly specify a relation R proved by the STARK framework in the
protocol. For ciphertext c, NIZK ballot correctness proof π, signature σ, voter
public signature key pk, and public encryption key PK, define the predicate p
to accept valid signature and proof tuples, i.e.

p(c, π, σ, pk, PK) =

{
1 if [VerifyS((c, π), σ, pk) = 1] ∧ [VerifyB(π, c, PK) = 1]

0 otherwise

Then for private witness ω = (pk1, . . . , pkn, c1, . . . , cn, η) where

– pk1, . . . , pkn is the list of voter public keys.
– c1, . . . , cn is the list of voter ciphertexts.
– η ∈ Zq is the secret hiding value.

and public inputs ρ = (rp, r
′
c, C) where

– rp is the commitment value to the list of voter public keys.
– r′c is the product of the commitment value to the list of voter ciphertexts

and the secret hiding value η.
– C is the product ciphertext of the voter ciphertexts.
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define the relationR over public encryption key PK by the following conjunction:

R(ρ, ω) : [rp = Commit(pk1, . . . , pkn)]∧
[r′c = Commit(c1, . . . , cn) · η]∧[

n∧
i=1

p(ci, πi, σi, pki, PK)

]∧[
C =

n∏
i=1

ci

]

The protocol (see Fig. 1) is then defined in terms of four functions, i.e.
EP = (SETUP,VOTE,TALLY,EXTRACT) and proceeds in five phases: Setup,
Voting, Tallying, Result, Verification. The functions are specified as follows:

– SETUP(λ, l, l′) → (PP, SK,mEA, σEA) - on input a security parameter λ,
list of voter public signature keys l = {pk1, . . . , pkn}, and list of tallier public
signature keys l′ = {pk′1, . . . , pk′m}:
1. generates the public parameters PP = (P,AP,SP, PK) where AP ←

SetupA(λ), SP ← SetupT(λ), (P, PK, SK)← KeyGenE(λ).
2. for the parameter message mEA = (PP, l, l′), produces a signature
σEA ← Sign(mEA, skEA).

– VOTE(v, pk,mEA, σEA)→ (mv, σv) - on input a vote value v, a voter private
signature key sk, and a parameter message-signature pair (mEA, σEA):
1. attempts to verify the message VerifyS(mEA, σEA, pkEA) → 0/1. On

success it extracts the public parameters PP, and halts on failure.
2. encrypts the vote into a ciphertext c← Enc(v, PK).
3. produces a NIZK proof of ballot correctness π ← ProveB(v, c, PK).
4. for the ballot messagemv = (c, π), produces a signature σv ← Sign(mb, sk).

– TALLY(mEA, σEA,Mv, Σv, pk
′, SKj) → (mt, σt) - on input a parameter

message-signature pair (mEA, σEA), a set of voter ballotsMb = {mv1, . . . ,mvn}
with signatures Σv = {σv1, . . . , σvn}, a tallier public signature key pk′, and
a portion of the secret decryption key SKj :
1. verify both the parameter message VerifyS(mEA, σEA, pkEA)→ 0/1 and

the voter ballots VerifyS(mvi, σvi, pki) → 0/1 together with NIZK cor-
rectness proofs VerifyB(πi, ci, PK) → 0/1. For any ballots which fail
either the signature or proof check reject the ballot.

2. takes the product of all verified ciphertexts Cj =
∏n

i=1 ci.
3. computes commitment values rp ← Commit(pk1, . . . , pkn),
rc ← Commit(c1, . . . , cn) for the included ballots.

4. composes the ciphertext commitment rc with a random hiding value
η ∈ Zq to obtain the output commitment value r′c = η · rc.

5. produces a STARK proof ψj ← ProveT(τj , ρj , ωj) for public inputs
ρj = (rp, r

′
c, Cj), private witness ωj = (pk1, . . . , pkn, c1, . . . , cn,m), and

computational trace τj asserts the relation R(ρ, ω).
6. decrypts the vote result Cj into the partial plaintext Γj with the portion

of the secret key Γj ← Dec(Γj , SKj).
7. for the messagemt = (ψ, ρ, Γj), produces the signature σt ← Sign(mt, sk

′).
– EXTRACT(Mt, Σt) → (Γ, σC) - on input a set of potential tally messages
Mt = {mt1, . . . ,mtm} with corresponding signatures Σt = {σt1, . . . , σtn}:
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1. attempts to verify the tally messages VerifyS((ψj , ρj , Γj), σj , pk
′
j)→ 0/1

and verify the STARK proofs VerifyT(ψj , ρj) → 0/1. If fewer than k
tally messages succeed both checks, it halts execution.

2. aggregates the partial results Γ1, . . . , Γm into the final result Γ =
∏m

j=1 Γ
′
j .

3. produces the signature σC ← Sign(Γ, skEA).

The relation R is equivalent to the computational integrity of the function
TALLY on input-output pair (ω, ρ): if the relation R holds then c is the valid
product of the input ciphertexts, rp and r′c are valid commitment values, and
each ciphertext is proven to be correct and from a valid public key.

Assuming that the used signature scheme is secure, the ADS scheme is secure,
binding, and hiding, and the non-interactive proof systems used by the protocol
are both sound and zero-knowledge, we intend the protocol to have:

– privacy against an efficient adversary, with access to the ballot ciphertexts.
– everlasting privacy against a computationally unbounded adversary with

access to only published information and communication metadata.
– efficient collected-as-cast verification through the ADS membership proofs.
– efficient counted-as-cast verification through the STARK proofs.

3 Evaluation

This section discusses the details of an example implementation of the protocol,
presents the collected performance data and projects it to larger inputs, and
compares the resulting data to a naive verification of an election.

3.1 Implementation Details

The implementation is primarily written in Cairo0 [GPR21]. The Cairo runner
is given the implementation program and voting input data ω, and outputs
a compiled Cairo program and public inputs ρ. The compiled Cairo program,
private witness ω, and public inputs ρ are passed to a STARK prover outputting
a STARK proof ψ. The proof ψ and public inputs ρ can then be passed to a
STARK verifier for verification of results. The implementation instantiates the
protocol’s cryptographic primitives using:

– Elliptic Curve: the STARK elliptic curve [Sta23a].
– Hash Function: the Pedersen hash function [HBHW22, Section 5.4.1.7].
– Digital Signature Scheme: the Elliptic Curve Digital Signature Algorithm

(ECDSA) [JMV01].
– ADS Scheme: Functionality is provided either using Merkle trees or hash

chains. The presented performance data is collected using Merkle trees. If
the hash function used to construct a Merkle tree is collision resistant, the
Merkle tree ADS scheme is provably secure [BS23, Theorem 8.8].

– NIZK Proofs: NIZK proofs of ballot correctness are implemented according
to the ElectionGuard (Version 2.0.0) specification [BN23].
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The Protocol

(Setup Phase) To setup an election, EA performs the following steps:

1: Aggregates l = {pk1, . . . , pkn} and l′ = {pk′1, . . . , pk′m}.
2: Generates (PK,SK,mEA, σEA)← SETUP(λ, l, l′).

3: Chooses a threshold tuple (k,m) and distributes PKj to T1, . . . , Tm.

4: Writes (mEA, σEA) to PB.

(Voting Phase) To cast a vote vi, the voter Vi with public key pki performs the following
steps:

1: Reads a potential message-signature pair mEA, σEA from PB.
2: Generates (mvi, σvi)← VOTE(vi, pki,mEA, σEA). If execution is halted due to a
failed

signature, restart at step 1.

3: Writes (mvi, σvi) to SB via a private channel.

(Tallying Phase) To produce a partial vote result Γj , the tallier Tj with public key pk′j
performs the following steps:

1: Reads a potential message-signature pair mEA, σEA from PB.
2: Reads the set of submitted message-signature pairs Mv, Σv from SB.
3: Generates (mt, σt)← TALLY(mEA, σEA,Mv, Σv, pk

′, SKj). If execution is halted
due to a

failed parameter message signature, restart at step 1.

4: Writes (mt, σt) to PB.

(Result Phase) To announce an election result Γ , EA performs the following steps:

1: Reads the set of submitted tallier message-signature pairs Mt, Σt from PB.
2: Generates (Γ, σC)← EXTRACT(Mt, Σt). If execution is halted due to

too many failed signatures, restart at step 1.

3: Writes (Γ, σC) to PB.

(Verification Phase) To verify a result, each voter Vi can optionally perform the follow-
ing steps:

1: Query the tallier Tj for the membership proof ϕj ← Open(i, ci, ω). The voter Vi

can then

verify this proof VerifyA(i, ci, r
′
c)→ 0/1.

2: Verify the signature of the announced election result VerifyS(Γ, σC , pkEA)→ 0/1.

3: Verify the set of submitted tallier message-signature pairs Mt, Σt from PB,
i.e. VerifyS((ψj , ρj , Γj), σj , pk

′
j)→ 0/1.

4: Verify the set of submitted STARK proofs ψ1, . . . , ψm by VerifyT(ψj , ρj)→ 0/1.

Fig. 1. Protocol Summary
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– Commitment Scheme: Pedersen commitments [Ped91]; standard mea-
sures need to be taken to ensure the commitments are binding [HLPT20].

The group points of the STARK elliptic curve over the Cairo field provides the
finite cyclic group used for ElGamal. The StarkWare STONE prover and ver-
ifier [Sta23b] is used to provide the STARK functionality. The STONE prover
supports multithreading, so the implementation is easily able to take advantage
of parallelism to reduce the proving time for higher core CPUs. The main lim-
itation of the implementation is the amount of system memory required by the
STONE prover.

3.2 Performance Data

Default STONE proof & prover parameters were used to produce STARK proofs
at an estimated security level of 128 bits. There is a tradeoff in these parameters
between proof security, proof size, proving time, and memory usage. Much more
aggressive memory optimisations are possible at the cost of proving time and
vice versa. The evaluation data was collected on the following machine:

Evaluation Machine Specifications

– CPU: AMD Ryzen 3 2200G - 4 cores, 4 threads @ 3.5GHz
– RAM: 16GB DDR4 - 2400 MT/s
– Operating System: Fedora Linux 38 (Workstation Edition) x86 64

We are limited in data collection by the system memory requirements: an
input of 27 votes would have a minimum memory requirement for proving of
(2 · 32 · 223 · 27) ≈ 14.5GB, which cannot be run on the evaluation machine. We
are thus limited to lengths of inputs up to 26 votes. We present implementation
timing data is in Table 1, and the implementation memory data is in Table 2.
Actual measured observations are stated in black, and projected values for larger
inputs are presented in red. Projections are simplified versions of the proven the-
oretical asymptotic behaviour for STARKs: verification time and proof size are
modelled logarithmically in the number of votes, whereas runner time, prov-
ing time, and peak memory usage are modelled linearly. This is likely slightly
optimistic but presents a useful contextualisation of the asymptotic behaviour.

Due to the parallelism of the STONE prover, proving time is measured in
core-minutes (core-min): the total amount of time measured for all assigned
cores. This can be divided by the number of CPU cores assigned to a workload
to yield the actual proving time - e.g. a proving time of 6.46 core-minutes is
equivalent to a proving time of 1.62 minutes on the 4-core evaluation machine’s
CPU. Verification time is also measured in core-seconds.

We see the two main draw of STARKs in the performance data: verification
time remains practically constant for all sizes of inputs, and proof size grows at
an exponentially slower rate as compared to the sizes of the inputs. This comes
at the cost of a linear increase in the amount of system memory required by the
talliers. We can mitigate this memory requirement by some degree by configur-
ing the prover parameters (at the cost of increasing the proving time), but we
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Input Votes Runner (min) Proving (core-min) Verification (core-s)

4 0.08 1.77 0.18
8 0.14 3.23 0.16
16 0.26 6.46 0.17
32 0.50 12.91 0.17
64 0.98 26.25 0.22
128 1.93 52.35 0.23
256 3.84 104.73 0.24
512 7.65 209.49 0.25
1024 15.28 419.01 0.27
2048 30.53 838.04 0.28
4096 61.03 1676.10 0.29
8192 122.04 3352.22 0.31
16384 244.06 6704.46 0.33
32768 488.09 13408.94 0.34

Table 1. Implementation timing data. Projections in red.

are fundamentally limited by the minimum lower bound memory requirement.
Proving time represents the majority of the computational workload, but is likely
fairly trivial for a server-grade machine that is able to readily exploit the prover’s
parallelism. We can handle larger tallies by running the protocol on batches of
the input votes and combining each batch’s results. This comes at the cost of
a linear increase in verification time and proof size in the number of batches,
but still allows protocol verification efficiency with orders of magnitude smaller
than the naive verification. This results in even very large elections exhibiting
significant reductions in the amount of time and size of the data required to
verify when compared to naive verification.

We can exhibit this through a direct comparison between naive recomputa-
tion and the proposed protocol, see Table 3. As the EC point exponentiations
represent the majority of the computational workload involved in the naive re-
computation, we can form a estimated lower bound on the naive verification time
for a given size of input votes: we simply take the product of the time taken for
EC point exponentiations per vote and the number of input votes.

We present simple measurements taken for EC point exponentiations on the
evaluation machine in Table 3. This allows us to construct direct comparisons be-
tween naive recomputation for verification and the proposed protocol: we present
projected log-log plots comparing the verification times and proof sizes of the
proposed protocol and the lower bounds of naive verification in Figure 2, assum-
ing that the protocol is performed by a tallier who has access to 6TB of RAM
(which can be acquired relatively cheaply in modern data centres).

We can give a concrete comparison for a real-life example: for a referendum
of 224 voters (roughly the number of eligible voters in the Australian 2023 Voice
referendum) our implementation on the assumed tallier machine would batch this
into about 29 batches of the proposed protocol; note that the batches only include
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Input Votes Inputs Size (MB) Proof Size (MB) Peak RAM (GB)

4 0.009 1.009 0.72
8 0.018 1.062 1.38
16 0.037 1.148 2.82
32 0.073 1.317 5.50
64 0.145 1.620 11.00
128 0.290 1.824 21.96
256 0.579 1.972 43.88
512 1.158 2.120 87.73
1024 2.315 2.267 175.41
2048 4.629 2.415 350.79
4096 9.258 2.563 701.53
8192 18.516 2.711 1403.03
16384 37.031 2.855 2803.02
32768 74.062 3.004 5612.01

Table 2. Implementation memory data. Projections in red.

validity and accumulation, decryption is still only done once on a ciphertext
which accumulates all batches. This reduces the verification time from the naive
recomputation’s lower bound of approximately 77 core-days to a projected time
of 2.57 core-minutes for the proposed protocol, and reduces the sizes of the
inputs from the naive 37.92 GB to a total proof size of 1.54 GB.

Measurement Value

Time for 1024 EC point exponentiations: 36.899 (core-s)
Time per EC point exponentiation: 0.036 (core-s)
Number of exponentiations per input vote: 11
Time of exponentiations per input vote: 0.396 (core-s)

Table 3. Measurements on the evaluation machine for naive estimation.

4 Conclusion

We hope to have convinced the reader that STARKs provide very interesting
trade-offs for homomorphically tallied voting systems. The advantage confers
large reductions in several metrics for verification in practice, dramatically de-
creasing the level of necessary computational resources to verify a given result
- enabling election verification on consumer-grade hardware (e.g. laptops and
smartphones). This empowers voters to be able to verify an election result inde-
pendently, increasing trust in the overall democratic process; the main downside
of the approach appears to be the increased difficult in implementing a fully
independent verifier. The approach is ultimately limited by the computational
resources that the talliers have access to (both in computing power and system
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Fig. 2. Double logarithm plots of projected verification time and data with an assumed
tallier of ∼6 TB RAM
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memory), but this is assuaged by the fact that this role would likely be performed
by a set of server-grade machines. Our key takeaways are as follows:

Prover Effort The proving time does not appear to become prohibitive even
if we consider large elections, particularly since the prover parallelises very
efficiently. However, the RAM required quickly becomes a constraint. In some
cases this can efficiently be dealt with by proving the normal verification
procedure in batches; however, this technique does not seem to generalise
easily beyond homomorphically tallied elections.

Verifier Effort The verifier’s computational time is not constant as might have
been hoped for due to the requirement of batching the prover. However, the
many orders of magnitude which is practicality achievable is enough make
the verifiers work attractively small. The amount of data which needs to be
sent to prover can be made very small for homomorphically tallied elections.

4.1 Future work: Mix-net Based Systems

Adapting the approach for mix-net based systems would provide support for
ranked voting elections or systems supporting write-ins. Based on our analysis
we would expect the prover time to increase compared to homomorphic tallied
elections by the same factor the normal verification procedure time is increased.
However, the issue of batching the mixing would result in a significant loss of
privacy; finding a batching method for mix-net verification which does not incur
a privacy penalty would be of great use.

The attractiveness of STARKs for mix-nets compared to homomorphic tal-
lying is limited by the normal inclusion of all the ballots in plaintext in the
tally; the number of ballots is linear in the number of voters which limits the
size advantage of STARKs; there doesn’t seem to be anyway to compress this in
general without also proving the correction execution of the underlying voting
methods’ social choice function on the plaintext ballots.
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